1
|
Clain J, Couret D, Bringart M, Meilhac O, Lefebvre d’Hellencourt C, Diotel N. Effect of metabolic disorders on reactive gliosis and glial scarring at the early subacute phase of stroke in a mouse model of diabetes and obesity. IBRO Neurosci Rep 2025; 18:16-30. [PMID: 39816479 PMCID: PMC11733059 DOI: 10.1016/j.ibneur.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring. In the present study, by performing a 30-minute middle cerebral artery occlusion (MCAO) on db/db (obese diabetics mice) and db/+ (controls) mice, we demonstrated that obese and diabetic mice displayed larger lesions (i.e. increased infarct volume, ischemic core, apoptotic cell number) and worsened neurological outcomes compared to their control littermates. We then investigated the formation of the glial scar in control and db/db mice 7 days post-stroke. Our observations argue in favor of a stronger and more persistent activation of astrocytes and microglia in db/db mice. Furthermore, an increased deposition of extracellular matrix (ECM) was observed in db/db vs control mice (i.e. chondroitin sulfate proteoglycan and collagen type IV). Consequently, we demonstrated for the first time that the db/db status is associated with increased astrocytic and microglial activation 7 days after stroke and resulted in higher deposition of ECM within the damaged area. Interestingly, the injury-induced neurogenesis appeared stronger in db/db as shown by the labeling of migrating neuroblast. This increase appeared correlated to the larger size of lesion. It nevertheless raises the question of the functional integration of the new neurons in db/db mice given the observed dense ECM, known to be repulsive for neuronal migration. Carefully limiting glial scar formation after stroke represents a promising area of research for reducing neuronal loss and limiting disability in diabetic/obese patients.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
- CHU de La Réunion, Saint-Pierre 97410, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
- CHU de La Réunion, Saint-Pierre 97410, France
| | - Christian Lefebvre d’Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre 97410, France
| |
Collapse
|
2
|
Xu Z, Liu K, Zhang G, Yang F, He Y, Nan W, Li Y, Lin J. Transcriptome analysis reveals that the injection of mesenchymal stem cells remodels extracellular matrix and complement components of the brain through PI3K/AKT/FOXO1 signaling pathway in a neuroinflammation mouse model. Genomics 2025; 117:111033. [PMID: 40122474 DOI: 10.1016/j.ygeno.2025.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/23/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Neurological disorders are often accompanied by neuroinflammatory responses. Our previous research indicated that mesenchymal stem cells (MSCs) suppressed neuroinflammation in the brain. The mechanism of action remains not fully understood. In this study, we analyzed the impact of injected MSCs on the transcriptome in the brains of neuroinflammatory mouse model (NIM) with bioinformatical methods and conducted experimental validation with qPCR and Western blot. The results showed that the expression of extracellular matrix components changed, and the complement cascade was activated in the NIM brains. Injection of MSCs reversed the expression of ECM components and inhibited complement activation. MSCs may promote the improvement of neuronal synaptic function and alter the infiltration of immune cells into the brain. MSCs regulated the PI3K/AKT/Foxo1 signaling pathway. These findings will be very helpful for the development of MSCs-based therapy and the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Zhihao Xu
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Keqin Liu
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Guoqing Zhang
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya''nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang 453003, China
| | - Wenbin Nan
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
3
|
Bu F, Yuan X, Cui X, Guo R. Bibliometric Analysis and Visualized Study of Research on Mesenchymal Stem Cells in Ischemic Stroke. Stem Cell Rev Rep 2025:10.1007/s12015-025-10878-9. [PMID: 40257541 DOI: 10.1007/s12015-025-10878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND One of the major global causes of death and disability is ischemic stroke (IS). Mesenchymal stem cells (MSCs) emerge as a cell-based therapy for numerous diseases. Recently, research on the role of MSCs in ischemic stroke has developed rapidly worldwide. Bibliometric analysis of MSCs for IS has not yet been published, though. AIM Through bibliometric analysis, the aim of this study was to assess the current state of research on MSCs in the field of ischemic stroke research worldwide and to identify important results, major research areas, and emerging trends. METHODS Publications related to MSCs in ischemic stroke from January 1, 2002, to December 31, 2022, were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSViewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. We employed the Total Global Citation Score (TGCS) to assess the impact of publications. RESULTS The bibliometric analysis included a total of 2,048 publications. The 1,386 papers used in this study were authored by 200 individuals across 200 organizations in 72 countries, published in 202 journals. Cesar V Borlongan published the most documents among high-productivity authors. Michael Chopp was the author with the highest average number of citations per paper, with an average paper citation time of 118.54. We found that research of MSCs in ischemic stroke developed rapidly starting in 2008. Neurosciences were the most productive journals, and Chinese researchers have produced the most research papers in this subject. The most cited article is "Systemic administration of exosomes released from mesenchymal stromal cells promotes functional recovery and neurovascular plasticity after stroke in rats". CONCLUSION This study uses both numbers and descriptions to thoroughly review the research on MSCs related to IS. This information provides valuable experience for researchers to carry out MSCs' work on IS.
