1
|
Eyileten C, Czajka P, Domitrz I, Wierzchowska-Ciok A, Gasecka A, Mirowska-Guzel D, Członkowska A, Postula M. Extracellular Vesicle-Derived miRNAs in Ischemic Stroke: Roles in Neuroprotection, Tissue Regeneration, and Biomarker Potential. Cell Mol Neurobiol 2025; 45:31. [PMID: 40164816 PMCID: PMC11958879 DOI: 10.1007/s10571-025-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Ischemic stroke (IS) is one of the most common causes of death and disability worldwide. Despite its prevalence, knowledge about pathophysiology and diagnostic methods remains limited. Extracellular vesicles (EVs) that are released from cellular membranes constitutively, as well as after activation or damage, may contain various intracellular particles, including microRNAs (miRNAs/miR). miRNAs acting as mRNA transcription regulators are secreted in EVs and may be internalized by other cells. This cellular cross-talk is important for the regeneration of the nervous tissue after ischemic injury. Moreover, miRNAs related to stroke pathophysiology were shown to be differentially expressed after an IS episode. miRNAs associated with various types of stem cell-derived EVs were shown to be involved in post-ischemic neuroprotection and tissue regeneration and may be potential therapeutic agents. Therefore, considering their stability in plasma, they are worth investigating also as potential diagnostic/prognostic biomarkers. The present review summarizes the current knowledge about EV-derived miRNAs in the neuronal injury mechanism and their potential in neuroprotection in IS, and discusses the possibilities of further investigation of their use in preclinical research.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland.
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-089, Warsaw, Poland.
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Izabela Domitrz
- Department of Neurology Faculty of Medicine and Dentistry, Medical University of Warsaw Bielanski Hospital, Warsaw, Poland
| | - Agata Wierzchowska-Ciok
- Department of Neurology Faculty of Medicine and Dentistry, Medical University of Warsaw Bielanski Hospital, Warsaw, Poland
| | - Aleksandra Gasecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| | - Anna Członkowska
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, 02-957, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Street, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
Oguz AK, Oygur CS, Gur Dedeoglu B, Dogan Turacli I, Serin Kilicoglu S, Ergun I. The Platelet-Specific Gene Signature in the Immunoglobulin G4-Related Disease Transcriptome. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:162. [PMID: 39859144 PMCID: PMC11767091 DOI: 10.3390/medicina61010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated, fibroinflammatory, multiorgan disease with an obscure pathogenesis. Findings indicating excessive platelet activation have been reported in systemic sclerosis, which is another autoimmune, multisystemic fibrotic disorder. The immune-mediated, inflammatory, and fibrosing intersections of IgG4-RD and systemic sclerosis raised a question about platelets' role in IgG4-RD. Materials and Methods: By borrowing transcriptomic data from Nakajima et al. (GEO repository, GSE66465) we sought a platelet contribution to the pathogenesis of IgG4-RD. GEO2R and BRB-ArrayTools were used for class comparisons, and WebGestalt for functional enrichment analysis. During the selection of differentially expressed genes (DEGs), the translationally active but significantly low amount of platelet mRNA was specifically considered. The platelet-specific gene signature derived was used for cluster analysis of patient and control groups. Results: When IgG4-RD patients were compared with controls, 268 DEGs (204 with increased and 64 with decreased expression) were detected. Among these, a molecular signature of 22 platelet-specific genes harbored genes important for leukocyte-platelet aggregate formation (i.e., CLEC1B, GP1BA, ITGA2B, ITGB3, SELP, and TREML1) and extracellular matrix synthesis (i.e., CLU, PF4, PPBP, SPARC, and THBS1). Functional enrichment analysis documented significantly enriched terms related to platelets, including but not limited to "platelet reactivity", "platelet degranulation", "platelet aggregation", and "platelet activation". During clustering, the 22 gene signatures successfully discriminated IgG4-RD and the control and the IgG4-RD before and after treatment groups. Conclusions: Patients with IgG4-RD apparently display an activated platelet phenotype with a potential contribution to disease immunopathogenesis. If the platelets' role is validated through further carefully designed research, the therapeutic potentials of selected conventional and/or novel antiplatelet agents remain to be evaluated in patients with IgG4-RD. Transcriptomics and/or proteomics research with platelets should take into account the relatively low amounts of platelet mRNA, miRNA, and protein. Secondary analysis of omics data sets has great potential to reveal new and valuable information.
Collapse
Affiliation(s)
- Ali Kemal Oguz
- Department of Internal Medicine, Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey
| | - Cagdas Sahap Oygur
- Department of Internal Medicine (Rheumatology), Faculty of Medicine, Baskent University, 06490 Ankara, Turkey;
| | - Bala Gur Dedeoglu
- Department of Biotechnology, Biotechnology Institute, Ankara University, 06135 Ankara, Turkey;
| | - Irem Dogan Turacli
- Department of Medical Biology, Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey;
| | - Sibel Serin Kilicoglu
- Department of Histology & Embryology, Faculty of Medicine, Baskent University, 06790 Ankara, Turkey;
| | - Ihsan Ergun
- Department of Internal Medicine (Nephrology), Faculty of Medicine, Ufuk University, 06510 Ankara, Turkey;
| |
Collapse
|
3
|
Siniarski A, Gąsecka A, Krysińska K, Frydrych M, Nessler J, Gajos G. Clot lysis time and thrombin generation in patients undergoing transcatheter aortic valve implantation. J Thromb Thrombolysis 2025; 58:50-61. [PMID: 39115798 PMCID: PMC11762420 DOI: 10.1007/s11239-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Aortic valve stenosis (AS) is the most prevalent valvular heart disease and is associated with a significant increase in mortality. AS has been shown to be linked with numerous coagulation system abnormalities, including increased fibrin deposition on the stenotic aortic valves. Transcatheter aortic valve implantation (TAVI) is the primary treatment method for patients at high surgical risk. OBJECTIVES The aim of the study was to assess the impact of treating severe AS with TAVI on thrombin generation and clot lysis time (CLT). METHODS We studied 135 symptomatic AS patients recommended for TAVI by the local Heart Team. All measurements were performed before and 5-7 days after TAVI. Alongside clinical assessment and echocardiographic analysis, we assessed clot lysis time (CLT) and thrombin generation parameters, including lag time, peak thrombin generation, time to peak thrombin generation (ttPeak), and endogenous thrombin potential (ETP). RESULTS 70 patients were included in the final analysis. After TAVI, there was a significant 9% reduction in CLT despite a 12% increase in fibrinogen concentration. We observed significant increase in lag time and ttPeak (20% and 12%, respectively), and 13% decrease in peak thrombin concentration compared to pre-procedural levels. Multivariable linear regression analysis demonstrated that baseline CLT and C-reactive protein (CRP) levels were independent predictors of significant reduction in mean aortic gradient, defined as TAVI procedure success. CONCLUSIONS CLT and peak thrombin concentration decreased, while Lag time and ttPeak increased significantly after TAVI. Multivariable linear regression analysis demonstrated CLT and CRP levels as independent predictors of achieving a reduction in mean aortic gradient, defining TAVI procedure success.
