1
|
Wang R, Shen J, Han C, Shi X, Gong Y, Hu X, Jia Z, Wang M, Wu Y. Dietary Fiber Intake Improves Osteoporosis Caused by Chronic Lead Exposure by Restoring the Gut-Bone Axis. Nutrients 2025; 17:1513. [PMID: 40362820 PMCID: PMC12073446 DOI: 10.3390/nu17091513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Lead (Pb), a pervasive environmental toxicant with specific toxicity to bone, has been recognized as a significant etiological factor in the pathogenesis of osteoporosis. While dietary fiber (DF) demonstrates anti-osteoporotic potential, its protective role against Pb-induced bone loss remains unexplored. Methods: This study analyzed the association between dietary fiber, blood lead, and osteoporosis based on the NHANES database, and validated it by constructing a lead exposed mouse model. Micro CT was used to evaluate bone microstructure, ELISA was used to detect bone markers, q-PCR/Western blot was used to measure intestinal tight junction protein, flow cytometry was used to analyze Treg cells in colon/bone tissue, GC-MS was used to detect short chain fatty acids, and 16S rRNA sequencing was used to analyze changes in gut microbiota. The regulatory mechanism of dietary fiber on bone metabolism and intestinal barrier in lead exposed mice was systematically evaluated. Results: Based on NHANES data analysis, it was found that dietary fiber can reduce the risk of osteoporosis in lead exposed populations. Animal experiments have shown that dietary fiber intervention significantly increases bone density, improves bone microstructure and metabolic indicators, repairs intestinal barrier damage caused by lead exposure, and regulates immune balance in lead exposed mice. At the same time, it promotes the generation of short chain fatty acids and the proliferation of beneficial gut microbiota. Conclusions: These findings indicate that DF mitigates Pb-induced osteoporosis through gut barrier restoration, SCFA-mediated immunomodulation, and microbiota-driven Treg cell expansion along the gut-bone axis.
Collapse
Affiliation(s)
- Ruijian Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China; (R.W.); (J.S.); (C.H.); (X.H.); (Z.J.)
- Laboratory of Modern Environmental Toxicology, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| | - Jin Shen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China; (R.W.); (J.S.); (C.H.); (X.H.); (Z.J.)
- Laboratory of Modern Environmental Toxicology, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| | - Chunqing Han
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China; (R.W.); (J.S.); (C.H.); (X.H.); (Z.J.)
- Laboratory of Modern Environmental Toxicology, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| | - Xiaodong Shi
- Department of Management Engineering, Capital University of Economics and Business, Fengtai, Beijing 100070, China;
| | - Yan Gong
- Department of Occupational Medicine, Wuxi Center for Disease Control and Prevention, Wuxi 214101, China;
| | - Xiping Hu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China; (R.W.); (J.S.); (C.H.); (X.H.); (Z.J.)
- Laboratory of Modern Environmental Toxicology, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| | - Zhongtang Jia
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China; (R.W.); (J.S.); (C.H.); (X.H.); (Z.J.)
- Laboratory of Modern Environmental Toxicology, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| | - Miaomiao Wang
- Department of Occupational Medicine, Wuxi Center for Disease Control and Prevention, Wuxi 214101, China;
| | - Yu Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China; (R.W.); (J.S.); (C.H.); (X.H.); (Z.J.)
- Laboratory of Modern Environmental Toxicology, Wuxi School of Medicine, Jiangnan University, Wuxi 214126, China
- Public Health Research Center, Jiangnan University, Wuxi 214064, China
| |
Collapse
|
2
|
Rind KH, Aslam S, Memon NH, Raza A, Saeed MQ, Mushtaq A, Ujan JA, Habib SF, Al-Rejaie SS, Mohany M. Heavy Metal Concentrations in Water, Sediment, and Fish Species in Chashma Barrage, Indus River: A Comprehensive Health Risk Assessment. Biol Trace Elem Res 2025; 203:2226-2239. [PMID: 38956009 DOI: 10.1007/s12011-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The increasing levels of heavy metals in aquatic environments, driven by human activities, pose a critical threat to ecosystems' overall health and sustainability. This study investigates the bioaccumulation of heavy metals (Pb, Cu, Cr, and Cd) in water, sediment, and three fish species (Catla catla, Labeo rohita, Cirrhinus mrigala) of different feeding zones within Chashma Barrage, located in the Mianwali district of Punjab, Pakistan, on the Indus River. A comprehensive analysis, including an assessment of associated human health risks, was conducted. Thirty samples from all three sites for each fish species, with an average body weight of 160 ± 32 g, were collected from Chashma Barrage. Water quality parameters indicated suitability for fish growth and health. Heavy metal concentrations were determined using an atomic absorption spectrometer. Results indicated elevated levels of Cd, Cr, and Cu in sediment and Pb and Cd in water, surpassing WHO standard limits. Among the fish species, bottom feeder (C. mrigala) exhibited significantly (P < 0.05) higher heavy metal levels in its tissues (gills, liver, and muscle) compared to column feeder (L. rohita) and surface feeder (C. catla). Liver tissues across all species showed higher heavy metal bioaccumulation, followed by gills. Principal component analysis (PCA) revealed strong correlations among heavy metals in sediment, gills, muscle, and water in every fish species. However, the vector direction suggests that Cr was not correlated with other heavy metals in the system, indicating a different source. The human health risk analysis revealed lower EDI, THQ, and HI values (< 1) for the fish species, indicating no adverse health effects for the exposed population. The study emphasizes the bioaccumulation differences among fish species, underscoring the higher heavy metal concentrations in bottom feeder fish within Chashma Barrage.