Collapse
Affiliation(s)
- Fanwei Bu
- Xinxiang First People's Hospital, Xinxiang, China
| | | | - Xiaocan Cui
- Xinxiang First People's Hospital, Xinxiang, China
| | - Ruyue Guo
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
4
|
Bhattarai P, Yilmaz E, Cakir EÖ, Korkmaz HY, Lee AJ, Ma Y, Celikkaya H, Cosacak MI, Haage V, Wang X, Nelson N, Lin W, Zhang Y, Nuriel T, Jülich D, Iş Ö, Holley SA, de Jager P, Fisher E, Tubbesing K, Teich AF, Bertucci T, Temple S, Ertekin-Taner N, Vardarajan BN, Mayeux R, Kizil C. APOE- ε4-induced Fibronectin at the blood-brain barrier is a conserved pathological mediator of disrupted astrocyte-endothelia interaction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634732. [PMID: 39975303 PMCID: PMC11838230 DOI: 10.1101/2025.01.24.634732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Blood-brain barrier (BBB) dysfunction is a key feature of Alzheimer's disease (AD), particularly in individuals carrying the APOE-ε4 allele. This dysfunction worsens neuroinflammation and hinders the removal of toxic proteins, such as amyloid-beta (Aβ42), from the brain. In post-mortem brain tissues and in animal models, we previously reported that fibronectin accumulates at the BBB predominantly in APOE-ε4 carriers. Furthermore, we found a loss-of-function variant in the fibronectin 1 ( FN1 ) gene significantly reduces aggregated fibronectin levels and decreases AD risk among APOE-ε4 carriers. Yet, the molecular mechanisms downstream of fibronectin at the BBB remain unclear. The extracellular matrix (ECM) plays a crucial role in maintaining BBB homeostasis and orchestrating the interactions between BBB cell types, including endothelia and astrocytes. Understanding the mechanisms affecting the ECM and BBB cell types will be critical for developing effective therapies against AD, especially among APOE-ε4 carriers. Here, we demonstrate that APOE-ε4 , Aβ42, and inflammation drive the induction of FN1 expression in several models including zebrafish, mice, iPSC-derived human 3D astrocyte and 3D cerebrovascular cell cultures, and in human brains. Fibronectin accumulation disrupts astroglial-endothelial interactions and the signalling cascade between vascular endothelial growth factor (VEGF), heparin-binding epidermal growth factor (HBEGF) and Insulin-like growth factor 1 (IGF1). This accumulation of fibronectin in APOE-ε4- associated AD potentiates BBB dysfunction, which strongly implicates reducing fibronectin deposition as a potential therapeutic target for AD. Graphical abstract Accessibility text This image illustrates the effects of different APOE isoforms (ApoE-ε3 and ApoE-ε4) on blood-brain barrier (BBB) integrity, focusing on the molecular interactions between astrocytes and endothelial cells. This figure emphasizes the detrimental effects of ApoE-ε4 on BBB integrity via fibronectin accumulation and altered signaling pathways. The top section provides a schematic overview of the blood-brain barrier, highlighting astrocytes, endothelial cells, and their interface. The left panel represents the ApoE-ε3 condition: Normal fibronectin (FN1) levels support healthy interactions between astrocytes and endothelial cells. Growth factors, including VEGFA, HBEGF, and IGF1, maintain BBB integrity through their respective receptors (VEGFR and EGFR). Green arrows indicate activation of these signaling pathways. The right panel depicts the ApoE-ε4 condition: Elevated fibronectin (FN1) disrupts astrocyte-endothelium interactions. FN1 binds integrins and activates focal adhesion kinase (FAK), inhibiting VEGFA, which is required for endothelial HBEGF that in turn activates IGF1 signaling. Red symbols indicate inhibition of HBEGF, VEGFA, and IGF1 pathways, leading to BBB dysfunction. Highlights APOE-ε4 drives fibronectin deposition in Alzheimer's, disrupting astrocyte-endothelia interactions. APOE-ε4 and fibronectin co-localize, forming aggregates at blood-brain barrier (BBB). Fibronectin alters the signaling between VEGF, IGF1, and HBEGF impairing BBB function. Reducing fibronectin restores BBB integrity and offsets APOE-ε4 pathology.
Collapse
|
5
|
Latham AS, Geer CE, Ackart DF, Weninger KN, Gross CC, Podell BK, Basaraba RJ, Moreno JA. Immune cell infiltration and modulation of the blood-brain barrier in a guinea pig model of tuberculosis: Observations without evidence of bacterial dissemination to the brain. PLoS One 2024; 19:e0307577. [PMID: 39739680 DOI: 10.1371/journal.pone.0307577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/08/2024] [Indexed: 01/02/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is a chronic inflammatory disease. Although typically associated with inflammation of the lungs and other peripheral tissues, increasing evidence has uncovered neurological consequences attributable to Mtb infection. These include deficits in memory and cognition, increased risk for neurodegenerative disease, and progressive neuropathology. Although the neurological effects of the disease, without CNS infection, have been characterized, the mechanism of neurotoxicity is unknown. We hypothesized that alterations to the blood-brain barrier (BBB) allows peripheral immune cells to enter the brain, initiating a neuroinflammatory response. To test this hypothesis, guinea pigs were exposed by aerosol to a laboratory and a clinical Mtb strain for 15 days. Following Mtb infection, proteins critical to BBB function, including claudin V and collagen IV, are modulated without evidence of bacterial dissemination to the brain. This is correlated with increased contact of astrocytic processes to vessels in the brain, as well as increased expression of the water channel protein aquaporin 4 (AQP4) on endfeet. Upon further investigation, we discovered the potential role of glial reactivity, which is increased following infection with both bacterial strains, in the progression of BBB changes and, ultimately, the permeability of peripheral immune cells into the brain. Through these data, we have obtained a preliminary understanding of the mechanisms of cellular stress in the brain following pulmonary Mtb infection which should be further investigated in future studies.