Collapse
Affiliation(s)
- Aleksander Siniarski
- Department of Coronary Artery Disease and Heart Failure, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- St. John Paul II Hospital, Krakow, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1aST, 02-097, Warsaw, Poland.
| | - Katarzyna Krysińska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1aST, 02-097, Warsaw, Poland
| | - Marta Frydrych
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1aST, 02-097, Warsaw, Poland
| | - Jadwiga Nessler
- Department of Coronary Artery Disease and Heart Failure, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- St. John Paul II Hospital, Krakow, Poland
| | - Grzegorz Gajos
- Department of Coronary Artery Disease and Heart Failure, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- St. John Paul II Hospital, Krakow, Poland
| |
Collapse
|
4
|
Helin TA, Lemponen M, Immonen K, Lakkisto P, Joutsi-Korhonen L. Circulating microRNAs targeting coagulation and fibrinolysis in patients with severe COVID-19. Thromb J 2024; 22:80. [PMID: 39237986 PMCID: PMC11375984 DOI: 10.1186/s12959-024-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Coronavirus-19 disease (COVID-19) frequently causes coagulation disturbances. Data remains limited on the effects of microRNAs (miRNAs) on coagulation during COVID-19 infection. We aimed to analyze the comprehensive miRNA profile as well as coagulation markers and blood count in hospitalized COVID-19 patients. METHODS Citrated plasma samples from 40 patients (24 men and 16 women) hospitalized for COVID-19 were analyzed. Basic coagulation tests, von Willebrand factor (VWF), ADAMTS13, blood count, C-reactive protein, and 27 miRNAs known to associate with thrombosis or platelet activation were analyzed. MiRNAs were analyzed using quantitative reverse transcription polymerase chain reaction (RT qPCR), with 10 healthy controls serving as a comparator. RESULTS Among the patients, 15/36 (41%) had platelet count of over 360 × 109/L and 10/36 (28%) had low hemoglobin of < 100 g/L, while 26/37 (72%) had high VWF of over 200 IU/dL. Patients had higher levels of the miRNAs miR-27b-3p, miR-320a-3p, miR-320b-3p, and miR-424-5p, whereas levels of miR-103a-3p and miR-145-5p were lower than those in healthy controls. In total, 11 miRNAs were associated with platelet count. Let-7b-3p was associated with low hemoglobin levels of < 100 g/L. miR-24-3p, miR-27b-3p, miR-126-3p, miR-145-5p and miR-338-5p associated with high VWF. CONCLUSION COVID-19 patients differentially express miRNAs with target genes involved in fibrinolysis inhibition, coagulation activity, and increased inflammatory response. These findings support the notion that COVID-19 widely affects hemostasis, including platelets, coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Tuukka A Helin
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland.
| | - Marja Lemponen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| | - Katariina Immonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Päivi Lakkisto
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Lotta Joutsi-Korhonen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| |
Collapse
|
5
|
Boonpeng K, Shibuta T, Hirooka Y, Kulkeaw K, Palasuwan D, Umemura T. Serum microRNAs as new biomarkers for detecting subclinical hemolysis in the nonacute phase of G6PD deficiency. Sci Rep 2024; 14:16029. [PMID: 38992151 PMCID: PMC11239928 DOI: 10.1038/s41598-024-67108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common enzymopathies worldwide. Patients with G6PD deficiency are usually asymptomatic throughout their life but can develop acute hemolysis after exposure to free radicals or certain medications. Several studies have shown that serum miRNAs can be used as prognostic biomarkers in various types of hemolytic anemias. However, the impact of G6PD deficiency on circulating miRNA profiles is largely unknown. The present study aimed to assess the use of serum miRNAs as biomarkers for detecting hemolysis in the nonacute phase of G6PD deficiency. Patients with severe or moderate G6PD Viangchan (871G > A) deficiency and normal G6PD patients were enrolled in the present study. The biochemical hemolysis indices were normal in the three groups, while the levels of serum miR-451a, miR-16, and miR-155 were significantly increased in patients with severe G6PD deficiency. In addition, 3D analysis of a set of three miRNAs (miR-451a, miR-16, and miR-155) was able to differentiate G6PD-deficient individuals from healthy individuals, suggesting that these three miRNAs may serve as potential biomarkers for patients in the nonhemolytic phase of G6PD deficiency. In conclusion, miRNAs can be utilized as additional biomarkers to detect hemolysis in the nonacute phase of G6PD deficiency.
Collapse
Affiliation(s)
- Kanyarat Boonpeng
- Program in Clinical Hematology Sciences, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Tatsuki Shibuta
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Yoshitaka Hirooka
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2, Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Duangdao Palasuwan
- Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Tsukuru Umemura
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan.
- Clinical Laboratory, Kouhoukai Takagi Hospital, 141-11 Sakemi, Okawa, 831-0016, Japan.
| |
Collapse
|
6
|
Sulastomo H, Dinarti LK, Hariawan H, Haryana SM. MicroRNA expression alteration in chronic thromboembolic pulmonary hypertension: A systematic review. Pulm Circ 2024; 14:e12443. [PMID: 39308943 PMCID: PMC11413763 DOI: 10.1002/pul2.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is marked by persistent blood clots in pulmonary arteries, leading to significant morbidity and mortality. Emerging evidence highlights the role of microRNAs (miRNAs) in pulmonary hypertension, though findings on miRNA expression in CTEPH remain limited and inconsistent. This systematic review evaluates miRNA expression changes in CTEPH and their direction. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we registered our protocol in International Prospective Register of Systematic Reviews (CRD42024524469). We included studies on miRNA expression in CTEPH with comparative or analytical designs, excluding nonhuman studies, interventions, non-English texts, conference abstracts, and editorials. Databases searched included PubMed, EMBASE, Scopus, CENTRAL, and ProQuest. The Quality Assessment of Diagnostic Accuracy Studies-2 tool assessed bias risk, and results were synthesized narratively. Of 313 unique studies, 39 full texts were reviewed, and 9 met inclusion criteria, totaling 235 participants. Blood samples were analysed using quantitative real time polymerase chain reaction. Seven miRNAs (miR-665, miR-3202, miR-382, miR-127, miR-664, miR-376c, miR-30) were uniformly upregulated, while nine (miR-20a-5p13, miR-17-5p, miR-93-5p, miR-22, let-7b, miR-106b-5p, miR-3148, miR-320-a, miR-320b) were downregulated in CTEPH patients. Two upregulated miRNAs (miR-127 and miR-30a) were consistently associated with previous evidence in the mechanism inducing the development of CTEPH, and five downregulated miRNAs (miR-20-a, miR-17-5p, miR-93-5p, let-7b, miR-106b-5p) were associated with a protective effect against CTEPH. We also identified gaps in the literature where the evidence for five upregulated miRNAs (miR-665, miR-3202, miR-382, miR-664 and miR-376c) and four downregulated miRNAs (miR-22, miR-3148, miR-320-a, and miR-320b) in CTEPH is conflicting. Our findings offer insights into the role of miRNAs in CTEPH and underscore the need for further research to validate these miRNAs as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Heru Sulastomo