Collapse
Affiliation(s)
- Khalid Hussain Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, 67450, Pakistan
| | - Sonia Aslam
- Department of Zoology, Government Girls Postgraduate College Kohat, Kohat, 26030, Khyber Pakhtunkhwa, Pakistan
| | - Nazakat Hussain Memon
- Department of Biochemistry, Ghulam Muhammad Mahar Medical College Sukkur, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, 77150, Larkana, Sindh, Pakistan
| | - Asif Raza
- Government Degree College Nasirabad, Qambar Shahdadkot District, 770020, Sindh, Pakistan
| | - Muhammad Qamar Saeed
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Punjab, 60800, Multan , Pakistan
| | - Alia Mushtaq
- Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University, KhairpurKhairpur, 66020, Sindh, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Syed Fahad Habib
- Department of Zoology, Khushal Khan Khattak University, Khyber Pakhtunkhwa, 27200, Karak, Pakistan.
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Rezazadegan M, Forootani B, Hoveyda Y, Rezazadegan N, Amani R. Major heavy metals and human gut microbiota composition: a systematic review with nutritional approach. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:21. [PMID: 39871318 PMCID: PMC11773724 DOI: 10.1186/s41043-025-00750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND The human gut microbiota has a critical role in several aspects of host homeostasis, such as immune development, metabolism, nutrition, and defense against pathogens during life. It can be sensitive to xenobiotics including drugs, diet, or even environmental pollutants, especially heavy metals (HMs). The findings of some previous studies are heterogeneous due to the inclusion of various types of study (human, and animal studies) and wide exposures (phthalate, bisphenol A, HMS, etc.), and no comprehensive systematic review has investigated the association between HMs exposure and human gut microbiota composition. Therefore, we carried out a systematic review of human observational studies to examine this association. PubMed, Scopus, ISI Web of Science, and Google Scholar were searched using Medical Subject Headings (MeSH) and non-MeSH terms. Eventually, 12 studies for arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) were included in this study. No eligible study was found for Aluminium. SHORT CONCLUSION The findings showed exposure to HMs disturbs the composition of gut microbiota and can lead to dysbiosis. Exposure to high levels of As, Pb, and Hg increased the abundance of Collinsella as pathobionts. Evidently, it is related to leaky gut, oxidative stress, and several diseases such as inflammatory bowel disease and cancers. Probiotic treatment and nutritional strategies such as high fiber intake and following antioxidant-rich diets should be considered in terms of HMs exposure.
Collapse
Affiliation(s)
- Mahsa Rezazadegan
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bita Forootani
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yeganeh Hoveyda
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Rezazadegan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Kautu A, Sharma S, Singh R, Negi SS, Singh N, Swain N, Kumar V, Kumar N, Gupta P, Bhatia D, Joshi KB. Metallopeptide nanoreservoirs for concurrent imaging and detoxification of lead (Pb) from human retinal pigment epithelial (hRPE1) cells. NANOSCALE 2024; 16:14940-14952. [PMID: 39046356 DOI: 10.1039/d4nr02236j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inspired by natural metallopeptides, our work focuses on engineering self-assembling nanostructures of C2-symmetric metallopeptide conjugates (MPC) from a pyridine-bis-tripeptide bioprobe that uniquely detects lead (Pb2+) ions by emitting a fluorescence signal at 450 nm, which is further intensified in the presence of DAPI (λem = 458 nm), enhancing the bioimaging quality. This study enables precise lead quantification by modulating the ionic conformation and morphology. Experimental and theoretical insights elucidate the nanostructure formation mechanism, laying the groundwork for materials encapsulation and advancing lead detoxification. Our proof-of-principle experiment, demonstrating actin filament recovery in lead-treated cells, signifies therapeutic potential for intracellular lead aggregation and introduces novel avenues in biotechnological applications within biomaterials science.
