1
|
Nar R, Gibbons MD, Perez L, Strouboulis J, Qian Z, Bungert J. TFII-I/GTF2I regulates globin gene expression and stress response in erythroid cells. J Biol Chem 2025; 301:108227. [PMID: 39864622 PMCID: PMC11879681 DOI: 10.1016/j.jbc.2025.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
Transcription factor TFII-I/GTF2I is ubiquitously expressed and has been shown to play a role in the differentiation of hematopoietic cells and in the response to various cellular stressors. We previously demonstrated that TFII-I acts as a repressor of adult β-globin gene transcription and positively regulates the expression of stress response proteins, including ATF3. Here we analyzed the function of TFII-I in TF-1 cells during erythroid differentiation and in response to cellular stress, including unfolded protein response, hypoxia, and oxidative stress. Ablation of TFII-I leads to mild changes in the cell cycle and proliferation of TF-1 cells. Importantly, TFII-I deficiency increased the expression of the adult β-globin gene with a concomitant reduction in the expression of the fetal γ-globin genes during erythropoietin-mediated erythroid differentiation of TF-1 cells. Furthermore, TFII-I regulates genes involved in stress response, including CHOP, Elongin A, ATF3, ATF4, and Grp78, and participates in the apoptotic response to stressors. In summary, the data provide further support for the role of TFII-I in stress response and the regulation of globin genes.
Collapse
Affiliation(s)
- Rukiye Nar
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA; Department of Medicine, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA.
| | - Matthew D Gibbons
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Leonardo Perez
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - John Strouboulis
- Red Cell Haematology, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Zhijian Qian
- Department of Medicine, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
2
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Guglielmi V, Lam D, D’Angelo MA. Nucleoporin Nup358 drives the differentiation of myeloid-biased multipotent progenitors by modulating HDAC3 nuclear translocation. SCIENCE ADVANCES 2024; 10:eadn8963. [PMID: 38838144 PMCID: PMC11152124 DOI: 10.1126/sciadv.adn8963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Nucleoporins, the components of nuclear pore complexes (NPCs), can play cell type- and tissue-specific functions. Yet, the physiological roles and mechanisms of action for most NPC components have not yet been established. We report that Nup358, a nucleoporin linked to several myeloid disorders, is required for the developmental progression of early myeloid progenitors. We found that Nup358 ablation in mice results in the loss of myeloid-committed progenitors and mature myeloid cells and the accumulation of myeloid-primed multipotent progenitors (MPPs) in bone marrow. Accumulated MPPs in Nup358 knockout mice are greatly restricted to megakaryocyte/erythrocyte-biased MPP2, which fail to progress into committed myeloid progenitors. Mechanistically, we found that Nup358 is required for histone deacetylase 3 (HDAC3) nuclear import and function in MPP2 cells and established that this nucleoporin regulates HDAC3 nuclear translocation in a SUMOylation-independent manner. Our study identifies a critical function for Nup358 in myeloid-primed MPP2 differentiation and uncovers an unexpected role for NPCs in the early steps of myelopoiesis.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Davina Lam
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A. D’Angelo
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
4
|
Shao J, Wang W, Tao B, Cai Z, Li H, Chen J. Extracellular vesicle-carried GTF2I from mesenchymal stem cells promotes the expression of tumor-suppressive FAT1 and inhibits stemness maintenance in thyroid carcinoma. Front Med 2023; 17:1186-1203. [PMID: 37707678 DOI: 10.1007/s11684-023-0999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/01/2023] [Indexed: 09/15/2023]
Abstract
Through bioinformatics predictions, we identified that GTF2I and FAT1 were downregulated in thyroid carcinoma (TC). Further, Pearson's correlation coefficient revealed a positive correlation between GTF2I expression and FAT1 expression. Therefore, we selected them for this present study, where the effects of bone marrow mesenchymal stem cell-derived EVs (BMSDs-EVs) enriched with GTF2I were evaluated on the epithelial-to-mesenchymal transition (EMT) and stemness maintenance in TC. The under-expression of GTF2I and FAT1 was validated in TC cell lines. Ectopically expressed GTF2I and FAT1 were found to augment malignant phenotypes of TC cells, EMT, and stemness maintenance. Mechanistic studies revealed that GTF2I bound to the promoter region of FAT1 and consequently upregulated its expression. MSC-EVs could shuttle GTF2I into TPC-1 cells, where GTF2I inhibited TC malignant phenotypes, EMT, and stemness maintenance by increasing the expression of FAT1 and facilitating the FAT1-mediated CDK4/FOXM1 downregulation. In vivo experiments confirmed that silencing of GTF2I accelerated tumor growth in nude mice. Taken together, our work suggests that GTF2I transferred by MSC-EVs confer antioncogenic effects through the FAT1/CDK4/FOXM1 axis and may be used as a promising biomarker for TC treatment.
Collapse
Affiliation(s)
- Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenjuan Wang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Baorui Tao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haixia Li
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Xu Z, Chen Z, Shen T, Chen L, Tan T, Gao C, Chen B, Yuan Y, Zhang Z. The impact of HTR1A and HTR1B methylation combined with stress/genotype on early antidepressant efficacy. Psychiatry Clin Neurosci 2022; 76:51-57. [PMID: 34773671 DOI: 10.1111/pcn.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022]
Abstract
AIMS Antidepressants are effective in the treatment of major depressive disorder (MDD), while many patients fail to respond to antidepressants. Both 5-HT1A (HTR1A) and 5-HT1B (HTR1B) receptors play an important role in antidepressant activity. Meanwhile, DNA methylation is associated with MDD and antidepressant efficacy. In this study we investigate the influence of HTR1A and HTR1B methylation combined with stress/genotype on antidepressant efficacy. METHODS A total of 291 MDD patients and 100 healthy controls received the Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) as stress assessment. Eight single nucleotide polymorphisms (SNPs) of HTR1A and HTR1B involved in antidepressant mechanisms were tested. Methylation status in 181 cytosine-phosphate-guanine (CpG) sites of HTR1A and HTR1B were assessed. All MDD patients were divided into response (RES) and non-response (NRES) after 2 weeks of antidepressant treatment. Logistic regression was conducted for interactions between methylation, NLES/CTQ score and genotype. RESULTS Low HTR1A-2-143 methylation is connected with better antidepressant efficacy in subgroup. Low HTR1A-2-143 methylation combined with low CTQ score is related to better antidepressant efficacy. The interaction between high HTR1B methylation with the rs6298 AA/AG genotype affects better antidepressant efficacy. CONCLUSIONS HTR1A and HTR1B methylation combined with stress/genotype is associated with antidepressant efficacy.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zimu Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian Shen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chenjie Gao
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Osborne LR, Mervis CB. 7q11.23 deletion and duplication. Curr Opin Genet Dev 2021; 68:41-48. [DOI: 10.1016/j.gde.2021.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/24/2023]
|