- Department of Cardiology and Vascular Medicine, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Lucia Kris Dinarti
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Hariadi Hariawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| |
Collapse
|
7
|
Zou Y, Wang Y, Yao Y, Wu Y, Lv C, Yin T. Platelet-derived circFAM13B associated with anti-platelet responsiveness of ticagrelor in patients with acute coronary syndrome. Thromb J 2024; 22:53. [PMID: 38907258 PMCID: PMC11191304 DOI: 10.1186/s12959-024-00620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Platelet is enriched with Circular RNAs (circRNAs), with circFAM13B rank among the 10 most abundant circRNAs in platelets. The aim of the present study was to evaluate the predictive value of platelet-derived circFAM13B for the antiplatelet responsiveness and efficacy of ticagrelor in patients with acute coronary syndrome (ACS). METHODS Consecutive ACS patients treated with ticagrelor were enrolled, and the antiplatelet responsiveness of 3 days of ticagrelor maintenance treatment was assessed by measuring the adenosine diphosphate (ADP)-induced platelet inhibition rate (ADP%) using thromboelastography. The expression of circFAM13B in the patients' platelets was analyzed by quantitative real-time polymerase chain reaction. The correlation between circFAM13B expression and ticagrelor antiplatelet responsiveness, as well as the independent contribution of circFAM13B to the composite of adverse ischemic events during a follow-up period of at least 12 months was evaluated. RESULTS A total of 129 eligible ACS patients treated with ticagrelor were enrolled in the study. A negative correlation was found between the expression of circFAM13B and the ADP% value (r = -0.41, P < 0.001). Patients with ADP% ≥ 76% had a significantly lower level of circFAM13B compared to those with ADP% < 76% (adjusted P = 0.009). Receiver operating characteristic curve analysis demonstrated that combining circFAM13B expression > 1.05 with clinical risk factors could effectively predict the risk of adverse ischemic events (AUC = 0.81, 95% CI: 0.69 to 0.92, P < 0.001). Kaplan-Meier survival analysis showed that patients with circFAM13B > 1.05 had a significantly higher risk of adverse ischemic events compared to those with circFAM13B ≤ 1.05 (P = 0.003). Multivariate logistic hazard analysis identified circFAM13B > 1.05 as an independent risk factor for adverse ischemic events in in ticagrelor-treated ACS patients (adjusted OR: 5.60, 95% CI: 1.69-18.50; P = 0.005). CONCLUSIONS Platelet-derived circFAM13B could be utilized for predicting the antiplatelet responsiveness and efficacy of ticagrelor in patients with ACS.
Collapse
Affiliation(s)
- Yuting Zou
- Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Senior Department of Cardiology, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuyan Wang
- Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanzhu Yao
- Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yangxun Wu
- Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chao Lv
- Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tong Yin
- Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Mao Y, Xiao J, Li J, Shi Q, Zhang L. Differential expression of miR-140-3p and its potential role during the development of the acute coronary syndrome. Ir J Med Sci 2024; 193:1223-1228. [PMID: 37994986 DOI: 10.1007/s11845-023-03575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Acute coronary syndrome (ACS) is a category of cardiovascular disease with a high fatality rate. AIMS We searched the differential expressed miRNAs (DEmiRNAs) in ACS based on bioinformatic analysis and investigated the diagnostic value of plasma miR-140-3p in patients with ACS and its potential functional role in ACS. METHODS The miRNAs (GSE94605, GSE49823, and GSE185729) microarray datasets of ACS were downloaded from the GEO datasets. After integrating the miRNA and mRNA interaction, a protein-protein interaction (PPI) network was constructed with 36 overlapped target mRNAs using STRING database. The plasma levels of miR-140-3p were detected by RT-qPCR, and its clinical diagnostic value was evaluated using the ROC curve. The potential effects of the miR-140-3p/RHOA axis in ACS were explored using human coronary endothelial cells (HCAECs). RESULTS After overlapping the GEO datasets, miR-140-3p was identified in the microarray datasets of ACS. The plasma miR-140-3p expression levels were highly expressed in ACS patients than in healthy control and had diagnostic significance. The target mRNAs of miR-140-3p were predicted using TargetScan, miRWalk, TarBase, and miRDB databases. The PPI network identified ten hub genes. miR-140-3p could decrease the HCAECs' cell viability, while RHOA reversed the inhibition effect of miR-140-3p. CONCLUSIONS The plasma expression of miR-140-3p was upregulated in ACS patients. miR-140-3p could decrease the HCAECs' cell viability, while RHOA reversed the inhibition effect of miR-140-3p. The miR-140-3p may be a potential diagnostic biomarker for the early detection of ACS.
Collapse
Affiliation(s)
- Yi'an Mao
- Department of Internal Medicine, College of Life Sciences, Shanghai University, No. 381, Nanchen Road, Shanghai, 200444, China
| | - Junjie Xiao
- Department of Internal Medicine, College of Life Sciences, Shanghai University, No. 381, Nanchen Road, Shanghai, 200444, China.
| | - Jin Li
- Department of Internal Medicine, College of Life Sciences, Shanghai University, No. 381, Nanchen Road, Shanghai, 200444, China
| | - Qing Shi
- Department of Internal Medicine, Tongji Hospital Affiliated to Tongji University, Shanghai, 200092, China
| | - Liwei Zhang
- Department of Internal Medicine, Tongji Hospital Affiliated to Tongji University, Shanghai, 200092, China
| |
Collapse
|
9
|
Shi J, Xu A, Ai J, Chen J, Luo Y. Expression of microRNAs during apheresis platelet storage up to day 14 in a blood bank in China. Transfus Clin Biol 2024; 31:95-101. [PMID: 38331021 DOI: 10.1016/j.tracli.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Storage affects platelet microRNAs (miRNAs); discussing miRNA expression differences in apheresis platelets after varied storage periods is important for developing platelet quality measurement tools and identifying platelet storage lesion biomarkers. To our knowledge, the difference of MicroRNA expression profile in up to 14-day storage apheresis platelets has less relevant reports. STUDY DESIGN AND METHODS Apheresis platelet bags from three donors were collected, divided into six groups, and stored for 1, 3, 5, 7, 9, and 14 days. miRNA expression was determined using quantitative reverse transcription polymerase chain reaction. Differentially expressed miRNAs were screened using RNA sequencing. RESULTS MiRNA expression profiles showed that the six treatment groups generally highly expressed hsa-let-7 family, hsa-miR-26a-5p, hsa-miR-92a-3p, hsa-miR-199, and hsa-miR-103a-3p. A total of 15 miRNAs in the top 10 known miRNAs of the six groups were highly expressed. Time series analyses for the trend classification of 944 differentially expressed miRNAs indicated 43 genes with 14 trend changes. Hsa-miR-223-3p, hsa-miR-181a-5p, hsa-miR-4433b-5p, hsa-miR-22-3p, and hsa-miR-30c-5p were selected, and the qRT-PCR results also showed that they were significantly reduced under standard blood bank condition. DISCUSSION Expression of microRNAs lays the foundation for further research on apheresis platelet storage lesions. Based on our results from information analysis and miRNA target gene prediction, we suggest hsa-miR-30c-5p as a biomarker of the quality and viability of apheresis platelets during storage in blood banks.