Collapse
Affiliation(s)
- Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Ramesh Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Saurabh Singh Negi
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Narendra Singh
- Indian Institute of Technology Kanpur, U.P., 208016, India
| | - Narayan Swain
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| | - Vikas Kumar
- Department of Chemistry, Government College Khimlasha, M.P., India
| | - Nikunj Kumar
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Puneet Gupta
- Computational Catalysis Centre, Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat 382355, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
5
|
Zhang S, Deng Z, Yin X, Fang H, Song G, Liu Y, Jiang X, Wang X, Wang L. Bioaccessibility of lead and cadmium in soils around typical lead-acid power plants and their effect on gut microorganisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:107. [PMID: 38446285 DOI: 10.1007/s10653-023-01840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/18/2023] [Indexed: 03/07/2024]
Abstract
Potentially toxic elements (Pb and Cd) contamination of soil can adversely affect human health. Moreover, these metal ions interact with the gut microbiota after entering the human digestive system. Based on the physiologically based extraction test and the simulator of human intestinal microbial ecosystem, the bioaccessibility of Pb and Cd in soils contaminated with lead-acid power plants was assessed. The gastric stage exhibited the greatest average bioaccessibility of lead and cadmium (63.39% and 57.22%), followed by the small intestinal stage (6.86% and 36.29%); due to gut microorganisms, the bioaccessibility of lead and cadmium was further reduced in the colon stage (1.86% and 4.22%). Furthermore, to investigate soil contamination's effects on gut microbes, 16S rRNA high-throughput sequencing was used to identify the gut microbial species after the colon period. Due to Pb and Cd exposure, the relative abundance of Firmicutes and unidentified_Bacteria decreased, while the relative abundance of Proteobacteria, Synergistota, and Bacteroidota increased. The relationship between environmental factors and the number of microbial species in the gut was also examined using Spearman correlation analysis. Pb and Cd exposure has been found to affect the composition and structure of the gut microbiota.
Collapse
Affiliation(s)
- Shuxi Zhang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhiwen Deng
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xixiang Yin
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China.
| | - Hongke Fang
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China
| | - Guangmin Song
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China
| | - Yuanyuan Liu
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiyan Jiang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaodong Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Lihong Wang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
6
|
Delyukina OV, Savko SA, Rylina EV, Bilous EA, Korobeynikova TV, Skalny AV. The role of heavy metal exposure on the microbiome in the etiology of gastrointestinal disorders: a scoping review. EKOLOGIYA CHELOVEKA (HUMAN ECOLOGY) 2023; 30:735-748. [DOI: 10.17816/humeco430324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In recent years, epidemiological studies have increasingly recognized the significance of heavy metals as an important pathogenetic factor in many gastrointestinal diseases, particularly those associated with in gut microbiota functions. The toxicity of heavy metals towards essential intestinal microflora goes beyond causing dysbiotic disorders; it can also exacerbate intestinal infections, alter metabolic processes, and influence the development of antibiotic resistance. Since the negative effects of heavy metals are environmental in nature, there is a need to systematize the etiological role between the effects of heavy metals on the microbiome and possible nosological conditions for a more accurate approach to treatment and further research. Given the environmental origins of the abovementioned effects, there is a need to systematize the impact of heavy metals on the microbiome and their role in disease development to improve approaches to treatment and further research.
We aimed to analyze the latest scientific evidence on the associations between heavy metals exposure and the intestinal microbiome and its role in the development of gastrointestinal disorders. For this scoping review we used PubMed and eLIBRARY.ru databases. We searched for keywords: «gut microbiota», «intestinal infections» (disorders), «antibiotic resistance» «heavy metals» in both Russian and English. Based on the research reviewed in this study, we can infer that heavy metals act as exogenous toxicants contributing to the development of dysbiotic, metabolic and trophic disorders of the gastrointestinal tract. They also influence the progression of infections and the development of antibiotic resistance in bacteria. Further studies should focus on exploring the toxicity of heavy metals in relation to specific populations of intestinal flora and associations with metal and antibiotic resistance. It is important to consider the therapeutic potential of microbiome modulation in the management of gastrointestinal diseases.
