1
|
Neville AJ, Conrin ME, Schulze TT, Davis PH. A selective C5a-derived peptidomimetic enhances IgG response following inactivated SARS-CoV-2 immunization and confers rapid disease resolution following murine coronavirus infection. Front Immunol 2025; 16:1470034. [PMID: 40255397 PMCID: PMC12006086 DOI: 10.3389/fimmu.2025.1470034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
The host complement system is a critical component of innate immunity and serves as a principal mechanism of pathogen defense in mammals. EP67 is an engineered decapeptide derived from the C terminus of human complement protein C5a, which displays selective immunostimulatory activity. EP67 preferentially activates phagocyte mononuclear cells but shows minimal activity towards inflammatory granulocytes, including neutrophils. Previous studies of viral infection showed that EP67 possessed antiviral efficacy when used following infection and enhanced antibody responses to antigen challenges when used as an adjuvant. Here, we show in a rodent model that immunization with inactivated γ-irradiated SARS-CoV-2 in combination with EP67 can produce elevated nucleocapsid-specific IgG antibodies compared to viral lysate alone, supporting an enhanced adaptive immune response. Additionally, intranasal administration of EP67 following infection with live MHV-A59 coronavirus resulted in a rapid health improvement in symptomatic infections compared to PBS vehicle controls. Taken together, these results suggest EP67 shows efficacy towards betacoronaviruses when used as an adjuvant during immunization or as a therapeutic during active infections. Moreover, these findings continue to support the capability of EP67 as an antiviral agent and a useful immunostimulatory peptide.
Collapse
Affiliation(s)
- Andrew J. Neville
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Mackenzie E. Conrin
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Thomas T. Schulze
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| |
Collapse
|
2
|
Bradley CC, Walker-Franklin I, Kovach A, Sivaraman V, Onyenwoke RU. The effects of flavored vaped e-liquids on cultured human macrophages derived from the central and peripheral nervous systems. Toxicol In Vitro 2025; 104:106013. [PMID: 39894183 PMCID: PMC11845287 DOI: 10.1016/j.tiv.2025.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
The use of the electronic cigarette (e-cig) to consume an aerosol is referred to as "vaping" and has become the most popular method for nicotine consumption amongst youth and many adults worldwide. This popularity is at least partially attributable to the availability of 1000s of distinctly flavored e-liquids. At present, a large number of studies have evaluated the potential negative effects of e-cig use in relation to pulmonary disease. These studies have demonstrated that vaping can lead to immune activation and cell death but typically include only epithelial cell line studies. At present, significantly less is known about the effects of vaped e-liquids on the central nervous system (CNS) and peripheral nervous system (PNS). To investigate this gap, we utilized the human macrophage cell lines KG-1 (PNS-resident macrophages) and DBTRG-05MG (CNS-resident macrophages) and examined their exposure to vaped e-liquids. To carry out these investigations, measurements of: cell viability, expression of inflammatory cytokines, phagocytosis and reactive oxygen species (ROS) were employed. Our findings illustrate that when exposed to e-liquid, and especially flavored e-liquids, both peripheral and central macrophage cell lines decrease in cell viability, showcase an upregulated level of expression of pro-inflammatory cytokines, a diminished level of phagocytic activity and an overall increased level of reactive oxidative species. Thus, our study further indicates that the use of the e-cig can cause phenotype and immune disruptions within both the CNS and PNS.
