1
|
Gao J, Han L, Zhang Y, Zhang X, Fei X, Zhang M. Disulfiram alleviates epithelial barrier disruption in ozone-induced chronic obstructive pulmonary disease mouse models via inhibiting Gasdermin D-mediated pyroptosis. Int Immunopharmacol 2025; 159:114887. [PMID: 40403507 DOI: 10.1016/j.intimp.2025.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Gasdermin D (GSDMD)-mediated pyroptosis drives inflammatory cytokine release in response to environmental triggers. Disulfiram (DSF), an FDA-approved anti-alcoholism drug, has been demonstrated to inhibit GSDMD pore formation. Although airway epithelial barrier dysfunction contributes to chronic obstructive pulmonary disease (COPD) progression, the role of GSDMD-dependent pyroptosis in ozone-induced pathogenesis, and the potential of DSF to inhibit this process, remain unexplored. METHODS We analyzed the expression levels of pyroptosis-related molecules in airway epithelial cells from COPD patients' samples obtained from the Gene Expression Omnibus (GEO) database and evaluated the potential therapeutic effects of DSF in a mouse model of COPD induced by chronic ozone exposure. RESULTS GSDMD was significantly upregulated in the airway epithelial cells of COPD patients. Chronic ozone exposure in mice elevated the cleaved form of GSDMD and reduced the expression of epithelial junctional proteins. DSF treatment effectively inhibited GSDMD-mediated pyroptosis and attenuated epithelial barrier disruption, leading to significant improvements in airway inflammation and lung function in both large and small airways. Furthermore, Gsdmd expression was negatively correlated with the tight junction protein Occludin and pulmonary function indices, including the ratio of FEV25 to FVC and MMEF. CONCLUSION Collectively, these findings revealed the role of GSDMD-mediated pyroptosis in epithelial barrier disruption of COPD and the potential application of DSF in the treatment of COPD.
Collapse
Affiliation(s)
- Jianwei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yingying Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xia Fei
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
2
|
Kocot N, Pękala E, Koczurkiewicz-Adamczyk P, Chłoń-Rzepa G, Łapa A, Wójcik-Pszczoła K. Airway and cardiovascular remodeling in chronic obstructive pulmonary disease (COPD) as a target for transient receptor potential ankyrin 1 (TRPA1) channel modulators. Bioorg Chem 2025; 158:108301. [PMID: 40058223 DOI: 10.1016/j.bioorg.2025.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, which leads to airway remodeling (AR). AR refers to various structural changes occurring in the airway wall, resulting in thickening, and narrowing of the airways. Apart from airways, and lung tissue, pulmonary vasculature also undergoes remodeling. Thus, the pressure in vascular bed is increased, leading to pulmonary hypertension and further right and left ventricle hypertrophy, as well as myocardial fibrosis. Currently, there is lack of effective treatment directly targeting airway and cardiovascular remodeling in the course of COPD. Due to a lot of research showing involvement of transient receptor potential ankyrin 1 (TRPA1) in respiratory disorders, it seems reasonable to consider this ion channel as a molecular target in treatment of remodeling consequences of COPD. The aim of this review is to summarize current knowledge of its role in this case and to identify areas requiring further research. Moreover, we provide few patented structures intended to treat chronic respiratory diseases, which may be worth investigating in the context of airway remodeling.