Collapse
Affiliation(s)
| | | | - Elena V. Rylina
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | | | - Tatiana V. Korobeynikova
- I.M. Sechenov First Moscow State Medical University
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | | |
Collapse
|
7
|
陈 丽, 黄 定, 郑 刚, 孟 晓. [Lead exposure aggravates Aβ 1-42-induced microglial activation and copper ion accumulation in microglial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1752-1760. [PMID: 37933651 PMCID: PMC10630214 DOI: 10.12122/j.issn.1673-4254.2023.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the effect of lead (Pb) exposure on Aβ1-42-induced microglial activation and copper ion accumulation in microglial cells and explore the regulatory mechanism of Pb-induced aggravation of Alzheimer's disease (AD)-like pathology. METHODS Cultured microglial BV2 cells were treated with different concentrations of Aβ1-42, lead acetate or their combination for 12 h, and the changes in cell viability and morphology were evaluated. Immunofluorescence assay was performed to detect iNOS and oxidative stress level in the treated cells, and the release of inflammatory factors was detected using ELISA. Western blotting and inductively coupled plasma-mass spectrometry (ICP-MS) were used to detect the expressions of CTR1 and ATP7A proteins and copper content in the cells. RESULTS Treatment with 15 and 20 μmol/L Aβ1-42 for 12 h significantly lowered the viability of BV2 cells. Treatment with Aβ1-42 at 10 μmol/L for 12 h obviously increased the release of iNOS, TNF-α and IL-6 in the cells (P<0.05), and its combination with 15 or 20 μmol/L lead acetate more strongly lowered BV2 cell viability (P<0.05). Compared with 10 μmol/L Aβ1-42 treatment alone, 10 μmol/L Aβ1-42 combined with 10 μmol/L lead acetate for 12 h caused more obvious microglial activation, as manifested by enlarged cell bodies, increased cell protrusions and elongation, enhanced release of iNOS, TNF-α, IL-6, IL-1β and ROS, and increased intracellular copper ion accumulation and expression of copper transporter CTR1 (P<0.05). Compared with the conditioned medium from activated BV2 cells, which caused obvious injuries in hippocampal neuron HT22 cells (P<0.001), the medium from BV2 cells treated with NAC and the copper ion chelating agent TM caused milder injuries in HT22 cells (P<0.05). CONCLUSION Lead exposure aggravates neuronal damage caused by Aβ1-42-treated microglial cells by increasing copper ion accumulation, oxidative stress, and inflammatory factor release to trigger microglial activation.
Collapse
Affiliation(s)
- 丽旋 陈
- 南方医科大学公共卫生学院职业卫生与职业医学系,广东 广州 510515Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 定帮 黄
- 南方医科大学公共卫生学院职业卫生与职业医学系,广东 广州 510515Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 刚 郑
- 空军军医大学军事预防医学系,特殊作业环境危害评估与防治教育部重点实验室,陕西 西安 710032Department of Military Preventive Medicine, Air Force Military Medical University, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China
| | - 晓静 孟
- 南方医科大学公共卫生学院职业卫生与职业医学系,广东 广州 510515Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Interaction of Heavy Metal Lead with Gut Microbiota: Implications for Autism Spectrum Disorder. Biomolecules 2023; 13:1549. [PMID: 37892231 PMCID: PMC10605213 DOI: 10.3390/biom13101549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by persistent deficits in social interaction and communication, manifests in early childhood and is followed by restricted and stereotyped behaviors, interests, or activities in adolescence and adulthood (DSM-V). Although genetics and environmental factors have been implicated, the exact causes of ASD have yet to be fully characterized. New evidence suggests that dysbiosis or perturbation in gut microbiota (GM) and exposure to lead (Pb) may play important roles in ASD etiology. Pb is a toxic heavy metal that has been linked to a wide range of negative health outcomes, including anemia, encephalopathy, gastroenteric diseases, and, more importantly, cognitive and behavioral problems inherent to ASD. Pb exposure can disrupt GM, which is essential for maintaining overall health. GM, consisting of trillions of microorganisms, has been shown to play a crucial role in the development of various physiological and psychological functions. GM interacts with the brain in a bidirectional manner referred to as the "Gut-Brain Axis (GBA)". In this review, following a general overview of ASD and GM, the interaction of Pb with GM in the context of ASD is emphasized. The potential exploitation of this interaction for therapeutic purposes is also touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
9
|
Li G, Feng Y, Cui J, Hou Q, Li T, Jia M, Lv Z, Jiang Q, Wang Y, Zhang M, Wang L, Lv Z, Li J, Guo Y, Zhang B. The ionome and proteome landscape of aging in laying hens and relation to egg white quality. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2020-2040. [PMID: 37526911 DOI: 10.1007/s11427-023-2413-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/25/2023] [Indexed: 08/02/2023]
Abstract
The ionome is essential for maintaining body function and health status by participating in diverse key biological processes. Nevertheless, the distribution and utilization of ionome among different organs and how aging impacts the ionome leading to a decline in egg white quality remain unknown. Thus, we used inductively coupled plasma mass spectrometry (ICP-MS) to analyze 35 elements and their isotopic contents in eight organs of laying hens at 35, 72, and 100 weeks. Moreover, the magnum proteome, amino acids in egg white, and egg white quality were analyzed in laying hens at three different ages using 4D proteomics techniques, an amino acid analyzer, and an egg quality analyzer. Across the organs, we identified varying distribution patterns among macroelements (Mg24, Ca43/44, K39, and P31), transition metals (Zn64/66, Cu63/65, Fe56/57, and Mn55), and toxic elements (Pb208, Ba137, and Sr86). We observed an