Collapse
Affiliation(s)
- Ciani C Bradley
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | | | - Alex Kovach
- RTI International, Research Triangle Park, NC 27704, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Rob U Onyenwoke
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
3
|
Walker-Franklin I, Onyenwoke RU, Leung T, Huang X, Shipman JG, Kovach A, Sivaraman V. GC/HRMS Analysis of E-Liquids Complements In Vivo Modeling Methods and can Help to Predict Toxicity. ACS OMEGA 2024; 9:26641-26650. [PMID: 38911720 PMCID: PMC11191570 DOI: 10.1021/acsomega.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Tobacco smoking is a major risk factor for disease development, with the user inhaling various chemicals known to be toxic. However, many of these chemicals are absent before tobacco is "burned". Similar, detailed data have only more recently being reported for the e-cigarette with regards to chemicals present before and after the e-liquid is "vaped." Here, zebrafish were dosed with vaped e-liquids, while C57-BL/6J mice were vaped using nose-cone only administration. Preliminary assessments were made using e-liquids and GC/HRMS to identify chemical signatures that differ between unvaped/vaped and flavored/unflavored samples. Oxidative stress and inflammatory immune cell response assays were then performed using our in vivo models. Chemical signatures differed, e.g., between unvaped/vaped samples and also between unflavored/flavored e-liquids, with known chemical irritants upregulated in vaped and unvaped flavored e-liquids compared with unflavored e-liquids. However, when possible respiratory irritants were evaluated, these agents were predominantly present in only the vaped e-liquid. Both oxidative stress and inflammatory responses were induced by a menthol-flavored but not a tobacco-flavored e-liquid. Thus, chemical signatures differ between unvaped versus vaped e-liquid samples and also between unflavored versus flavored e-liquids. These flavors also likely play a significant role in the variability of e-liquid characteristics, e.g., pro-inflammatory and/or cytotoxic responses.
Collapse
Affiliation(s)
| | - Rob U. Onyenwoke
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- Biomanufacturing
Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| | - TinChung Leung
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- The
Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina
Research Campus, Kannapolis, North Carolina 28081, United States
| | - Xiaoyan Huang
- The
Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina
Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jeffrey G. Shipman
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Alex Kovach
- RTI
International, Research
Triangle Park, North Carolina 27704, United States
| | - Vijay Sivaraman
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
4
|
Shipman JG, Onyenwoke RU, Sivaraman V. Vaping-Dependent Pulmonary Inflammation Is Ca 2+ Mediated and Potentially Sex Specific. Int J Mol Sci 2024; 25:1785. [PMID: 38339063 PMCID: PMC10855597 DOI: 10.3390/ijms25031785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Here we use the SCIREQ InExpose system to simulate a biologically relevant vaping model in mice to investigate the role of calcium signaling in vape-dependent pulmonary disease as well as to investigate if there is a gender-based difference of disease. Male and female mice were vaped with JUUL Menthol (3% nicotine) using the SCIREQ InExpose system for 2 weeks. Additionally, 2-APB, a known calcium signaling inhibitor, was administered as a prophylactic for lung disease and damage caused by vaping. After 2 weeks, mice were exposed to lipopolysaccharide (LPS) to mimic a bacterial infection. Post-infection (24 h), mice were sacrificed, and bronchoalveolar lavage fluid (BALF) and lungs were taken. Vaping primed the lungs for worsened disease burden after microbial challenge (LPS) for both males and females, though females presented increased neutrophilia and inflammatory cytokines post-vape compared to males, which was assessed by flow cytometry, and cytokine and histopathological analysis. This increased inflammatory burden was controlled by calcium signaling inhibition, suggesting that calcium dysregulation may play a role in lung injury caused by vaping in a gender-dependent manner.