Collapse
Affiliation(s)
- Natalia Kocot
- Jagiellonian University, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Kraków, Poland; Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Aleksandra Łapa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
3
|
Liu L, Wang Y, Wang X, Zhang G, Sha S, Zhou R, Du Y, Wu C, Chen L. Transient receptor potential vanilloid 4 blockage attenuates pyroptosis in hippocampus of mice following pilocarpine‑induced status epilepticus. Acta Neuropathol Commun 2025; 13:73. [PMID: 40205503 PMCID: PMC11983898 DOI: 10.1186/s40478-025-01990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Pyroptosis contributes to the neuronal damage that occurs during epilepsy. Calcium-activated neutral protease (calpain) dissociates cysteinyl aspartate specific proteinase-1 (caspase-1, cas-1) from the cytoskeleton, and the activated cas-1 is responsible for the production of N-terminus of gasdermin D (N-GSDMD), the final executor of pyroptosis. Blocking transient receptor potential vanilloid 4 (TRPV4) can reduce neuronal injury in temporal lobe epilepsy (TLE) model mice. This study investigated the role of TRPV4 in pyroptosis during TLE. In the hippocampus of pilocarpine-induced status epilepticus (PISE) mice, the ratio of inactive calpain 1 protein level to its total protein level (inactive/total calpain 1) significantly decreased, while the ratio of inactive calpain 2 protein level to its total protein level remained unchanged. The protein levels of NLRP3, cleaved cas-1 (c-cas-1), interleukin (IL)-1β, and N-GSDMD increased, with more GSDMD-immunofluorescence-positive (GSDMD+) cells and fewer surviving pyramidal neurons observed in the hippocampus of PISE mice. Calpain inhibition with MDL-28170 reversed these changes, except for the elevated NLRP3 levels. Inhibitors targeting NLRP3 (MCC950) and cas-1 (Ac-YVAD-cmk) blocked the increase in c-cas-1, IL-1β, and N-GSDMD levels in the hippocampus of PISE mice. TRPV4 inhibition via HC-067047 increased the inactive/total calpain 1 ratio, decreased NLRP3, c-cas-1, IL-1β, and N-GSDMD protein levels, reduced GSDMD+ cells number, and improved pyramidal neuron survival in the hippocampus of PISE mice. Conversely, TRPV4 activation with GSK1016790A decreased the inactive/total calpain 1 ratio, elevated NLRP3, c-cas-1, IL-1β, and N-GSDMD levels, and increased GSDMD+ cells number in the hippocampus. In the hippocampus of GSK1016790A-injected mice, the inactive/total calpain 1 ratio was increased by MDL-28170, and c-cas-1, IL-1β, and N-GSDMD protein levels were markedly attenuated by MDL-28170, MCC950, and Ac-YVAD-cmk, respectively. In conclusion, TRPV4 inhibition mitigates pyroptosis in PISE mice by downregulating the calpain 1-NLRP3/cas-1-GSDMD pathway, ultimately reducing neuronal damage.
Collapse
Affiliation(s)
- Lihan Liu
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Yue Wang
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Xiaolin Wang
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Guowen Zhang
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, P.R. China
| | - Chunfeng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, No.8, Jiangdong South Road, Nanjing, Jiangsu Province, 211166, P. R. China.
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, No. 101, Longmian Ave, Nanjing, Jiangsu Province, 211166, P.R. China.
| |
Collapse
|
4
|
Jia G, Song E, Huang Q, Chen M, Liu G. Mitochondrial fusion protein: a new therapeutic target for lung injury diseases. Front Physiol 2025; 16:1500247. [PMID: 40177356 PMCID: PMC11962016 DOI: 10.3389/fphys.2025.1500247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Mitochondria are essential organelles responsible for cellular energy supply. The maintenance of mitochondrial structure and function relies heavily on quality control systems, including biogenesis, fission, and fusion. Mitochondrial fusion refers to the interconnection of two similar mitochondria, facilitating the exchange of mitochondrial DNA, metabolic substrates, proteins, and other components. This process is crucial for rescuing damaged mitochondria and maintaining their normal function. In mammals, mitochondrial fusion involves two sequential steps: outer membrane fusion, regulated by mitofusin 1 and 2 (MFN1/2), and inner membrane fusion, mediated by optic atrophy 1 (OPA1). Dysfunction in mitochondrial fusion has been implicated in the development of various acute and chronic lung injuries. Regulating mitochondrial fusion, maintaining mitochondrial dynamics, and improving mitochondrial function are effective strategies for mitigating lung tissue and cellular damage. This study reviews the expression and regulatory mechanisms of mitochondrial fusion proteins in lung injuries of different etiologies, explores their relationship with lung injury diseases, and offers a theoretical foundation for developing novel therapeutic approaches targeting mitochondrial fusion proteins in lung injury.