organ-specific aging pattern characterized by the accumulation of toxic elements (Pb208, Ba137, and Sr86) and calcification in the small intestine. Additionally, a decrease in the utilization of essential trace elements selenium (Se78/82) and manganese (Mn55) was noted in the oviduct. By analyzing ionome in tandem with egg quality, egg white amino acids, and proteome, we unveiled that the reduction of selenium and manganese concentrations in the magnum during the aging process affected amino acid metabolism, particularly tryptophan metabolism, thereby inhibiting the amino acid synthesis in the magnum. Furthermore, it accelerated the senescence of magnum cells through necroptosis activation, leading to a decline in the albumen secretion function of the magnum and subsequently reducing egg white quality. Overall, this study provides insights into the evolution of 35 elements and their isotopes across 8 organs of laying hens with age. It also reveals the elemental composition, interactions, and utilization patterns of these organs, as well as their correlation with egg white quality. The present study highlights the significance of ionome and offers a comprehensive perspective on the selection of ionome for regulating the aging of laying hens.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Tanfang Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Meiting Jia
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Sichuan Tieqilishi Industrial Co., Ltd., Mianyang, 621010, China
| | - Ming Zhang
- Sichuan Tieqilishi Industrial Co., Ltd., Mianyang, 621010, China
| | - Lin Wang
- Sichuan Sundaily Farm Ecological Food Co., Ltd., Mianyang, 621010, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Tian Y, Pan Z, Lan L, Chang Y, Zhao T, Fu Z, Wu S, Deng T, Cao M, Wang W, Bi Y, Yang R, Yang Lee BJ, Liu Q. Amelioration of intestinal barrier function and reduction of blood lead level in adult women with recurrent spontaneous abortion by a novel product of dietary fiber mixture, Holofood. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:63. [PMID: 37420277 DOI: 10.1186/s41043-023-00394-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/29/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The elevated circulating toxins secondary to the impairment of intestinal barrier integrity commonly elicit a chronic inflammatory response and finally contribute to multiple diseases. These toxins, including bacterial by-products and heavy metals, are the potent risk factors for the development of recurrent spontaneous abortion (RSA). Preclinical evidence suggests that several dietary fibers can restore intestinal barrier function and decrease the accumulation of heavy metals. However, it is uncertain whether treatment with a newly developed blend of dietary fibers product (Holofood) benefits patients with RSA. METHODS In this trial, we enrolled 70 adult women with RSA, who were randomly assigned into the experiment group and the control group in a 2:1 ratio. Upon the basis of conventional therapy, subjects in the experiment group (n = 48) received 8 weeks oral administration with Holofood three times daily at a dose of 10 g each time. Subjects without Holofood consumption were set as the control (n = 22). Blood samples were collected for the determinations of metabolic parameters, heavy mental lead, and the indices related to intestinal barrier integrity (D-lactate, bacterial endotoxin, and diamine oxidase activity). RESULTS The reduction amplitude in blood lead from baseline to week 8 was 40.50 ± 54.28 (μg/L) in the experiment group as compared with 13.35 ± 36.81 (μg/L) in the control group (P = 0.037). The decreased level of serum D-lactate from baseline to week 8 was 5.58 ± 6.09 (mg/L) in the experiment group as compared with - 2.38 ± 8.90 (mg/L, P < 0.0001) in the control group. The change in serum DAO activity from baseline to week 8 was 3.26 ± 2.23 (U/L) in the experiment group as compared with - 1.24 ± 2.22 (U/L, P < 0.0001) in the control group. Participants who received Holofood had a greater decline in blood endotoxin from baseline to week 8 than those in the control group. Moreover, by comparing with the self-baseline, Holofood consumption significantly decreased the blood levels of lead, D-lactate, bacterial endotoxin, and DAO activity. CONCLUSION Our results suggest that Holofood affords a clinically relevant improvements in blood lead level and intestinal barrier dysfunction in patients with RSA.
Collapse
Affiliation(s)
- Ye Tian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Liling Lan
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Yuxiao Chang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ting Zhao
- Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Zhihong Fu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Shuhua Wu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Tianqin Deng
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Meilan Cao
- Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100007, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - B J Yang Lee
- Beijing Future Science & Technology Development Co., Ltd., Rm. 1702A #1 Guanhu International Plaza, 105 Yaojiayuan Road, Chaoyang District, Beijing, 100025, China.
| | - Qingzhi Liu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China.
- Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|
11
|
Masbough F, Shadnia S, Rahimi M, Roshanzamiri S, Evini PE, Mostafazadeh B. A rare case report of lead encephalopathy due to high blood lead level. Clin Case Rep 2023; 11:e7663. [PMID: 37415586 PMCID: PMC10320365 DOI: 10.1002/ccr3.7663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/27/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Here we report a case of lead poisoning having a serum lead level of 412 mcg dL-1 who presented with decreasing level of consciousness and recurrent seizures. He responded well to treatment with chelation therapy.