Collapse
Affiliation(s)
- Amanda S Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Brain Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Charlize E Geer
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David F Ackart
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kristin N Weninger
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chase C Gross
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Brain Research Center, Colorado State University, Fort Collins, Colorado, United States of America
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
6
|
Carvalho R, Santos L, Conde I, Leitão R, Ferreira HR, Gomes C, Silva AP, Schmitt F, Carvalho-Maia C, Lobo J, Jerónimo C, Paredes J, Ribeiro AS. Nerve growth factor inducible (VGF) is a secreted mediator for metastatic breast cancer tropism to the brain. J Pathol 2024; 264:132-147. [PMID: 39072726 DOI: 10.1002/path.6319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024]
Abstract
Brain metastases are one of the most serious clinical problems in breast cancer (BC) progression, associated with lower survival rates and a lack of effective therapies. Thus, to dissect the early stages of the brain metastatic process, we studied the impact of brain organotropic BC cells' secretomes on the establishment of the brain pre-metastatic niche (PMN). We found that BC cells with specific tropism to the brain caused significant blood-brain barrier (BBB) disruption, as well as microglial activation, in both in vitro and in vivo models. Further, we searched for a brain-organotropic metastatic signature, as a promising source for the discovery of new biomarkers involved in brain metastatic progression. Of relevance, we identified VGF (nerve growth factor inducible) as a key mediator in this process, also impacting the BBB and microglial functions both in vitro and in vivo. In a series of human breast tumors, VGF was found to be expressed in both cancer cells and the adjacent stroma. Importantly, VGF-positive tumors showed a significantly worse prognosis and were associated with HER2 (human epidermal growth factor receptor 2) overexpression and triple-negative molecular signatures. Further clinical validation in primary tumors from metastatic BC cases showed a significant association between VGF and the brain metastatic location, clearly and significantly impacting on the prognosis of BC patients with brain metastasis. In conclusion, our study reveals a unique secretome signature for BC with a tropism for the brain, highlighting VGF as a crucial mediator in this process. Furthermore, its specific impact as a poor prognostic predictor for BC patients with brain metastasis opens new avenues to target VGF to control the progression of brain metastatic disease. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rita Carvalho
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Liliana Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Inês Conde
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ricardo Leitão
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Hugo Rs Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR - Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Fernando Schmitt
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- CINTESIS@RISE, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
| | - João Lobo
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal
| | - Joana Paredes
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis group, i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Corrigendum to "Platelets and Hemostatic Proteins are Co-Localized with Chronic Neuroinflammation Surrounding Implanted Intracortical Microelectrodes" [Acta Biomaterialia. Volume 166, August 2023, Pages 278-290]. Acta Biomater 2024; 182:303-308. [PMID: 38845260 PMCID: PMC11295673 DOI: 10.1016/j.actbio.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
8
|
Clain J, Couret D, Bringart M, Lecadieu A, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Metabolic disorders exacerbate the formation of glial scar after stroke. Eur J Neurosci 2024; 59:3009-3029. [PMID: 38576159 DOI: 10.1111/ejn.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Arnaud Lecadieu
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Christian Lefebvre d'Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| |
Collapse
|
9
|
Bernard M, Menet R, Lecordier S, ElAli A. Endothelial PDGF-D contributes to neurovascular protection after ischemic stroke by rescuing pericyte functions. Cell Mol Life Sci 2024; 81:225. [PMID: 38769116 PMCID: PMC11106055 DOI: 10.1007/s00018-024-05244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)β controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRβ is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.
Collapse
Affiliation(s)
- Maxime Bernard
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Romain Menet
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Sarah Lecordier
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Ayman ElAli
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
10
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
11
|
Bhattarai P, Gunasekaran TI, Belloy ME, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Turgutalp B, Sukumar G, Alba C, McGrath EM, Hupalo DN, Bacikova D, Le Guen Y, Lantigua R, Medrano M, Rivera D, Recio P, Nuriel T, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Greicius M, Dalgard CL, Zody M, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in fibronectin 1 (FN1) protects against APOEε4 in Alzheimer's disease. Acta Neuropathol 2024; 147:70. [PMID: 38598053 PMCID: PMC11006751 DOI: 10.1007/s00401-024-02721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
Affiliation(s)
- Prabesh Bhattarai
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Tamil Iniyan Gunasekaran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dörthe Jülich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Hüseyin Tayran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Delaney Flaherty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bengisu Turgutalp
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Gauthaman Sukumar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Camille Alba
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Elisa Martinez McGrath
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Daniel N Hupalo
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Dagmar Bacikova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rafael Lantigua
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University New York, New York, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra, Santiago, Dominican Republic
| | - Diones Rivera
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
- School of Medicine, Universidad Pedro Henriquez Urena (UNPHU), Santo Domingo, Dominican Republic
| | - Patricia Recio
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Tal Nuriel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Scott Holley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Michael Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Zody
- New York Genome Center, New York, NY, 10013, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St., New York, NY, 10032, USA
| | - Caghan Kizil
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Badri N Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Kyriatzis G, Bernard A, Bôle A, Khrestchatisky M, Ferhat L. In the Rat Hippocampus, Pilocarpine-Induced Status Epilepticus Is Associated with Reactive Glia and Concomitant Increased Expression of CD31, PDGFRβ, and Collagen IV in Endothelial Cells and Pericytes of the Blood-Brain Barrier. Int J Mol Sci 2024; 25:1693. [PMID: 38338969 PMCID: PMC10855308 DOI: 10.3390/ijms25031693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRβ, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.