Collapse
Affiliation(s)
- Guiyang Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Erqin Song
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoyue Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
6
|
Liu YB, Hong JR, Jiang N, Jin L, Zhong WJ, Zhang CY, Yang HH, Duan JX, Zhou Y. The Role of Mitochondrial Quality Control in Chronic Obstructive Pulmonary Disease. J Transl Med 2024; 104:100307. [PMID: 38104865 DOI: 10.1016/j.labinv.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Ma Q, Wu J, Li H, Ma X, Yin R, Bai L, Tang H, Liu N. The role of TRPV4 in programmed cell deaths. Mol Biol Rep 2024; 51:248. [PMID: 38300413 DOI: 10.1007/s11033-023-09199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Programmed cell death is a major life activity of both normal development and disease. Necroptosis is early recognized as a caspase-independent form of programmed cell death followed obviously inflammation. Apoptosis is a gradually recognized mode of cell death that is characterized by a special morphological changes and unique caspase-dependent biological process. Ferroptosis, pyroptosis and autophagy are recently identified non-apoptotic regulated cell death that each has its own characteristics. The transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which is received more and more attention in biology studies. It is widely expressed in human tissues and mainly located on the membrane of cells. Several researchers have identified that the influx Ca2+ from TRPV4 acts as a key role in the loss of cells by apoptosis, ferroptosis, necroptosis, pyroptosis and autophagy via mediating endoplasmic reticulum (ER) stress, oxidative stress and inflammation. This effect is bad for the normal function of organs on the one hand, on the other hand, it is benefit for anticancer activities. In this review, we will summarize the current discovery on the role and impact of TRPV4 in these programmed cell death pathological mechanisms to provide a new prospect of gene therapeutic target of related diseases.
Collapse
Affiliation(s)
- Qingjie Ma
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Jilin Wu
- Department of Anesthesiology, Kunming Children's Hospital, Kunming, 650034, China
| | - Huixian Li
- Department of Anesthesiology, The People's Hospital of Wenshan Zhuang and Miao Minority Autonomous Prefecture, Wenshan, 663099, China
| | - Xiaoshu Ma
- The Second Clinical Medical College of Binzhou Medical College, Binzhou, 256699, China
| | - Renwan Yin
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Heng Tang
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Na Liu
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
8
|
Chen L, Yu H, Li Z, Wang Y, Jin S, Yu M, Zhu L, Ding C, Wu X, Wu T, Xun C, Zhou Y, He D, Liu Y. Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement. Int J Oral Sci 2024; 16:3. [PMID: 38221531 PMCID: PMC10788340 DOI: 10.1038/s41368-023-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024] Open
Abstract
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Huajie Yu
- Peking University Hospital of Stomatology Fourth Division, Beijing, China
| | - Zixin Li
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yu Wang
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Shanshan Jin
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Min Yu
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lisha Zhu
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Chengye Ding
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiaolan Wu
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Tianhao Wu
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Chunlei Xun
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Danqing He
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Yan Liu
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
9
|
Liu X, Zhang L, Zhu B, Liu Y, Li L, Hou J, Qian M, Zheng N, Zeng Y, Chen C, Goel A, Wang X. Role of GSDM family members in airway epithelial cells of lung diseases: a systematic and comprehensive transcriptomic analysis. Cell Biol Toxicol 2023; 39:2743-2760. [PMID: 37462807 DOI: 10.1007/s10565-023-09799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 12/03/2023]
Abstract
Gasdermin (GSDM) family, the key executioners of pyroptosis, play crucial roles in anti-pathogen and anti-tumor immunities, although little is known about the expression of GSDM in lung diseases at single-cell resolution, especially in lung epithelial cells. We comprehensively investigated the transcriptomic profiles of GSDM members in various lung tissues from healthy subjects or patients with different lung diseases at single cell level, e.g., chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), lung adenocarcinoma (LUAD), or systemic sclerosis (SSC). The expression of GSDM members varied among pulmonary cell types (immune cells, structural cells, and especially epithelial cells) and even across lung diseases. Regarding disease-associated specificities, we found that GSDMC or GSDMD altered significantly in ciliated epithelia of COPD or LUAD, GSDMD in mucous, club, and basal cells of LUAD and GSDMC in mucous epithelia of para-tumor tissue, as compared with the corresponding epithelia of other diseases. The phenomic specificity of GSDM in lung cancer subtypes was noticed by comparing with 15 non-pulmonary cancers and para-cancer samples. GSDM family gene expression changes were also observed in different lung epithelial cell lines (e.g., HBE, A549, H1299, SPC-1, or H460) in responses to external challenges, including lipopolysaccharide (LPS), lysophosphatidylcholine (lysoPC), cigarette smoking extract (CSE), cholesterol, and AR2 inhibitor at various doses or durations. GSDMA is rarely expressed in those cell lines, while GSDMB and GSDMC are significantly upregulated in human lung epithelia. Our data indicated that the heterogeneity of GSDM member expression exists at different cells, pathologic conditions, challenges, probably dependent upon cell biological phenomes, functions, and behaviors, upon cellular responses to external changes, and the nature and severity of lung disease. Thus, the deep exploration of GSDM phenomes may provide new insights into understanding the single-cell roles in the tissue, regulatory roles of the GSDM family in the pathogenesis, and potential values of biomarker identification and development.