Collapse
Affiliation(s)
- Farnoosh Masbough
- Department of Clinical Pharmacy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Shahin Shadnia
- Toxicological Research Center, Excellence Center & Department of Clinical Toxicology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mitra Rahimi
- Toxicological Research Center, Excellence Center & Department of Clinical Toxicology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Peyman Erfantalab Evini
- Toxicological Research Center, Excellence Center & Department of Clinical Toxicology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Babak Mostafazadeh
- Toxicological Research Center, Excellence Center & Department of Clinical Toxicology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Del Rio M, Rodriguez C, Alvarado Navarro E, Wekumbura C, Galkaduwa MB, Hettiarachchi GM, Sobin C. Stability of blood lead levels in children with low-level lead absorption. PLoS One 2023; 18:e0287406. [PMID: 37352317 PMCID: PMC10289421 DOI: 10.1371/journal.pone.0287406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Current child blood lead (Pb) screening guidelines assume that blood lead levels (BLLs) are relatively stable over time, and that only youngest children are vulnerable to the damaging effects of lower-range BLLs. This study aimed to test the stability of lower-range (≤ 10 μg/dL) child BLLs over time, and whether lower-range BLLs diminished with age among children aged 6 months to 16 years living in a lower-income neighborhood with a density of pre-1986 housing and legacy contamination. Age, sex, family income, age of residence, and/or residence proximity to point sources of Pb, were tested as potential additional factors. Capillary blood samples from 193 children were analyzed by inductively coupled plasma mass spectrometry (ICPMS). Multiple imputation was used to simulate missing data for 3 blood tests for each child. Integrated Growth Curve models with Test Wave as a random effect were used to test BLL variability over time. Among N = 193 children tested, at Time 1 testing, 8.7% had the BLLs ≥ 5 μg/dL (CDC "elevated" BLL reference value at the time of data collection) and 16.8% had BLLs ≥ 3.5 μg/dL (2021 CDC "elevated" BLL reference value). Modeling with time as a random effect showed that the variability of BLLs were attributable to changes within children. Moreover, time was not a significant predictor of child BLLs over 18 months. A sex by age interaction suggested that BLLs diminished with age only among males. Of the additional environmental factors tested, only proximity to a major source of industrial or vehicle exhaust pollution predicted child BLL variability, and was associated with a small, but significant BLL increase (0.22 μg/dL). These findings suggest that one or two BLL tests for only infants or toddlers are insufficient for identifying children with Pb poisoning.
Collapse
Affiliation(s)
- Michelle Del Rio
- Department of Public Health Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Christina Rodriguez
- Department of Public Health Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Elizabeth Alvarado Navarro
- Department of Public Health Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Chandima Wekumbura
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Madhubhashini B. Galkaduwa
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
- Kansas Department of Agriculture Laboratory, Manhattan, Kansas, United States of America
| | - Ganga M. Hettiarachchi
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Christina Sobin
- Department of Public Health Sciences, The University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
13
|
Hu L, Zhao Y, Liu S, Zhang J, You T, Gan B, Xu H. Lead exposure exacerbates adverse effects of HFD on metabolic function via disruption of gut microbiome, leading to compromised barrier function and inflammation. Eur J Nutr 2023; 62:783-795. [PMID: 36264385 DOI: 10.1007/s00394-022-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The toxicity of lead (Pb) has been intensively studied, while the adverse effects in the population on a high-fat diet (HFD) remain unclear. This study compared the different biologic effects of Pb in CHOW and HFD-fed mice and investigated the important role that gut microbiota may play. METHODS C57BL/6 mice were fed a CHOW diet and HFD with or without 1 g/L Pb exposure through drinking water for 8 weeks. Using oral glucose tolerance test, histopathological observation, real-time fluorescence quantitative PCR, enzyme-linked immunosorbent assay, and 16S high-throughput sequencing to compare the Pb toxicity, fecal microbiota transplantation was conducted to investigate the key role of gut microbiota. RESULTS The metabolic disorders induced by HFD were aggravated by chronic Pb intake, and HFD exacerbated the Pb accumulation in the colon by 96%, 32% in blood, 27% in the liver, and 142% in tibiae. Concomitantly, Pb induced more serious colonic injury, further disturbing the composition of gut microbiota in the HFD-fed mice. Moreover, altered fecal microbiota by HFD and Pb directly mediated metabolic disorders and colonic damage in recipient mice, which emphasized the importance of gut microbiota. CONCLUSION These findings indicated that the population with HFD has lower resistance and would face more security risks under Pb pollution, and pointed out the importance of assessing the health impacts of food contaminants in people with different dietary patterns.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Bei Gan
- Institute for Testing of Industrial Products of Jiangxi General Institute of Testing and Certification, Nanchang, 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
14
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
15
|