Collapse
Affiliation(s)
| | | | | | - Michel Khrestchatisky
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France, Institut de Neurophysiopathologie, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France; (G.K.); (A.B.); (A.B.)
| | - Lotfi Ferhat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France, Institut de Neurophysiopathologie, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France; (G.K.); (A.B.); (A.B.)
| |
Collapse
|
13
|
Bhattarai P, Gunasekaran TI, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Lantigua R, Medrano M, Rivera D, Recio P, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in Fibronectin 1 ( FN1 ) protects against APOEe4 in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573895. [PMID: 38260431 PMCID: PMC10802344 DOI: 10.1101/2024.01.02.573895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
|
14
|
Li H, Ghorbani S, Ling CC, Yong VW, Xue M. The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis 2023; 186:106282. [PMID: 37683956 DOI: 10.1016/j.nbd.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stroke is the second leading cause of death worldwide and has two major subtypes: ischemic stroke and hemorrhagic stroke. Neuroinflammation is a pathological hallmark of ischemic stroke and intracerebral hemorrhage (ICH), contributing to the extent of brain injury but also in its repair. Neuroinflammation is intricately linked to the extracellular matrix (ECM), which is profoundly altered after brain injury and in aging. In the early stages after ischemic stroke and ICH, immune cells are involved in the deposition and remodeling of the ECM thereby affecting processes such as blood-brain barrier and cellular integrity. ECM components regulate leukocyte infiltration into the central nervous system, activate a variety of immune cells, and induce the elevation of matrix metalloproteinases (MMPs) after stroke. In turn, excessive MMPs may degrade ECM into components that are pro-inflammatory and injurious. Conversely, in the later stages after stroke, several ECM molecules may contribute to tissue recovery. For example, thrombospondin-1 and biglycan may promote activity of regulatory T cells, inhibit the synthesis of proinflammatory cytokines, and aid regenerative processes. We highlight these roles of the ECM in ischemic stroke and ICH and discuss their potential cellular and molecular mechanisms. Finally, we discuss therapeutics that could be considered to normalize the ECM in stroke. Our goal is to spur research on the ECM in order to improve the prognosis of ischemic stroke and ICH.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Höfling C, Roßner S, Flachmeyer B, Krueger M, Härtig W, Michalski D. Tricellulin, α-Catenin and Microfibrillar-Associated Protein 5 Exhibit Concomitantly Altered Immunosignals along with Vascular, Extracellular and Cytoskeletal Elements after Experimental Focal Cerebral Ischemia. Int J Mol Sci 2023; 24:11893. [PMID: 37569268 PMCID: PMC10418498 DOI: 10.3390/ijms241511893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Along with initiatives to understand the pathophysiology of stroke in detail and to identify neuroprotective targets, cell-stabilizing elements have gained increasing attention. Although cell culture experiments have indicated that tricellulin, α-catenin and microfibrillar-associated protein 5 (MFAP5) contribute to cellular integrity, these elements have not yet been investigated in the ischemic brain. Applying immunofluorescence labeling, this study explored tricellulin, MFAP5 and α-catenin in non-ischemic and ischemic brain areas of mice (24, 4 h of ischemia) and rats (4 h of ischemia), along with collagen IV and fibronectin as vascular and extracellular matrix constituents and microtubule-associated protein 2 (MAP2) and neurofilament light chain (NF-L) as cytoskeletal elements. Immunosignals of tricellulin and notably MFAP5 partially appeared in a fiber-like pattern, and α-catenin appeared more in a dotted pattern. Regional associations with vascular and extracellular constituents were found for tricellulin and α-catenin, particularly in ischemic areas. Due to ischemia, signals of tricellulin, MFAP5 and α-catenin decreased concomitantly with MAP2 and NF-L, whereby MFAP5 provided the most sensitive reaction. For the first time, this study demonstrated ischemia-related alterations in tricellulin, MFAP5 and α-catenin along with the vasculature, extracellular matrix and cytoskeleton. Confirmatory studies are needed, also exploring their role in cellular integrity and the potential for neuroprotective approaches in stroke.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Bianca Flachmeyer
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (B.F.); (M.K.)
| | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (B.F.); (M.K.)
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Prehn A, Hobusch C, Härtig W, Michalski D, Krueger M, Flachmeyer B. Increasing reproducibility in preclinical stroke research: the correlation of immunofluorescence intensity measurements and Western blot analyses strongly depends on antibody clonality and tissue pre-treatment in a mouse model of focal cerebral ischemia. Front Cell Neurosci 2023; 17:1183232. [PMID: 37342767 PMCID: PMC10277931 DOI: 10.3389/fncel.2023.1183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
In the setting of stroke, ischemia not only impairs neuronal function, but also detrimentally affects the different components of the neurovascular unit, which are shown to be involved in the transition from reversible to long-lasting tissue damage. In this context, the glial proteins myelin basic protein (MBP) and the 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) as well as the vasculature-associated basement membrane proteins laminin and collagen IV have been identified as ischemia-sensitive elements. However, available data from immunofluorescence and Western blot analyses are often found to be contradictory, which renders interpretation of the respective data rather difficult. Therefore, the present study investigates the impact of tissue pre-treatment and antibody clonality on immunofluorescence measurements of the mentioned proteins in a highly reproducible model of permanent middle cerebral artery occlusion. Here, immunofluorescence labeling using polyclonal antibodies revealed an increased immunofluorescence intensity of MBP, CNP, laminin and collagen IV in ischemic areas, although Western blot analyses did not reveal increased protein levels. Importantly, contrary to polyclonal antibodies, monoclonal ones did not provide increased fluorescence intensities in ischemic areas. Further, we were able to demonstrate that different ways of tissue pre-treatment including paraformaldehyde fixation and antigen retrieval may not only impact on fluorescence intensity measurements in general, but rather one-sidedly affect either ischemic or unaffected tissue. Therefore, immunofluorescence intensity measurements do not necessarily correlate with the actual protein levels, especially in ischemia-affected tissue and should always be complemented by different techniques to enhance reproducibility and to hopefully overcome the translational roadblock from bench to bedside.