Collapse
Affiliation(s)
- Xuanqi Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China
| | - Linlin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China
| | - Yifei Liu
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiayun Hou
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Mengjia Qian
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Yiming Zeng
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Chengshui Chen
- Quzhou Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China.
| |
Collapse
|
10
|
Yan Z, He Z, Jiang H, Zhang Y, Xu Y, Zhang Y. TRPV4-mediated mitochondrial dysfunction induces pyroptosis and cartilage degradation in osteoarthritis via the Drp1-HK2 axis. Int Immunopharmacol 2023; 123:110651. [PMID: 37506502 DOI: 10.1016/j.intimp.2023.110651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Osteoarthritis (OA) is an age-related chronic degenerative disease with complex pathophysiological mechanisms. Accumulating evidence indicates that nod-like receptor pyrin domain 3 (NLRP3) inflammasome-mediated pyroptosis of chondrocytes plays a crucial role in the OA progression. Transient Receptor Potential Vanilloid 4 (TRPV4), described as a calcium-permeable cation channel, isassociated with proinflammatory factors and pyroptosis. In this study, we studied the potential functions of TRPV4 in chondrocyte pyroptosis and cartilage degradation. We found that lipopolysaccharides(LPS)-induced mitochondrial reactive oxygen species (mtROS) accumulation aggravated chondrocyte pyroptosis and cartilage degeneration. TRPV4 induces dynamin-related protein 1 (Drp1) mitochondrial translocation through the Ca2+-calmodulin-dependent protein kinase II (CaMKII) signaling pathway, which subsequently caused the mitochondrial dysfunction (e.g., mPTP over opening; Δψm depolarization; ATP production decreased; mtROS accumulation), pyroptosis and extracellular matrix (ECM) degradation through hexokinase 2 (HK2) dissociation from mitochondrial membrane. Moreover, TRPV4 inhibition reversed Drp1-involved chondrocyte pyroptosis and cartilage degeneration in the anterior cruciate ligament transection (ACLT) mouse model. Our findings revealed the internal mechanisms underlying TRPV4 regulation in chondrocytes and its intrinsic therapeutic efficacy for OA.
Collapse
Affiliation(s)
- Zijian Yan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zili He
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongyi Jiang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yitie Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yingze Zhang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Orthopedic Surgery of Hebei Province, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei, China; NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
11
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
12
|
Zhong X, Wang Y, Liu D, Liang Y, Liu W, Huang Y, Xie L, Cao W, Xu Y, Chen L. HC067047 Ameliorates Sepsis-associated Encephalopathy by Suppressing Endoplasmic Reticulum Stress and Oxidative Stress-Induced Pyroptosis in the Hippocampi of Mice. Neuroscience 2023; 517:117-127. [PMID: 36805006 DOI: 10.1016/j.neuroscience.2023.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a common neurological complication of sepsis and is characterized by hyperneuroinflammation. NLRP3 inflammasome-mediated pyroptosis can induce an inflammatory cascade response and plays a key role in SAE. TRPV4 is involved in the hyperinflammatory response associated with inflammation; however, whether TRPV4 inhibition might alleviate SAE-related brain damage is still unknown. Therefore, we aimed to investigate the role and mechanism of HC067047, a potent inhibitor of TRPV4, in hyperneuroinflammation and blood-brain barrier (BBB) dysfunction in a lipopolysaccharide (LPS)-induced SAE mouse model. We found that HC067047 administration significantly inhibited the expression of TRPV4 and p-CamkIIα in the hippocampi of SAE mice. Furthermore, HC067047 treatment attenuated LPS-induced endoplasmic reticulum (ER) stress and oxidative stress (OS), thus remarkably preventing NLRP3 inflammasome-mediated pyroptosis, as well as the expression of proinflammatory factors (IL-1β and IL-18). Additionally, we found that HC067047 selectively prevented pyroptosis in hippocampal cells, mainly the neurons, oligodendrocytes and the resident microglia. The disruption of BBB integrity in SAE mice was also rescued by HC067047 intervention. Thus, we can conclude that the TRPV4 inhibitor HC067047 could protect against hippocampal cell pyroptosis, which might be due to the attenuation of the NLRP3 inflammasome-mediated pyroptosis pathway caused by ER stress and OS. Our findings suggest a potential preventive role for HC067047 in SAE.