George F, Titécat M, Barois N, Daniel C, Garat A, Jan G, Foligné B. A Unique Enhancement of Propionibacterium freudenreichii's Ability to Remove Pb(II) from Aqueous Solution by Tween 80 Treatment. Int J Mol Sci 2022; 23:ijms23169207. [PMID: 36012472 PMCID: PMC9408999 DOI: 10.3390/ijms23169207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/05/2022] Open
Abstract
Microbial agents have promise for the bioremediation of Pb(II)-polluted environments and wastewater, the biodecontamination of foods, and the alleviation of toxicity in living organisms. The dairy bacterium Propionibacterium freudenreichii is poorly able to remove Pb(II) from aqueous solution at 25 ppm, ranging from 0 to 10% of initial concentration. Here, we report on an original strong enhancement of this activity (ranging from 75% to 93%, p < 0.01) following the addition of a polysorbate detergent (Tween® 80) during or either shortly after the growth of a P. freudenreichii culture. We evaluated the optimal Tween® 80 concentration for pretreatment conditions, documented the role of other detergents, and explored the possible mechanisms involved. Our results reveal a novel, environmentally friendly, low-cost pretreatment procedure for enhancing the selective removal of lead from water by probiotic-documented bacteria.
Collapse
Affiliation(s)
- Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59000 Lille, France
| | - Gwénaël Jan
- STLO, INRAE, Agrocampus Ouest, Institut Agro, Science & Technologie du Lait & de l’Œuf, F-35000 Rennes, France
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
16
|
Chen Z, Tang Z, Kong J, Chen L, Liu J, Li Y, Huang W, Li W, Wu J, Zhao W, Meng X, Fan H. Lactobacillus casei SYF-08 Protects Against Pb-Induced Injury in Young Mice by Regulating Bile Acid Metabolism and Increasing Pb Excretion. Front Nutr 2022; 9:914323. [PMID: 35845769 PMCID: PMC9278719 DOI: 10.3389/fnut.2022.914323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Pb poisoning affects infant growth and development. However, dimercaptosuccinic acid (DMSA) as the current therapy for Pb poisoning exerts relatively significant toxic side effects in infants. Therefore, identifying a non-toxic treatment in this regard is particularly important. In this study, we aimed to investigate the therapeutic effect of an infant feces-derived probiotic strain, Lactobacillus casei SYF-08 (SYF-08), on Pb poisoning in young mice. The Pb levels in the organisms were detected via inductively coupled plasma mass spectrometry, while the therapeutic effect of SYF-08 on Pb-induced neural system damage was explored via the Morris water maze test, hematoxylin-eosin staining, and immunohistochemistry. Additionally, the molecular mechanisms underlying the protective effects of SYF-08 against Pb-induced intestinal damage were also explored via histological staining, 16S rRNA sequencing, untargeted metabolomics, qRT-PCR, and western blotting. In vivo experiments revealed that SYF-08 reduced blood and bone Pb levels and increased urinary Pb excretion. Additionally, SYF-08 alleviated Pb-induced pathological damage to the brain and ultimately improved the learning and cognitive abilities of the young mice. This treatment also restored intestinal microflora dysbiosis, regulated bile acid metabolism, and inhibited the FXR-NLRP3 signaling pathway. It also resulted in fewer adverse events than the DMSA treatment. In conclusion, our results provided valuable insights into the therapeutic role of SYF-08 in Pb poisoning and also suggested that its administration can significantly alleviate the Pb-induced damage.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ziyu Tang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingjing Kong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaxin Liu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wanwen Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wendan Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junlin Wu
- Guangdong Huankai Microbial Science and Technology Co., Ltd., Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Jin H, Riaz Rajoka MS, Xu X, Liao N, Pang B, Yan L, Liu G, Sun H, Jiang C, Shao D, Barba FJ, Shi J. Potentials of orally supplemented selenium-enriched Lacticaseibacillus rhamnosus to mitigate the lead induced liver and intestinal tract injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119062. [PMID: 35231537 DOI: 10.1016/j.envpol.2022.119062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Lead is a metal that exists naturally in the Earth's crust and is a ubiquitous environmental contaminant. The alleviation of lead toxicity is important to keep human health under lead exposure. Biosynthesized selenium nanoparticle (SeNPs) and selenium-enriched Lactobacillus rhamnosus SHA113 (Se-LRS) were developed in this study, and their potentials in alleviating lead-induced injury to the liver and intestinal tract were evaluated in mice by oral administration for 4 weeks. As results, oral intake of lead acetate (150 mg/kg body weight per day) caused more than 50 times and 100 times lead accumulation in blood and the liver, respectively. Liver function was seriously damaged by the lead exposure, which is indicated as the significantly increased lipid accumulation in the liver, enhanced markers of liver function injury in serum, and occurrence of oxidative stress in liver tissues. Serious injury in intestinal tract was also found under lead exposure, as shown by the decrease of intestinal microbiota diversity and occurrence of oxidative stress. Except the lead content in blood and the liver were lowered by 52% and 58%, respectively, oral administration of Se-LRS protected all the other lead-induced injury markers to the normal level. By the comparison with the effects of normal L. rhamnosus SHA113 and the SeNPs isolated from Se-LRS, high protective effects of Se-LRS can be explained as the extremely high efficiency to promote lead excretion via feces by forming insoluble mixture. These findings illustrate the developed selenium-enriched L. rhamnosus can efficiently protect the liver and intestinal tract from injury by lead.