Collapse
Affiliation(s)
- Anna Prehn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | | | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
17
|
Kadir RRA, Alwjwaj M, Rakkar K, Othman OA, Sprigg N, Bath PM, Bayraktutan U. Outgrowth Endothelial Cell Conditioned Medium Negates TNF-α-Evoked Cerebral Barrier Damage: A Reverse Translational Research to Explore Mechanisms. Stem Cell Rev Rep 2023; 19:503-515. [PMID: 36056287 PMCID: PMC9902316 DOI: 10.1007/s12015-022-10439-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
Improved understanding of the key mechanisms underlying cerebral ischemic injury is essential for the discovery of efficacious novel therapeutics for stroke. Through detailed analysis of plasma samples obtained from a large number of healthy volunteers (n = 90) and ischemic stroke patients (n = 81), the current study found significant elevations in the levels of TNF-α at baseline (within the first 48 h of stroke) and on days 7, 30, 90 after ischaemic stroke. It then assessed the impact of this inflammatory cytokine on an in vitro model of human blood-brain barrier (BBB) and revealed dramatic impairments in both barrier integrity and function, the main cause of early death after an ischemic stroke. Co-treatment of BBB models in similar experiments with outgrowth endothelial cell-derived conditioned media (OEC-CM) negated the deleterious effects of TNF-α on BBB. Effective suppression of anti-angiogenic factor endostatin, stress fiber formation, oxidative stress, and apoptosis along with concomitant improvements in extracellular matrix adhesive and tubulogenic properties of brain microvascular endothelial cells and OECs played an important role in OEC-CM-mediated benefits. Significant increases in pro-angiogenic endothelin-1 and monocyte chemoattractant protein-1 in OEC-CM compared to the secretomes of OEC and HBMEC, detected by proteome profiling assay, accentuate the beneficial effects of OEC-CM. In conclusion, this reverse translational study identifies TNF-α as an important mediator of post-ischemic cerebral barrier damage and proposes OEC-CM as a potential vasculoprotective therapeutic strategy by demonstrating its ability to regulate a wide range of mechanisms associated with BBB function. Clinical trial registration NCT02980354.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Nikola Sprigg
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Philip M Bath
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
18
|
Riew TR, Hwang JW, Jin X, Kim HL, Lee MY. Infiltration of meningeal macrophages into the Virchow-Robin space after ischemic stroke in rats: Correlation with activated PDGFR-β-positive adventitial fibroblasts. Front Mol Neurosci 2022; 15:1033271. [PMID: 36644619 PMCID: PMC9837109 DOI: 10.3389/fnmol.2022.1033271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Macrophages play a crucial role in wound healing and fibrosis progression after brain injury. However, a detailed analysis of their initial infiltration and interaction with fibroblasts is yet to be conducted. This study aimed to investigate the possible route for migration of meningeal macrophages into the ischemic brain and whether these macrophages closely interact with neighboring platelet-derived growth factor beta receptor (PDGFR-β)-positive adventitial fibroblasts during this process. A rat model of ischemic stroke induced by middle cerebral artery occlusion (MCAO) was developed. In sham-operated rats, CD206-positive meningeal macrophages were confined to the leptomeninges and the perivascular spaces, and they were not found in the cortical parenchyma. In MCAO rats, the number of CD206-positive meningeal macrophages increased both at the leptomeninges and along the vessels penetrating the cortex 1 day after reperfusion and increased progressively in the extravascular area of the cortical parenchyma by 3 days. Immunoelectron microscopy and correlative light and electron microscopy showed that in the ischemic brain, macrophages were frequently located in the Virchow-Robin space around the penetrating arterioles and ascending venules at the pial surface. This was identified by cells expressing PDGFR-β, a novel biomarker of leptomeningeal cells. Macrophages within penetrating vessels were localized in the perivascular space between smooth muscle cells and PDGFR-β-positive adventitial fibroblasts. In addition, these PDGFR-β-positive fibroblasts showed morphological and molecular characteristics similar to those of leptomeningeal cells: they had large euchromatic nuclei with prominent nucleoli and well-developed rough endoplasmic reticulum; expressed nestin, vimentin, and type I collagen; and were frequently surrounded by collagen fibrils, indicating active collagen synthesis. In conclusion, the perivascular Virchow-Robin space surrounding the penetrating vessels could be an entry route of meningeal macrophages from the subarachnoid space into the ischemic cortical parenchyma, implying that activated PDGFR-β-positive adventitial fibroblasts could be involved in this process.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea,*Correspondence: Mun-Yong Lee, ✉
| |
Collapse
|
19
|
Orekhova K, Selmanovic E, De Gasperi R, Gama Sosa MA, Wicinski B, Maloney B, Seifert A, Alipour A, Balchandani P, Gerussi T, Graïc JM, Centelleghe C, Di Guardo G, Mazzariol S, Hof PR. Multimodal Assessment of Bottlenose Dolphin Auditory Nuclei Using 7-Tesla MRI, Immunohistochemistry and Stereology. Vet Sci 2022; 9:vetsci9120692. [PMID: 36548853 PMCID: PMC9781543 DOI: 10.3390/vetsci9120692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The importance of assessing neurochemical processes in the cetacean brain as a tool for monitoring their cognitive health and to indirectly model human neurodegenerative conditions is increasingly evident, although available data are largely semiquantitative. High-resolution MRI for post-mortem brains and stereology allow for quantitative assessments of the cetacean brain. In this study, we scanned two brains of bottlenose dolphins in a 7-Tesla (7T) MR scanner and assessed the connectivity of the inferior colliculi and ventral cochlear nuclei using diffusion tensor imaging (DTI). Serial thick sections were investigated stereologically in one of the dolphins to generate rigorous quantitative estimates of identifiable cell types according to their morphology and expression of molecular markers, yielding reliable cell counts with most coefficients of error <10%. Fibronectin immunoreactivity in the dolphin resembled the pattern in a human chronic traumatic encephalopathy brain, suggesting that neurochemical compensation for insults such as hypoxia may constitute a noxious response in humans, while being physiological in dolphins. These data contribute to a growing body of knowledge on the morphological and neurochemical properties of the dolphin brain and highlight a stereological and neuroimaging workflow that may enable quantitative and translational assessment of pathological processes in the dolphin brain in the future.