Collapse
Affiliation(s)
- Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yajuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Dandan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yue Liang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - WenJia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yanmei Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lihua Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Wenyu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China.
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
13
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
14
|
Pei Y, Zhang J, Qu J, Rao Y, Li D, Gai X, Chen Y, Liang Y, Sun Y. Complement component 3 protects human bronchial epithelial cells from cigarette smoke-induced oxidative stress and prevents incessant apoptosis. Front Immunol 2022; 13:1035930. [PMID: 36605203 PMCID: PMC9807617 DOI: 10.3389/fimmu.2022.1035930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The complement component 3 (C3) is a pivotal element of the complement system and plays an important role in innate immunity. A previous study showed that intracellular C3 was upregulated in airway epithelial cells (AECs) from individuals with end-stage chronic obstructive pulmonary disease (COPD). Accumulating evidence has shown that cigarette smoke extract (CSE) induces oxidative stress and apoptosis in AECs. Therefore, we investigated whether C3 modulated cigarette smoke-induced oxidative stress and apoptosis in AECs and participated in the pathogenesis of COPD. We found increased C3 expression, together with increased oxidative stress and apoptosis, in a cigarette smoke-induced mouse model of COPD and in AECs from patients with COPD. Different concentrations of CSEinduced C3 expression in 16HBE cells in vitro. Interestingly, C3 knockdown (KD) exacerbated oxidative stress and apoptosis in 16HBE cells exposed to CSE. Furthermore, C3 exerted its pro-survival effects through JNK inhibition, while exogenous C3 partially rescued CSE-induced cell death and oxidative stress in C3 KD cells. These data indicate that locally produced C3 is an important pro-survival molecule in AECs under cigarette smoke exposure, revealing a potentially novel mechanism in the pathogenesis of COPD.
Collapse
Affiliation(s)
| | - Jing Zhang
- *Correspondence: Jing Zhang, ; Yongchang Sun,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu Y, Di X, Zhao M, Li H, Bai L, Wang K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e750. [PMID: 36444628 PMCID: PMC9695095 DOI: 10.1002/iid3.750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are lung diseases characterized by airflow limitation and chronic inflammation. More and more studies have shown that the occurrence and development of asthma and COPD are related to abnormal immune responses caused by dysregulation of many genetic and environmental factors. The exact pathogenesis of the disease is still unclear. A large number of studies have shown that the NLRP3 inflammasome is involved in the process of chronic airway inflammation in asthma and COPD. Here, we summarize recent advances in the mechanism of NLRP3 inflammasome activation and regulation and its role in the pathogenesis of inflammatory lung diseases such as asthma and COPD. Meanwhile we propose possible therapeutic targets in asthma and COPD.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Xin Di
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Min Zhao
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Haoran Li
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Li Bai
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Ke Wang
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
16
|
Zhang L, Li C, Xiong J, Chang C, Sun Y. Dysregulated myokines and signaling pathways in skeletal muscle dysfunction in a cigarette smoke–induced model of chronic obstructive pulmonary disease. Front Physiol 2022; 13:929926. [PMID: 36091368 PMCID: PMC9454092 DOI: 10.3389/fphys.2022.929926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle dysfunction is an important extrapulmonary comorbidity of chronic obstructive pulmonary disease (COPD). Muscle-derived cytokines (myokines) play important roles in skeletal muscle growth and function, but their contributions to skeletal muscle dysfunction in COPD have not been fully understood. In the current study, by using a well-established mouse model of COPD with skeletal muscle dysfunction, we found that the expressions of Fndc5 (fibronectin type III domain-containing protein 5, the precursor of irisin) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) were decreased, while myostatin (Mstn), phosphorylated extracellular regulated kinase (p-Erk1/2), and p-Smad3 expressions were upregulated in skeletal muscles from cigarette smoke-exposed mice and in cigarette smoke extract (CSE)-stimulated C2C12 myotubes. Treatment with Smad3 or Erk1/2 inhibitors partially restored the expression of Fndc5 in CSE-stimulated C2C12 myotubes. Taken together, CSE exposure, by upregulation of p-Erk1/2, promoted the expression of Mstn, which further inhibited Fndc5 expression by the p-Smad3/PGC-1α pathway, revealing a novel regulating mechanism of myokines in the pathogenesis of skeletal muscle comorbidities of COPD.
Collapse
Affiliation(s)
- Lijiao Zhang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Jing Xiong
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Yongchang Sun,
| |
Collapse
|