Collapse
Affiliation(s)
- Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Hui Sun
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China; School of Hospitality Management, Guilin Tourism University, 26 Liangfeng Road, Yanshan District, Guilin City, Guangxi Province, 541006, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Fo-rensic Medicine Department, Universitat de València, Faculty of Pharmacy, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100, València, Spain
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China.
| |
Collapse
|
18
|
Huang M, Liu Y, Dong W, Zhao Q, Duan R, Cao X, Wan Y, Yin J, Yi M. Toxicity of Pb continuous and pulse exposure on intestinal anatomy, bacterial diversity, and metabolites of Pelophylax nigromaculatus in pre-hibernation. CHEMOSPHERE 2022; 290:133304. [PMID: 34919911 DOI: 10.1016/j.chemosphere.2021.133304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Amphibians are often exposed to pulse pollution due to fluctuational inputs of pollutants in water. Traditional ecotoxicology research is mainly performed under constant exposure conditions, which is not consistent with the true environmental pollution. Frogs are sensitive to changes in water pollutants in pre-hibernation. Thus, to understand the toxicity difference to continuous and pulse exposure in environmental concentrations of Pb (100 μg/L), Pelophylax nigromaculatus adults were exposed to short-term treatments (8 days) in pre-hibernation. Individual mortality, intestinal anatomical structure, bacterial diversity, and metabolites were measured in a control group (CON), a Pb continuous treatment group (CEPb) and a Pb pulse treatment group (PEPb). The results showed that PEPb significantly increased individual mortality, compared to the control group and CEPb. PEPb induced pathological changes in the small intestinal tissues, such as mucosal erosion, swollen and distorted villi, large vacuoles, and the proliferation of goblet cells. In addition, PEPb altered the structure and diversity of intestinal bacteria, resulting in an increase in some pathogenic bacteria (e.g. Bacteroides and Ruminococcus) and a decrease in beneficial bacteria (e.g. Cetobacterium and Akkermansia). Both CEPb and PEPb significantly changed intestinal metabolites and metabolic pathways. Moreover, PEPb has a significant effect on the metabolism of amino acids by increasing the content of 5-Aminopentanoic acid, cis-4-Hydroxy-l-proline, Glycocholic acid, l-Alanine, and l-Isoleucine. We concluded that PEPb may lead to intestine impairment of P. nigromaculatus in pre-hibernation by inducing intestinal structural integrity destruction, bacterial imbalance, and metabolic dysfunction, resulting in a significant increase in mortality. The study provides new insights for understanding the intestinal responses of frogs to pulse metal exposure.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Wenjing Dong
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Xiaohong Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Minghui Yi
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
19
|
Dietert RR. Microbiome First Medicine in Health and Safety. Biomedicines 2021; 9:biomedicines9091099. [PMID: 34572284 PMCID: PMC8468398 DOI: 10.3390/biomedicines9091099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Microbiome First Medicine is a suggested 21st century healthcare paradigm that prioritizes the entire human, the human superorganism, beginning with the microbiome. To date, much of medicine has protected and treated patients as if they were a single species. This has resulted in unintended damage to the microbiome and an epidemic of chronic disorders [e.g., noncommunicable diseases and conditions (NCDs)]. Along with NCDs came loss of colonization resistance, increased susceptibility to infectious diseases, and increasing multimorbidity and polypharmacy over the life course. To move toward sustainable healthcare, the human microbiome needs to be front and center. This paper presents microbiome-human physiology from the view of systems biology regulation. It also details the ongoing NCD epidemic including the role of existing drugs and other factors that damage the human microbiome. Examples are provided for two entryway NCDs, asthma and obesity, regarding their extensive network of comorbid NCDs. Finally, the challenges of ensuring safety for the microbiome are detailed. Under Microbiome-First Medicine and considering the importance of keystone bacteria and critical windows of development, changes in even a few microbiota-prioritized medical decisions could make a significant difference in health across the life course.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|