Collapse
Affiliation(s)
- Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
- Correspondence:
| | - Enna Selmanovic
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigid Maloney
- Laboratory of Neurogenetics of Vocal Learning, Rockefeller University, New York, NY 10065, USA
| | - Alan Seifert
- Department of Radiology, BioMedical Engineering and Imaging Institute (BMEII), Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Akbar Alipour
- Department of Radiology, BioMedical Engineering and Imaging Institute (BMEII), Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Priti Balchandani
- Department of Radiology, BioMedical Engineering and Imaging Institute (BMEII), Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Zhu Y, Chen S, Liu W, Xu F, Lu J, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. IGF-1R/YAP signaling pathway is involved in collagen V-induced insulin biosynthesis and secretion in rat islet INS-1 cells. Connect Tissue Res 2022; 63:498-513. [PMID: 35129018 DOI: 10.1080/03008207.2021.2025225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Type V collagen (collagen V) is one of the important components of extracellular matrix (ECM) in pancreas. We previously reported that pre-coating collagen V on the culture dishes enhanced insulin production in INS-1 rat pancreatic β cells. In this study, we investigate the underlying mechanism. RESULTS Insulin biosynthesis and secretion are both increased in INS-1 cells cultured on collagen V-coated dishes, accompanied by the reduced nuclear translocation of Yes-associated protein (YAP), a transcriptional co-activator. YAP, the downstream effector of Hippo signaling pathway, plays an important role in the development and function of pancreas. Inhibition of YAP activation by verteporfin further up-regulates insulin biosynthesis and secretion. Silencing large tumor suppressor (LATS), a core component of Hippo pathway which inhibits activity of YAP by phosphorylation, by siRNA transfection inhibits both insulin biosynthesis and secretion. In the present study, the protein level of insulin-like growth factor 1 receptor (IGF-1 R), detected as the upstream molecule of YAP, is reduced in the INS-1 cells cultured on the dishes coated with collagen V. The silencing of IGF-1 R by siRNA transfection further enhances insulin biosynthesis and secretion. IGF-1 treatment reduces collagen V-induced up-regulation of insulin biosynthesis and secretion, accompanying the increased nuclear YAP. CONCLUSION Inhibition of IGF-1 R/YAP signal pathway is involved in collagen V-induced insulin biosynthesis and secretion in INS-1 cells.
Collapse
Affiliation(s)
- Yingying Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.,Traditional Chinese Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shuaigao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jingyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.,Department of Chemistry and Life Science, School of Advanced Engineering Kogakuin University, Tokyo, Japan.,Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Connexins Signatures of the Neurovascular Unit and Their Physio-Pathological Functions. Int J Mol Sci 2022; 23:ijms23179510. [PMID: 36076908 PMCID: PMC9455936 DOI: 10.3390/ijms23179510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) homeostasis is closely linked to the delicate balance of the microenvironment in which different cellular components of the neurovascular unit (NVU) coexist. Intercellular communication plays a pivotal role in exchanges of signaling molecules and mediators essential for survival functions, as well as in the removal of disturbing elements that can lead to related pathologies. The specific signatures of connexins (Cxs), proteins which form either gap junctions (GJs) or hemichannels (HCs), represent the biological substrate of the pathophysiological balance. Connexin 43 (Cx43) is undoubtedly one of the most important factors in glia–neuro–vascular crosstalk. Herein, Cxs signatures of every NVU component are highlighted and their critical influence on functional processes in healthy and pathological conditions of nervous microenvironment is reviewed.