Collapse
Affiliation(s)
- Jie Shi
- Nanjing Red Cross Blood Center, No. 3 Zizhulin, Nanjing, Jiangsu 210003, China
| | - Anqi Xu
- Nanjing Red Cross Blood Center, No. 3 Zizhulin, Nanjing, Jiangsu 210003, China
| | - Jun Ai
- Nanjing Red Cross Blood Center, No. 3 Zizhulin, Nanjing, Jiangsu 210003, China
| | - Jin Chen
- Nanjing Red Cross Blood Center, No. 3 Zizhulin, Nanjing, Jiangsu 210003, China
| | - Ying Luo
- Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, 786 Yuyuan Rd., Shanghai 200050, China.
| |
Collapse
|
10
|
Masoudikabir P, Shirazy M, Taghizadeh FS, Gheydari ME, Hamidpour M. Platelet-enriched microRNAs as novel biomarkers in atherosclerotic and cardiovascular disease patients. ARYA ATHEROSCLEROSIS 2024; 20:47-67. [PMID: 39717424 PMCID: PMC11663285 DOI: 10.48305/arya.2024.41664.2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 12/25/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a global health challenge. Various studies have shown that genetic and environmental factors play roles in the development and progression of CVD. Small non-coding RNAs, namely microRNAs (miRs), regulate gene expression and have key roles in essential cellular processes such as apoptosis, cell cycle, differentiation, and proliferation. Currently, clinical studies highlight the critical role of platelets and miRs in coronary thrombosis, atherosclerosis, and CVD. METHODS Using search engines such as PubMed and Scopus, articles studying platelet miRs and their effects on atherosclerosis and cardiovascular disease were reviewed. RESULTS This article presents a comprehensive analysis of the association of platelet-related miRs as prognostic, diagnostic, and therapeutic biomarkers with the pathogenesis of atherosclerosis and cardiovascular disease. CONCLUSION Taken together, data show that platelet-related miRs not only play important roles in the initial development of atherosclerosis and cardiovascular disease (CVD), but they are also considered prognostic and diagnostic biomarkers in CVD.
Collapse
Affiliation(s)
- Parisa Masoudikabir
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shirazy
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohamad Esmail Gheydari
- Department of Cardiology, Taleghani General Hospital. School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic stem cell Research Centre- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Qiuyue L, Gulin D, Hong X, Jiazhen Y, Rukui Y, Xinwu H, Guochun L. Zhilong Huoxue Tongyu Capsule Ameliorates Platelet Aggregation and Thrombus Induced by Aspirin in Rats by Regulating Lipid Metabolism and MicroRNA Pathway. Comb Chem High Throughput Screen 2024; 27:854-862. [PMID: 37438906 DOI: 10.2174/1386207326666230712110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Zhilong Huoxue Tongyu capsule (ZLHX) is a traditional Chinese medicinal compound preparation, which exhibits obvious therapeutic effects on aspirin resistance (AR). However, the mechanism of ZLHX on AR is rarely reported. OBJECTIVES This study aimed to explore the therapeutic effects of AR and the underlying mechanisms of ZLHX on AR rats. METHODS An AR model was established through treatment with a high-fat, high-sugar, and highsalt diet for 12 weeks and oral administration of aspirin (27 mg/kg/day) and ibuprofen (36 mg/kg/day) in weeks 9-12. The rats were administrated with ZLHX (225, 450, and 900 mg/kg) from week 12 to week 16. Blood samples were collected after the experiment. Thromboelastography analysis was performed, and the levels of triglyceride (TG), total cholesterol (TC), lowdensity lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were determined. Furthermore, the levels of thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6- keto-PGF1α) were determined with commercial ELISA kits. Finally, the gene expressions of microRNA- 126-3p (miRNA-126-3p) and miRNA-34b-3p were detected through a real-time quantitative polymerase chain reaction. RESULTS Results demonstrated that ZLHX significantly inhibited platelet aggregation in the AR rats. Moreover, ZLHX markedly decreased the levels of TC, TG, and LDL-C and increased the level of HDL-C. Meanwhile, ELISA results confirmed that ZLHX can elevate the expression levels of TXB2 and 6-keto-PGF1α. Further studies suggested that ZLHX significantly downregulated the expression levels of miRNA-126-3p and miRNA-34b-3p. CONCLUSION This study revealed that the therapeutic effect of ZLHX might be related to the regulation of lipid metabolism and the miRNA pathway.
Collapse
Affiliation(s)
- Li Qiuyue
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Deng Gulin
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Xu Hong
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yin Jiazhen
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yuan Rukui
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Huang Xinwu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Li Guochun
- National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
12
|
Cimmino G, Conte S, Palumbo D, Sperlongano S, Torella M, Della Corte A, Golino P. The Novel Role of Noncoding RNAs in Modulating Platelet Function: Implications in Activation and Aggregation. Int J Mol Sci 2023; 24:7650. [PMID: 37108819 PMCID: PMC10144470 DOI: 10.3390/ijms24087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
It is currently believed that plaque complication, with the consequent superimposed thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets are major players in this process. Despite the considerable progress made by the new antithrombotic strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in terms of a reduction in major cardiovascular events, a significant number of patients with previous ACSs treated with these drugs continue to experience events, indicating that the mechanisms of platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology has improved. It has been reported that, in response to physiological and pathological stimuli, platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for protein synthesis following their activation. A better understanding of the pathophysiology of platelet activation and the interaction with the main cellular components of the vascular wall will open up new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and peripheral artery diseases before and after the acute event. In the present review, we will discuss the novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications in activation and aggregation.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Lung Diseases, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy
| | - Domenico Palumbo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Simona Sperlongano
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| |
Collapse
|
13
|
miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int J Mol Sci 2023; 24:ijms24065192. [PMID: 36982265 PMCID: PMC10048938 DOI: 10.3390/ijms24065192] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
MicroRNAs (miRNAs), small noncoding RNAs, are post-transcriptional gene regulators that can promote the degradation or decay of coding mRNAs, regulating protein synthesis. Many experimental studies have contributed to clarifying the functions of several miRNAs involved in regulatory processes at the cardiac level, playing a pivotal role in cardiovascular disease (CVD). This review aims to provide an up-to-date overview, with a focus on the past 5 years, of experimental studies on human samples to present a clear background of the latest advances to summarize the current knowledge and future perspectives. SCOPUS and Web of Science were searched using the following keywords: (miRNA or microRNA) AND (cardiovascular diseases); AND (myocardial infarction); AND (heart damage); AND (heart failure), including studies published from 1 January 2018 to 31 December 2022. After an accurate evaluation, 59 articles were included in the present systematic review. While it is clear that miRNAs are powerful gene regulators, all the underlying mechanisms remain unclear. The need for up-to-date data always justifies the enormous amount of scientific work to increasingly highlight their pathways. Given the importance of CVDs, miRNAs could be important both as diagnostic and therapeutic (theranostic) tools. In this context, the discovery of “TheranoMIRNAs” could be decisive in the near future. The definition of well-setout studies is necessary to provide further evidence in this challenging field.