Collapse
Affiliation(s)
- Jeffrey G. Shipman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
| | - Rob U. Onyenwoke
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
5
|
Begum R, Thota S, Batra S. Interplay between proteasome function and inflammatory responses in e-cig vapor condensate-challenged lung epithelial cells. Arch Toxicol 2023; 97:2193-2208. [PMID: 37344694 DOI: 10.1007/s00204-023-03504-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/20/2023] [Indexed: 06/23/2023]
Abstract
Exposure to cigarettes and other nicotine-based products results in persistent inflammation in the lung. In recent years, electronic cigarettes (e-cigs) have become extremely popular among adults and youth alike. E-cigarette vapor-induced oxidative stress promotes protein breakdown, DNA damage and cell death, culminating in a variety of respiratory diseases. The proteasome, a multi-catalytic protease, superintends protein degradation within the cell. When cells are stimulated with inflammatory cytokines such as IFN-γ and TNF-α, the constitutive catalytic proteasome subunits are replaced by the inducible subunits-low-molecular mass polypeptide (LMP)2 (β1i), multi-catalytic endopeptidase complex-like (MECL)1 (β2i), and LMP7 (β5i), which are required for the production of certain MHC class I-restricted T-cell epitopes. In this study, we used human alveolar epithelial cells (A549) and exposed them to filtered air or (1%) tobacco-flavored (TF) electronic cigarette vapor condensate (ECVC) ± nicotine (6 mg/ml) (TF-ECVC ± N) for 24 h. We observed an increase in the levels of IFN-γ, TNF-α, and inducible proteasome subunits (LMP7/PSMB8, LMP2/PSMB9, MECL1/PSMB10), and a reduced expression of constitutive proteasome subunits (β1/PSMB6 and β2/PSMB7) in challenged A549 cells. Interestingly, knockdown of the inducible proteasome subunit LMP7 reversed ECVC-induced expression of NADPH oxidase and immunoproteasome subunits in A549 cells. In addition, pre-exposure to an LMP7 inhibitor (ONX-0914) abrogated the mRNA expression of several NOX subunits and rescued the excessive production/release of inflammatory cytokines/chemokines (IL-6, IL-8, CCL2, and CCL5) in ECVC-challenged cells. Our findings suggest an important role of LMP7 in regulating the expression of inflammatory mediators during ECVC exposure. Overall, our results provide evidence for proteasome-dependent ROS-mediated inflammation in ECVC-challenged cells.
Collapse
Affiliation(s)
- R Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, Louisiana, 70813, USA
| | - S Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, Louisiana, 70813, USA
| | - S Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, Louisiana, 70813, USA.
| |
Collapse
|
6
|
Agraval H, Crue T, Schaunaman N, Numata M, Day BJ, Chu HW. Electronic Cigarette Exposure Increases the Severity of Influenza a Virus Infection via TRAIL Dysregulation in Human Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24054295. [PMID: 36901724 PMCID: PMC10002047 DOI: 10.3390/ijms24054295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-β and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Taylor Crue
- School of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Niccolette Schaunaman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Brian J. Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
- Correspondence: ; Tel.: +1-303-398-1689
| |
Collapse
|
7
|
Lee J, Murthy D, Kong G. Content Analysis of YouTube Videos Related to E-cigarettes and COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.06.23284266. [PMID: 36711470 PMCID: PMC9882443 DOI: 10.1101/2023.01.06.23284266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION E-cigarettes are frequently promoted on social media and portrayed in ways that are attractive to youth. While COVID-19 pandemic significantly affected people's lives, less known is how the pandemic influenced e-cigarette-related marketing and information on social media. This study identifies how e-cigarettes are portrayed during the COVID-19 pandemic on YouTube, one of the most popular social media platforms. METHODS We searched for combinations of search terms related to e-cigarettes (i.e., "electronic cigarette", "e-cigarette", "e-cig", "vape" and "vaping") and COVID-19 (i.e., "corona", "COVID", "lockdown" and "pandemic"). To be included in the analysis, the video must be: uploaded after February 1, 2020, in English, related to e-cigarettes and COVID-19 and less than 30 minutes in length. We assessed video themes related to e-cigarettes and COVID-19, uploader characteristics, and featured e-cigarette products. RESULTS We examined N=307 videos and found that N=220 (73.6%) were related to the health effects of e-cigarette use on COVID-19, followed by videos of how COVID-19 affects e-cigarette access/sales (N=40, 12.9%), and face mask-related videos (N=16, 5.1%) which included content regarding masks and e-cigarette use. Instructional videos on how to modify e-cigarettes to use with masks had the highest number of likes (Median=23; IQR=32) and comments (Median=10; IQR=7). CONCLUSIONS This study identified various e-cigarette contents on YouTube during the COVID-19 pandemic. Our findings support the need for continuous surveillance on novel vaping-related content in reaction to policies and events such as the global pandemic on social media is needed.