Collapse
|
22
|
Characterization of Astrocytes in the Minocycline-Administered Mouse Photothrombotic Ischemic Stroke Model. Neurochem Res 2022; 47:2839-2855. [PMID: 35907114 DOI: 10.1007/s11064-022-03703-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
Astrocytes, together with microglia, play important roles in the non-infectious inflammation and scar formation at the brain infarct during ischemic stroke. After ischemia occurs, these become highly reactive, accumulate at the infarction, and release various inflammatory signaling molecules. The regulation of astrocyte reactivity and function surrounding the infarction largely depends on intercellular communication with microglia. However, the mechanisms involved remain unclear. Furthermore, recent molecular biological studies have revealed that astrocytes are highly divergent under both resting and reactive states, whereas it has not been well reported how the communication between microglia and astrocytes affects astrocyte divergency during ischemic stroke. Minocycline, an antibiotic that reduces microglial activity, has been used to examine the functional roles of microglia in mice. In this study, we used a mouse photothrombotic ischemic stroke model to examine the characteristics of astrocytes after the administration of minocycline during ischemic stroke. Minocycline increased astrocyte reactivity and affected the localization of astrocytes in the penumbra region. Molecular characterization revealed that the induced expression of mRNA encoding the fatty acid binding protein 7 (FABP7) by photothrombosis was enhanced by the minocycline administration. Meanwhile, minocycline did not significantly affect the phenotype or class of astrocytes. The expression of Fabp7 mRNA was well correlated with that of tumor-necrosis factor α (TNFα)-encoding Tnf mRNA, indicating that a correlated expression of FABP7 from astrocytes and TNFα is suppressed by microglial activity.
Collapse
|
23
|
Michalski D, Reimann W, Spielvogel E, Mages B, Biedermann B, Barthel H, Nitzsche B, Schob S, Härtig W. Regionally Altered Immunosignals of Surfactant Protein-G, Vascular and Non-Vascular Elements of the Neurovascular Unit after Experimental Focal Cerebral Ischemia in Mice, Rats, and Sheep. Int J Mol Sci 2022; 23:ijms23115875. [PMID: 35682557 PMCID: PMC9180438 DOI: 10.3390/ijms23115875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 01/12/2023] Open
Abstract
The surfactant protein-G (SP-G) has recently been discovered in the brain and linked to fluid balance regulations. Stroke is characterized by impaired vessel integrity, promoting water influx and edema formation. The neurovascular unit concept (NVU) has been generated to cover not only ischemic affections of neurons or vessels but also other regionally associated cells. This study provides the first spatio-temporal characterization of SP-G and NVU elements after experimental stroke. Immunofluorescence labeling was applied to explore SP-G, vascular and cellular markers in mice (4, 24, and 72 h of ischemia), rats (24 h of ischemia), and sheep (two weeks of ischemia). Extravasated albumin indicated vascular damage within ischemic areas. Quantifications revealed decreasing SP-G signals in the ischemia-affected neocortex and subcortex. Inverse immunosignals of SP-G and vascular elements existed throughout all models. Despite local associations between SP-G and the vasculature, a definite co-localization was not seen. Along with a decreased SP-G-immunoreactivity in ischemic areas, signals originating from neurons, glial elements, and the extracellular matrix exhibited morphological alterations or changed intensities. Collectively, this study revealed regional alterations of SP-G, vascular, and non-vascular NVU elements after ischemia, and may thus stimulate the discussion about the role of SP-G during stroke.
Collapse
Affiliation(s)
- Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; (W.R.); (E.S.)
- Correspondence: ; Tel.: +49-341-9724339
| | - Willi Reimann
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; (W.R.); (E.S.)
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (B.B.); (W.H.)
| | - Emma Spielvogel
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; (W.R.); (E.S.)
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (B.B.); (W.H.)
| | - Bianca Mages
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany;
| | - Bernd Biedermann
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (B.B.); (W.H.)
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Stephanstr. 11, 04103 Leipzig, Germany; (H.B.); (B.N.)
| | - Björn Nitzsche
- Department of Nuclear Medicine, University of Leipzig, Stephanstr. 11, 04103 Leipzig, Germany; (H.B.); (B.N.)
- Institute of Anatomy, Histology, and Embryology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, University of Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany;
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (B.B.); (W.H.)
| |
Collapse
|
24
|
Alcohol-Induced Alterations in the Vascular Basement Membrane in the Substantia Nigra of the Adult Human Brain. Biomedicines 2022; 10:biomedicines10040830. [PMID: 35453580 PMCID: PMC9028457 DOI: 10.3390/biomedicines10040830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
The blood–brain barrier (BBB) represents a highly specialized interface that acts as the first line of defense against toxins. Herein, we investigated the structural and ultrastructural changes in the basement membrane (BM), which is responsible for maintaining the integrity of the BBB, in the context of chronic alcoholism. Human post-mortem tissues from the Substantia Nigra (SN) region were obtained from 44 individuals, then grouped into controls, age-matched alcoholics, and non-age-matched alcoholics and assessed using light and electron microscopy. We found significantly less CD31+ vessels in alcoholic groups compared to controls in both gray and white matter samples. Alcoholics showed increased expression levels of collagen-IV, laminin-111, and fibronectin, which were coupled with a loss of BM integrity in comparison with controls. The BM of the gray matter was found to be more disintegrated than the white matter in alcoholics, as demonstrated by the expression of both collagen-IV and laminin-111, thereby indicating a breakdown in the BM’s structural composition. Furthermore, we observed that the expression of fibronectin was upregulated in the BM of the white matter vasculature in both alcoholic groups compared to controls. Taken together, our findings highlight some sort of aggregation or clumping of BM proteins that occurs in response to chronic alcohol consumption.