Collapse
|
14
|
Anijs RJS, Nguyen YN, Cannegieter SC, Versteeg HH, Buijs JT. MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism. J Thromb Haemost 2023; 21:7-17. [PMID: 36695398 DOI: 10.1016/j.jtha.2022.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with gene regulatory functions and are commonly dysregulated in disease states. As miRNAs are relatively stable, easily measured, and accessible from plasma or other body fluids, they are promising biomarkers for the diagnosis and prediction of cancer and cardiovascular diseases. Venous thromboembolism (VTE) is the third most common cardiovascular disease worldwide with high morbidity and mortality. The suggested roles of miRNAs in regulating the pathophysiology of VTE and as VTE biomarkers are nowadays more evidenced. Patients with cancer are at increased risk of developing VTE compared to the general population. However, current risk prediction models for cancer-associated thrombosis (CAT) perform suboptimally, and novel biomarkers are therefore urgently needed to identify which patients may benefit the most from thromboprophylaxis. This review will first discuss how miRNAs mechanistically contribute to the pathophysiology of VTE. Next, the potential use of miRNAs as predictive biomarkers for VTE in subjects without cancer is reviewed, followed by an in-depth focus on CAT. Several of the identified miRNAs in CAT were found to be differentially regulated in VTE as well, giving clues on the pathophysiology of CAT. We propose that subsequent studies should be adequately sized to determine which panel of miRNAs best predicts VTE and CAT. Thereafter, validation studies using comparable patient populations are required to ultimately unveil whether miRNAs-as standalone or incorporated into existing risk models-are promising valuable VTE and CAT biomarkers.
Collapse
Affiliation(s)
- Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yen Nhi Nguyen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
15
|
Kabłak-Ziembicka A, Badacz R, Przewłocki T. Clinical Application of Serum microRNAs in Atherosclerotic Coronary Artery Disease. J Clin Med 2022; 11:6849. [PMID: 36431326 PMCID: PMC9698927 DOI: 10.3390/jcm11226849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRs) are promising diagnostic, prognostic and therapeutic biomolecules for atherosclerotic cardiovascular disease. Atherosclerotic occlusive disease concerns a large population of patients, carrying the highest incidence of fatal and non-fatal adverse events, such as myocardial infarction, ischemic stroke, and limb ischemia, worldwide. Consistently, miRs are involved in regulation and pathogenesis of atherosclerotic coronary artery disease (CAD), acute coronary syndromes (ACS), both with ST-segment (STEMI) and non-ST segment elevation myocardial infarctions (NSTEMI), as well as cardiac remodeling and fibrosis following ACS. However, the genetic and molecular mechanisms underlying adverse outcomes in CAD are multifactorial, and sometimes difficult to interpret for clinicians. Therefore, in the present review paper we have focused on the clinical meaning and the interpretation of various miRs findings, and their potential application in routine clinical practice.
Collapse
Affiliation(s)
- Anna Kabłak-Ziembicka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
- Noninvasive Cardiovascular Laboratory, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
- Department of Interventional Cardiology, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| | - Tadeusz Przewłocki
- Department of Interventional Cardiology, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
| |
Collapse
|
16
|
Eyileten C, Skrobucha A, Starczyński M, Boszko M, Jarosz-Popek J, Fitas A, Filipiak KJ, Kochman J, Huczek Z, Rymuza B, Wilimski R, Kuśmierczyk M, Siller-Matula JM, Postula M, Gąsecka A. Expression of miR-223 to predict outcomes after transcatheter aortic valve implantation. Cardiol J 2022; 31:111-123. [PMID: 36200549 PMCID: PMC10919566 DOI: 10.5603/cj.a2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) is an established treatment for aortic stenosis (AS) in patients at increased surgical risk. Up to 29% of patients annually experience major adverse cardiac and cerebrovascular events (MACCE) after TAVI. MicroRNAs (miRNA) are currently widely investigated as novel cardiovascular biomarkers. The aim of this study was to determine the influence of TAVI on the expressions of selected miRNAs associated with platelet function (miR-125a-5p, miR-125b and miR-223), and evaluate the predictive value of these miRNAs for MACCE in 65 patients undergoing TAVI. METHODS Venous blood samples for miRNA expression analysis were collected 1 day before TAVI and at hospital discharge. The expression of miR-223, miR-125a-5p, miR-125b was evaluated in platelet-depleted plasma. RESULTS The expression of miR-223 and miR-125b increased after TAVI, compared to the measurement before (p = 0.020, p = 0.003, respectively). Among 63 patients discharged from the hospital, 18 patients experienced MACCE (29%) during the median 15 months of observation. Baseline low miR-223 expression was a predictor of MACCE in univariate Cox regression analysis (hazard ratio [HR]: 2.71, 95% confidence interval [CI]: 1.04-7.01; p = 0.041). After inclusion of covariates, age, gender (male), New York Heart Association class and diabetes into the multivariate Cox regression model, miR-223 did not reach statistical significance (HR: 2.56, 95% CI: 0.79-8.33; p = 0.118). CONCLUSIONS To conclude, miR-223 might improve risk stratification after TAVI. Further studies are required to confirm the clinical applicability of this promising biomarker.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Alicja Skrobucha
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Miłosz Starczyński
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Maria Boszko
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Krzysztof J Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Janusz Kochman
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Zenon Huczek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Bartosz Rymuza
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| | - Radosław Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, Poland.
| | | | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| |
Collapse
|
17
|
Zhelankin AV, Iulmetova LN, Sharova EI. The Impact of the Anticoagulant Type in Blood Collection Tubes on Circulating Extracellular Plasma MicroRNA Profiles Revealed by Small RNA Sequencing. Int J Mol Sci 2022; 23:ijms231810340. [PMID: 36142259 PMCID: PMC9499385 DOI: 10.3390/ijms231810340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-analytical factors have a significant influence on circulating microRNA (miRNA) profiling. The aim of this study was a comprehensive assessment of the impact of the anticoagulant type in blood collection tubes on circulating plasma miRNA profiles using small RNA sequencing. Blood from ten healthy participants (five males and five females from 25 to 40 years old) was taken in collection tubes with four different anticoagulants: acid citrate dextrose (ACD-B), sodium citrate, citrate-theophylline-adenosine-dipyridamole (CTAD) and dipotassium-ethylenediaminetetraacetic acid (K2 EDTA). Platelet-free plasma samples were obtained by double centrifugation. EDTA plasma samples had elevated levels of hemolysis compared to samples obtained using other anticoagulants. Small RNA was extracted from plasma samples and small RNA sequencing was performed on the Illumina NextSeq 500 system. A total of 30 samples had been successfully sequenced starting from ~1 M reads mapped to miRNAs, allowing us to analyze their diversity and isoform content. The principal component analysis showed that the EDTA samples have distinct circulating plasma miRNA profiles compared to samples obtained using other anticoagulants. We selected 50 miRNA species that were differentially expressed between the sample groups based on the type of anticoagulant. We found that the EDTA samples had elevated levels of miRNAs which are abundant in red blood cells (RBC) and associated with hemolysis, while the levels of some platelet-specific miRNAs in these samples were lowered. The ratio between RBC-derived and platelet-derived miRNAs differed between the EDTA samples and other sample groups, which was validated by quantitative PCR. This study provides full plasma miRNA profiles of 10 healthy adults, compares them with previous studies and shows that the profile of circulating miRNAs in the EDTA plasma samples is altered primarily due to an increased level of hemolysis.