Collapse
Affiliation(s)
- Juhan Lee
- Yale University School of Medicine, New Haven, CT, USA
| | - Dhiraj Murthy
- University of Texas at Austin, School of Journalism and Media, Department of Sociology, Austin, TX, US
| | - Grace Kong
- Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Alhadyan SK, Sivaraman V, Onyenwoke RU. E-cigarette Flavors, Sensory Perception, and Evoked Responses. Chem Res Toxicol 2022; 35:2194-2209. [PMID: 36480683 DOI: 10.1021/acs.chemrestox.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chemosensory experiences evoked by flavors encompass a number of unique sensations that include olfactory stimuli (smell), gustatory stimuli (taste, i.e., salty, sweet, sour, bitter, and umami (also known as "savoriness")), and chemesthesis (touch). As such, the responses evoked by flavors are complex and, as briefly stated above, involve multiple perceptive mechanisms. The practice of adding flavorings to tobacco products dates back to the 17th century but is likely much older. More recently, the electronic cigarette or "e-cigarette" and its accompanying flavored e-liquids emerged on to the global market. These new products contain no combustible tobacco but often contain large concentrations (reported from 0 to more than 50 mg/mL) of nicotine as well as numerous flavorings and/or flavor chemicals. At present, there are more than 400 e-cigarette brands available along with potentially >15,000 different/unique flavored products. However, surprisingly little is known about the flavors/flavor chemicals added to these products, which can account for >1% by weight of some e-liquids, and their resultant chemosensory experiences, and the US FDA has done relatively little, until recently, to regulate these products. This article will discuss e-cigarette flavors and flavor chemicals, their elicited responses, and their sensory effects in some detail.
Collapse
Affiliation(s)
- Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Rob U Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
9
|
Giovacchini CX, Crotty Alexander LE, Que LG. Electronic Cigarettes: A Pro-Con Review of the Current Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2843-2851. [PMID: 35872217 DOI: 10.1016/j.jaip.2022.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 05/11/2023]
Abstract
Electronic cigarettes (e-cigarettes, e-cigs, or electronic nicotine delivery systems) are battery-operated devices typically containing glycerol and/or propylene glycol-based solutions with varying nicotine content, known as e-liquids. Although e-cigarettes were originally developed as a potentially less harmful alternative to traditional combustible tobacco cigarette smokers, several factors have driven their popularity among smokers and nonsmokers alike, including their sleek product designs, innumerable appealing flavors, lack of combustible smoke and odor, and high potential nicotine concentrations. Furthermore, many advocates have promoted the idea that e-cigarettes are safe to use, or at least safer than conventional tobacco, despite limited longitudinal data to support these claims. Here, we examine what is known about the impacts of e-cigarette use on traditional cigarette smoking cessation, lung health, and youth and young adult tobacco product exposure. Upon review of the currently available literature, the negative effects of e-cigarette use seem to outweigh any potential benefit, because the available evidence does not confirm the use of e-cigarettes as an effective strategy for supporting traditional combustible tobacco cigarette smoking cessation, particularly given the emerging adverse effects on lung health and the potential future public health effects of e-cigarette adoption among a burgeoning new generation of tobacco product users.
Collapse
Affiliation(s)
- Coral X Giovacchini
- Division of Pulmonary, Allergy, and Critical Care, Duke University Health System, Durham, NC
| | - Laura E Crotty Alexander
- Pulmonary Critical Care Section, VA San Diego Healthcare System, San Diego, Calif; Division of Pulmonary, Critical Care, Sleep, and Physiology, University of California San Diego, San Diego, Calif.
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care, Duke University Health System, Durham, NC.