Collapse
|
25
|
Zhang H, Xie Q, Hu J. Neuroprotective Effect of Physical Activity in Ischemic Stroke: Focus on the Neurovascular Unit. Front Cell Neurosci 2022; 16:860573. [PMID: 35317197 PMCID: PMC8934401 DOI: 10.3389/fncel.2022.860573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is one of the major diseases associated with death or disability among patients. To date, there is a lack of effective treatments, with the exception of thrombolytic therapy that can be administered during the acute phase of ischemic stroke. Cerebral ischemia can cause a variety of pathological changes, including microvascular basal membrane matrix, endothelial cell activation, and astrocyte adhesion, which may affect signal transduction between the microvessels and neurons. Therefore, researchers put forward the concept of neurovascular unit, including neurons, axons, astrocytes, microvasculature (including endothelial cells, basal membrane matrix, and pericyte), and oligodendrocytes. Numerous studies have demonstrated that exercise can produce protective effects in cerebral ischemia, and that exercise may protect the integrity of the blood-brain barrier, promote neovascularization, reduce neuronal apoptosis, and eventually lead to an improvement in neurological function after cerebral ischemia. In this review, we summarized the potential mechanisms on the effect of exercise on cerebral ischemia, by mainly focusing on the neurovascular unit, with the aim of providing a novel therapeutic strategy for future treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui Zhang
- School of Physical Education, Nanchang University, Nanchang, China
| | - Qi Xie
- Inpatient Department, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Juan Hu
- Yu Quan dao Health Center, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Juan Hu,
| |
Collapse
|
26
|
Linka K, Reiter N, Würges J, Schicht M, Bräuer L, Cyron CJ, Paulsen F, Budday S. Unraveling the Local Relation Between Tissue Composition and Human Brain Mechanics Through Machine Learning. Front Bioeng Biotechnol 2021; 9:704738. [PMID: 34485258 PMCID: PMC8415910 DOI: 10.3389/fbioe.2021.704738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
The regional mechanical properties of brain tissue are not only key in the context of brain injury and its vulnerability towards mechanical loads, but also affect the behavior and functionality of brain cells. Due to the extremely soft nature of brain tissue, its mechanical characterization is challenging. The response to loading depends on length and time scales and is characterized by nonlinearity, compression-tension asymmetry, conditioning, and stress relaxation. In addition, the regional heterogeneity-both in mechanics and microstructure-complicates the comprehensive understanding of local tissue properties and its relation to the underlying microstructure. Here, we combine large-strain biomechanical tests with enzyme-linked immunosorbent assays (ELISA) and develop an extended type of constitutive artificial neural networks (CANNs) that can account for viscoelastic effects. We show that our viscoelastic constitutive artificial neural network is able to describe the tissue response in different brain regions and quantify the relevance of different cellular and extracellular components for time-independent (nonlinearity, compression-tension-asymmetry) and time-dependent (hysteresis, conditioning, stress relaxation) tissue mechanics, respectively. Our results suggest that the content of the extracellular matrix protein fibronectin is highly relevant for both the quasi-elastic behavior and viscoelastic effects of brain tissue. While the quasi-elastic response seems to be largely controlled by extracellular matrix proteins from the basement membrane, cellular components have a higher relevance for the viscoelastic response. Our findings advance our understanding of microstructure - mechanics relations in human brain tissue and are valuable to further advance predictive material models for finite element simulations or to design biomaterials for tissue engineering and 3D printing applications.
Collapse
Affiliation(s)
- Kevin Linka
- Institute of Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Nina Reiter
- Institute of Applied Mechanics, Department Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jasmin Würges
- Institute of Applied Mechanics, Department Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Bräuer
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian J Cyron
- Institute of Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany.,Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Operative Surgery and Topographic Anatomy, Sechenov University, Moscow, Russia
| | - Silvia Budday
- Institute of Applied Mechanics, Department Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Ko E, Poon MLS, Park E, Cho Y, Shin JH. Engineering 3D Cortical Spheroids for an In Vitro Ischemic Stroke Model. ACS Biomater Sci Eng 2021; 7:3845-3860. [PMID: 34275269 DOI: 10.1021/acsbiomaterials.1c00406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) spheroids composed of brain cells have shown great potential to mimic the pathophysiology of the brain. However, a 3D spheroidal brain-disease model for cerebral ischemia has not been reported. This study investigated an ultralow attachment (ULA) surface-mediated formation of 3D cortical spheroids using primary rat cortical cells to recapitulate the cerebral ischemic responses in stroke by oxygen-glucose deprivation-reoxygenation (OGD-R) treatment. Comparison between two-dimensional (2D) and 3D cell culture models confirmed the better performance of the 3D cortical spheroids as normal brain models. The cortical cells cultured in 3D maintained their healthy physiological morphology of a less activated state and suppressed mRNA expressions of pathological stroke markers, S100B, IL-1β, and MBP, selected based on in vivo stroke model. Interestingly, the spheroids formed on the ULA surface exhibited striking aggregation dynamics involving active cell-substrate interactions, whereas those formed on the agarose surface aggregated passively by the convective flow of the media. Accordingly, ULA spheroids manifested a layered arrangement of neurons and astrocytes with higher expressions of integrin β1, integrin α5, N-cadherin, and fibronectin than the agarose spheroids. OGD-R-induced stroke model of the ULA spheroids successfully mimicked the ischemic response as evidenced by the upregulated mRNA expressions of the key markers for stroke, S100B, IL-1β, and MBP. Our study suggested that structurally and functionally distinct cortical spheroids could be generated by simply tuning the cell-substrate binding activities during dynamic spheroidal formation, which should be an essential factor to consider in establishing a brain-disease model.
Collapse
Affiliation(s)
- Eunmin Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Mong Lung Steve Poon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|