Collapse
|
18
|
Mortazavi-Jahromi SS, Aslani M. Dysregulated miRNAs network in the critical COVID-19: An important clue for uncontrolled immunothrombosis/thromboinflammation. Int Immunopharmacol 2022; 110:109040. [PMID: 35839566 PMCID: PMC9271492 DOI: 10.1016/j.intimp.2022.109040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Known as a pivotal immunohemostatic response, immunothrombosis is activated to restrict the diffusion of pathogens. This beneficial intravascular defensive mechanism represents the close interaction between the immune and coagulation systems. However, its uncontrolled form can be life-threatening to patients with the critical coronavirus disease 2019 (COVID-19). Hyperinflammation and ensuing cytokine storm underlie the activation of the coagulation system, something which results in the provocation of more immune-inflammatory responses by the thrombotic mediators. This vicious cycle causes grave clinical complications and higher risks of mortality. Classified as an evolutionarily conserved family of the small non-coding RNAs, microRNAs (miRNAs) serve as the fine-tuners of genes expression and play a key role in balancing the pro/anticoagulant and pro-/anti-inflammatory factors maintaining homeostasis. Therefore, any deviation from their optimal expression levels or efficient functions can lead to severe complications. Despite their extensive effects on the molecules and processes involved in uncontrolled immunothrombosis, some genetic agents and uncontrolled immunothrombosis-induced interfering factors (e.g., miRNA-single nucleotide polymorphysms (miR-SNPs), the complement system components, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, and reactive oxygen species (ROS)) have apparently disrupted their expressions/functions. This review study aims to give an overview of the role of miRNAs in the context of uncontrolled immunothrombosis/thromboinflammation accompanied by some presumptive interfering factors affecting their expressions/functions in the critical COVID-19. Detecting, monitoring, and resolving these interfering agents mafy facilitate the design and development of the novel miRNAs-based therapeutic approaches to the reduction of complications incidence and mortality in patients with the critical COVID-19.
Collapse
Affiliation(s)
- Seyed Shahabeddin Mortazavi-Jahromi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran.
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Bordin A, Chirivì M, Pagano F, Milan M, Iuliano M, Scaccia E, Fortunato O, Mangino G, Dhori X, De Marinis E, D'Amico A, Miglietta S, Picchio V, Rizzi R, Romeo G, Pulcinelli F, Chimenti I, Frati G, De Falco E. Human platelet lysate-derived extracellular vesicles enhance angiogenesis through miR-126. Cell Prolif 2022; 55:e13312. [PMID: 35946052 DOI: 10.1111/cpr.13312] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Extracellular vesicles (EVs) are key biological mediators of several physiological functions within the cell microenvironment. Platelets are the most abundant source of EVs in the blood. Similarly, platelet lysate (PL), the best platelet derivative and angiogenic performer for regenerative purposes, is enriched of EVs, but their role is still too poorly discovered to be suitably exploited. Here, we explored the contribution of the EVs in PL, by investigating the angiogenic features extrapolated from that possessed by PL. METHODS We tested angiogenic ability and molecular cargo in 3D bioprinted models and by RNA sequencing analysis of PL-derived EVs. RESULTS A subset of small vesicles is highly represented in PL. The EVs do not retain aggregation ability, preserving a low redox state in human umbilical vein endothelial cells (HUVECs) and increasing the angiogenic tubularly-like structures in 3D endothelial bioprinted constructs. EVs resembled the miRNome profile of PL, mainly enriched with small RNAs and a high amount of miR-126, the most abundant angiogenic miRNA in platelets. The transfer of miR-126 by EVs in HUVEC after the in vitro inhibition of the endogenous form, restored angiogenesis, without involving VEGF as a downstream target in this system. CONCLUSION PL is a biological source of available EVs with angiogenic effects involving a miRNAs-based cargo. These properties can be exploited for targeted molecular/biological manipulation of PL, by potentially developing a product exclusively manufactured of EVs.
Collapse
Affiliation(s)
- Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Maila Chirivì
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Marika Milan
- UOC Neurologia, Fondazione Ca'Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Iuliano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Eleonora Scaccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Xhulio Dhori
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elisabetta De Marinis
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alessandra D'Amico
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, Rome, Italy
| | - Vittorio Picchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Giovanna Romeo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Fabio Pulcinelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Isotta Chimenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzili, Italy
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
20
|
De Wispelaere K, Freson K. The Analysis of the Human Megakaryocyte and Platelet Coding Transcriptome in Healthy and Diseased Subjects. Int J Mol Sci 2022; 23:ijms23147647. [PMID: 35886993 PMCID: PMC9317744 DOI: 10.3390/ijms23147647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Platelets are generated and released into the bloodstream from their precursor cells, megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte to the platelet. It has been described that transcripts in platelets can be translated into proteins that influence platelet response. The platelet transcriptome is highly dynamic and has been extensively studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we illustrate how these methods can be applied in the field of inherited platelet disorders for gene discovery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding transcriptomics can be integrated with other next-generation technologies to decipher unexplained inherited platelet disorders in a multiomics approach.
Collapse
|
21
|
Gager GM, Eyileten C, Postula M, Gasecka A, Jarosz-Popek J, Gelbenegger G, Jilma B, Lang I, Siller-Matula J. Association Between the Expression of MicroRNA-125b and Survival in Patients With Acute Coronary Syndrome and Coronary Multivessel Disease. Front Cardiovasc Med 2022; 9:948006. [PMID: 35872885 PMCID: PMC9304571 DOI: 10.3389/fcvm.2022.948006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMicroRNAs (miRNA, miR) have an undeniable physiological and pathophysiological significance and act as promising novel biomarkers. The aim of the study was to investigate blood-derived miRNAs and their association with long-term all-cause mortality in patients with multivessel disease (MVD) suffering from acute coronary syndrome (ACS).Materials and MethodsThis study was an observational prospective study, which included 90 patients with MVD and ACS. Expression of miR-125a, miR-125b, and miR-223 was analysed by polymerase chain reaction (PCR). Patients were followed-up for a median of 7.5 years. All-cause mortality was considered as the primary endpoint. Adjusted Cox-regression analysis was performed for prediction of events.ResultsElevated expression of miR-125b (>4.6) at the time-point of ACS was associated with increased long-term all-cause mortality (adjusted [adj.] hazard ratio [HR] = 11.26, 95% confidence interval [95% CI]: 1.15–110.38; p = 0.038). The receiver operating characteristic (ROC) analysis showed a satisfactory c-statistics for miR-125b for the prediction of long-term all-cause mortality (area under the curve [AUC] = 0.76, 95% CI: 0.61–0.91; p = 0.034; the negative predictive value of 98%). Kaplan–Meier time to event analysis confirmed an early separation of the survival curves between patients with high vs low expression of miR-125b (p = 0.003). An increased expression of miR-125a and miR-223 was found in patients with non-ST-segment elevation ACS (NSTE-ACS) as compared to those with ST-segment elevation myocardial infarction (STEMI) (p = 0.043 and p = 0.049, respectively) with no difference in the expression of miR-125b between the type of ACS.ConclusionIn this hypothesis generating study, lower values of miR-125b were related to improved long-term survival in patients with ACS and MVD. Larger studies are needed to investigate whether miR-125b can be used as a suitable predictor for long-term all-cause mortality.