| |
Collapse
|
10
|
Onyenwoke RU, Leung T, Huang X, Parker D, Shipman JG, Alhadyan SK, Sivaraman V. An assessment of vaping-induced inflammation and toxicity: A feasibility study using a 2-stage zebrafish and mouse platform. Food Chem Toxicol 2022; 163:112923. [PMID: 35318090 PMCID: PMC9018621 DOI: 10.1016/j.fct.2022.112923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
It is currently understood that tobacco smoking is a major cause of pulmonary disease due to pulmonary/lung inflammation. However, due to a highly dynamic market place and an abundance of diverse products, less is known about the effects of e-cigarette (E-cig) use on the lung. In addition, varieties of E-cig liquids (e-liquids), which deliver nicotine and numerous flavor chemicals into the lungs, now number in the 1000s. Thus, a critical need exists for safety evaluations of these E-cig products. Herein, we employed a "2-stage in vivo screening platform" (zebrafish to mouse) to assess the safety profiles of e-liquids. Using the zebrafish, we collected embryo survival data after e-liquid exposure as well as neutrophil migration data, a key hallmark for a pro-inflammatory response. Our data indicate that certain e-liquids induce an inflammatory response in our zebrafish model and that e-liquid exposure alone results in pro-inflammatory lung responses in our C57BL/6J model, data collected from lung staining and ELISA analysis, respectively, in the mouse. Thus, our platform can be used as an initial assessment to ascertain the safety profiles of e-liquid using acute inflammatory responses (zebrafish, Stage 1) as our initial metric followed by chronic studies (C57BL/6J, Stage 2).
Collapse
Affiliation(s)
- Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA; Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Xiaoyan Huang
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - De'Jana Parker
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Jeffrey G Shipman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
11
|
Shipman JG, Onyenwoke RU, Sivaraman V. Calcium-Dependent Pulmonary Inflammation and Pharmacological Interventions and Mediators. BIOLOGY 2021; 10:1053. [PMID: 34681152 PMCID: PMC8533358 DOI: 10.3390/biology10101053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary diseases present a significant burden worldwide and lead to severe morbidity and mortality. Lung inflammation caused by interactions with either viruses, bacteria or fungi is a prominent characteristic of many pulmonary diseases. Tobacco smoke and E-cig use ("vaping") are considered major risk factors in the development of pulmonary disease as well as worsening disease prognosis. However, at present, relatively little is known about the mechanistic actions by which smoking and vaping may worsen the disease. One theory suggests that long-term vaping leads to Ca2+ signaling dysregulation. Ca2+ is an important secondary messenger in signal transduction. Cellular Ca2+ concentrations are mediated by a complex series of pumps, channels, transporters and exchangers that are responsible for triggering various intracellular processes such as cell death, proliferation and secretion. In this review, we provide a detailed understating of the complex series of components that mediate Ca2+ signaling and how their dysfunction may result in pulmonary disease. Furthermore, we summarize the recent literature investigating the negative effects of smoking and vaping on pulmonary disease, cell toxicity and Ca2+ signaling. Finally, we summarize Ca2+-mediated pharmacological interventions that could potentially lead to novel treatments for pulmonary diseases.
Collapse
Affiliation(s)
- Jeffrey G. Shipman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Rob U. Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA;
| |
Collapse
|
12
|
Zhang R, Jones MM, Parker D, Dornsife RE, Wymer N, Onyenwoke RU, Sivaraman V. Acute vaping exacerbates microbial pneumonia due to calcium (Ca2+) dysregulation. PLoS One 2021; 16:e0256166. [PMID: 34383849 PMCID: PMC8360547 DOI: 10.1371/journal.pone.0256166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
As electronic cigarette (E-cig) use, also known as "vaping", has rapidly increased in popularity, data regarding potential pathologic effects are recently emerging. Recent associations between vaping and lung pathology have led to an increased need to scrutinize E-cigs for adverse health impacts. Our previous work (and others) has associated vaping with Ca2+-dependent cytotoxicity in cultured human airway epithelial cells. Herein, we develop a vaped e-liquid pulmonary exposure mouse model to evaluate vaping effects in vivo. Using this model, we demonstrate lung pathology through the use of preclinical measures, that is, the lung wet: dry ratio and lung histology/H&E staining. Further, we demonstrate that acute vaping increases macrophage chemotaxis, which was ascertained using flow cytometry-based techniques, and inflammatory cytokine production, via Luminex analysis, through a Ca2+-dependent mechanism. This increase in macrophage activation appears to exacerbate pulmonary pathology resulting from microbial infection. Importantly, modulating Ca2+ signaling may present a therapeutic direction for treatment against vaping-associated pulmonary inflammation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
| | - Myles M. Jones
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - De’Jana Parker
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Ronna E. Dornsife
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
| | - Nathan Wymer
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States of America
| | - Rob U. Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| |
Collapse
|