Collapse
Affiliation(s)
- Gloria M. Gager
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gasecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jolanta Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Jolanta Siller-Matula,
| |
Collapse
|
22
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
23
|
Eyileten C, Wicik Z, Keshwani D, Aziz F, Aberer F, Pferschy PN, Tripolt NJ, Sourij C, Prietl B, Prüller F, von Lewinski D, De Rosa S, Siller-Matula JM, Postula M, Sourij H. Alteration of circulating platelet-related and diabetes-related microRNAs in individuals with type 2 diabetes mellitus: a stepwise hypoglycaemic clamp study. Cardiovasc Diabetol 2022; 21:79. [PMID: 35596173 PMCID: PMC9123651 DOI: 10.1186/s12933-022-01517-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In patients with type 2 diabetes mellitus (T2DM) an association between severe hypoglycaemic episodes and the risk of cardiovascular (CV) morbidity and mortality has been previously established. METHODS We aimed to investigate the influence of hypoglycaemia on several diabetes-related and platelet-related miRNAs selected based on bioinformatic analysis and literature search, including hsa-miR-16, hsa-miR-34a, hsa-miR-129-2, hsa-miR-15a, hsa-miR-15b, hsa-miR-106a, miR-223, miR-126. Selected miRNAs were validated by qRT-PCR in 14 patients with T2DM on metformin monotherapy, without established CV disease and antiplatelet therapy during a stepwise hypoglycaemic clamp experiment and a follow-up 7 days after the clamp event. In order to identify which pathways and phenotypes are associated with validated miRNAs we performed target prediction on genes expressed with high confidence in platelets. RESULTS Circulating levels of miR-106a-5p, miR-15b, miR-15a, miR-16-5p, miR-223 and miR-126 were increased after euglycaemic clamp followed by hypoglycaemic clamp, each with its distinctive time trend. On the contrary, miR-129-2-3p, miR-92a-3p and miR-34a-3p remained unchanged. MiR-16-5p was negatively correlated with interleukin (IL)-6, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) (p = 0.002, p < 0.001, p = 0.016, respectively), whereas miR-126 was positively correlated with VCAM (p < 0.001). There were negative correlations between miR-16-5p, miR-126 and coagulation factors, including factor VIII and von Willebrand factor (vWF). Among all studied miRNAs, miR-126, miR-129-2-3p and miR-15b showed correlation with platelet function. Bioinformatic analysis of platelet-related targets of analyzed miRNAs showed strong enrichment of IL-2 signaling. We also observed significant enrichment of pathways and diseases related to cancer, CV diseases, hyperglycemia, and neurological diseases. CONCLUSIONS Hypoglycaemia can significantly influence the expression of platelet-enriched miRNAs, with a time trend paralleling the time course of platelet activation. This suggests miRNAs could be exploited as biomarkers for platelet activation in response to hypoglycaemia, as they are probably released by platelets upon activation by hypoglycaemic episodes. Should they hold their promise in clinical endpoint studies, platelet-derived miRNAs might become helpful markers of CV risk in subjects with diabetes. Trial registration The study was registered at clinical trials.gov; Impact of Hypoglycaemia in Patients With DIAbetes Mellitus Type 2 on PLATElet Activation (Diaplate), trial number: NCT03460899.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Disha Keshwani
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Faisal Aziz
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Felix Aberer
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Norbert J Tripolt
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Caren Sourij
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
24
|
Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23094530. [PMID: 35562921 PMCID: PMC9102701 DOI: 10.3390/ijms23094530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Increased inflammation activates blood coagulation system, higher platelet activation plays a key role in the pathophysiology of ischemic stroke (IS). During platelet activation and aggregation process, platelets may cause increased release of several proinflammatory, and prothrombotic mediators, including microRNAs (miRNAs) and extracellular vesicles (EVs). In the current study we aimed to assess circulating miRNAs profile related to platelet function and inflammation and circulating EVs from platelets, leukocytes, and endothelial cells to analyse their diagnostic and predictive utility in patients with acute IS. Methods: The study population consisted of 28 patients with the diagnosis of the acute IS. The control group consisted of 35 age- and gender-matched patients on acetylsalicylic acid (ASA) therapy without history of stroke and/or TIA with established stable coronary artery disease (CAD) and concomitant cardiovascular risk factors. Venous blood samples were collected from the control group and patients with IS on ASA therapy (a) 24 h after onset of acute IS, (b) 7-days following index hospitalization. Flow cytometry was used to determine the concentration of circulating EVs subtypes (from platelets, leukocytes, and endothelial cells) in platelet-depleted plasma and qRT-PCR was used to determine several circulating plasma miRNAs (miR-19a-3p, miR-186-5p and let-7f). Results: Patients with high platelet reactivity (HPR, based on arachidonic acid-induced platelet aggregometry) had significantly elevated platelet-EVs (CD62+) and leukocyte-EVs (CD45+) concentration compared to patients with normal platelet reactivity at the day of 1 acute-stroke (p = 0.012, p = 0.002, respectively). Diagnostic values of baseline miRNAs and EVs were evaluated with receiver operating characteristic (ROC) curve analysis. The area under the ROC curve for miR-19a-3p was 0.755 (95% CI, 0.63–0.88) p = 0.004, for let-7f, it was 0.874 (95% CI, 0.76–0.99) p = 0.0001; platelet-EVs was 0.776 (95% CI, 0.65–0.90) p = 0.001, whereas for leukocyte-EVs, it was 0.715 (95% CI, 0.57–0.87) p = 0.008. ROC curve showed that pooling the miR-19a-3p expressions, platelet-EVs, and leukocyte-EVs concentration yielded a higher AUC than the value of each individual biomarker as AUC was 0.893 (95% CI, 0.79–0.99). Patients with moderate stroke had significantly elevated miR-19a-3p expression levels compared to patients with minor stroke at the first day of IS. (AUC: 0.867, (95% CI, 0.74–0.10) p = 0.001). Conclusion: Combining different biomarkers of processes underlying IS pathophysiology might be beneficial for early diagnosis of ischemic events. Thus, we believe that in the future circulating biomarkers might be used in the prehospital phase of IS. In particular, circulating plasma EVs and non-coding RNAs including miRNAs are interesting candidates as bearers of circulating biomarkers due to their high stability in the blood and making them highly relevant biomarkers for IS diagnostics.
Collapse
|
25
|
Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring. J Clin Med 2022; 11:jcm11071763. [PMID: 35407371 PMCID: PMC8999342 DOI: 10.3390/jcm11071763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Micro-ribonucleic acids (microRNAs) are small molecules that take part in the regulation of gene expression. Their function has been extensively investigated in cardiovascular diseases (CVD). Most recently, miRNA expression levels have been suggested as potential biomarkers of platelet reactivity or response to antiplatelet therapy and tools for risk stratification for recurrence of ischemic evens. Among these, miR-126 and miR-223 have been found to be of particular interest. Despite numerous studies aimed at understanding the prognostic value of miRNA levels, no final conclusions have been drawn thus far regarding their utility in clinical practice. The aim of this review is to critically appraise the evidence on the association between miRNA expression, cardiovascular risk and on-treatment platelet reactivity as well as provide insights on future developments in the field.
Collapse
|
26
|
Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets 2022; 33:1052-1064. [DOI: 10.1080/09537104.2022.2042233] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Doctoral School of Medical University of Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| |
Collapse
|
27
|
Wilson JC, Kealy D, James SR, Plowman T, Newling K, Jagger C, Filbey K, Mann ER, Konkel JE, Menon M, Knight SB, Simpson A, CIRCO Collaborative Group, Prihartadi A, Forshaw G, Todd N, Yates DR, Grainger JR, Hussell T, Kaye PM, Signoret N, Lagos D. Integrated miRNA/cytokine/chemokine profiling reveals severity-associated step changes and principal correlates of fatality in COVID-19. iScience 2022; 25:103672. [PMID: 34957382 PMCID: PMC8686203 DOI: 10.1016/j.isci.2021.103672] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory cytokines and chemokines (CC) drive COVID-19 pathology. Yet, patients with similar circulating CC levels present with different disease severity. Here, we determined 171 microRNAomes from 58 hospitalized COVID-19 patients (Cohort 1) and levels of 25 cytokines and chemokines (CC) in the same samples. Combining microRNA (miRNA) and CC measurements allowed for discrimination of severe cases with greater accuracy than using miRNA or CC levels alone. Severity group-specific associations between miRNAs and COVID-19-associated CC (e.g., IL6, CCL20) or clinical hallmarks of COVID-19 (e.g., neutrophilia, hypoalbuminemia) separated patients with similar CC levels but different disease severity. Analysis of an independent cohort of 108 patients from a different center (Cohort 2) demonstrated feasibility of CC/miRNA profiling in leftover hospital blood samples with similar severe disease CC and miRNA profiles, and revealed CCL20, IL6, IL10, and miR-451a as key correlates of fatal COVID-19. These findings highlight that systemic miRNA/CC networks underpin severe COVID-19.
Collapse
Affiliation(s)
- Julie C. Wilson
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - David Kealy
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Sally R. James
- York Biosciences Technology Facility, University of York, Wentworth Way, York YO10 5DD, UK
| | - Tobias Plowman
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Katherine Newling
- York Biosciences Technology Facility, University of York, Wentworth Way, York YO10 5DD, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Kara Filbey
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
- Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor St. Mary's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Joanne E. Konkel
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Sean B. Knight
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
- Respiratory Department, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | | | - Aliya Prihartadi
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Greg Forshaw
- York and Scarborough Teaching Hospitals NHS Foundation Trust, York YO31 8HE, UK
| | - Neil Todd
- York and Scarborough Teaching Hospitals NHS Foundation Trust, York YO31 8HE, UK
| | - David R.A. Yates
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- The Members of the Coronavirus Immune Response and Clinical Outcomes (CIRCO) Collaborative Group
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Paul M. Kaye
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Nathalie Signoret
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Dimitris Lagos
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
- Corresponding author
| |
Collapse
|
28
|
Stasko J, Holly P, Kubisz P. A new decade awaits sticky platelet syndrome: where are we now, how do we manage and what are the complications? Expert Rev Hematol 2022; 15:53-63. [PMID: 35034520 DOI: 10.1080/17474086.2022.2030217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sticky platelet syndrome is a less known platelet function disorder with a familiar occurrence and likely genetic background. Clinically, it is characterized by an increased risk of venous and arterial thromboembolic events and obstetric placenta-mediated complications. The increased aggregation after low-dose ADP and/or epinephrine is its distinctive laboratory feature. Though described for almost 40 years, several issues regarding its etiology, involved pathomechanisms, genetic background, optimal diagnostic and treatment approach remain controversial. AREAS COVERED The work aims to summarize published studies, the actual definition of the syndrome, and point out its drawbacks. A literature search on Medline, Embase, and archives from EHA congresses was performed (terms: 'sticky platelet syndrome' - 'platelet hyperreactivity' - 'platelet hyperaggregability'). The authors added in their unpublished data. The introductory overview of the present understanding is followed by the discussion of the pathophysiologic, diagnostic, and therapeutic problems. EXPERT OPINION Despite the growing evidence provided by case reports and series, the lack of robust studies limits the decision-making on diagnostics and management. The diagnostic issues, particularly the standardization of light transmission aggregometry, represent the crucial problem for the broader acceptance of the syndrome.
Collapse
Affiliation(s)
- Jan Stasko
- Department of Hematology and Transfusion Medicine, National Center of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin of the Comenius University in Bratislava, University Hospital in Martin, Martin, Slovakia
| | - Pavol Holly
- Department of Hematology and Transfusion Medicine, National Center of Hemostasis and Thrombosis, University Hospital in Martin, Martin, Slovakia
| | - Peter Kubisz
- Department of Hematology and Transfusion Medicine, National Center of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin of the Comenius University in Bratislava, University Hospital in Martin, Martin, Slovakia
| |
Collapse
|
29
|
Screening Analysis of Platelet miRNA Profile Revealed miR-142-3p as a Potential Biomarker in Modeling the Risk of Acute Coronary Syndrome. Cells 2021; 10:cells10123526. [PMID: 34944034 PMCID: PMC8700136 DOI: 10.3390/cells10123526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
Transcriptome analysis constitutes one of the major methods of elucidation of the genetic basis underlying the pathogenesis of various diseases. The post-transcriptional regulation of gene expression is mainly provided by microRNAs. Their remarkable stability in biological fluids and their high sensitivity to disease alteration indicates their potential role as biomarkers. Given the high mortality and morbidity of cardiovascular diseases, novel predictive biomarkers are sorely needed. Our study focuses for the first time on assessing potential biomarkers of acute coronary syndrome (ACS) based on the microRNA profiles of platelets. The study showed the overexpression of eight platelet microRNAs in ACS (miR-142-3p; miR-107; miR-338-3p, miR-223-3p, miR-21-5p, miR-130b-3p, miR-301a-3p, miR-221-3p) associated with platelet reactivity and functionality. Our results show that the combined model based on miR-142-3p and aspartate transaminase reached 82% sensitivity and 88% specificity in the differentiation of the studied groups. Furthermore, the analyzed miRNAs were shown to cluster into two orthogonal groups, regulated by two different biological factors. Bioinformatic analysis demonstrated that one group of microRNAs may be associated with the physiological processes of platelets, whereas the other group may be linked to platelet-vascular environment interactions. This analysis paves the way towards a better understanding of the role of platelet microRNAs in ACS pathophysiology and better modeling of the risk of ACS.
Collapse
|