1
|
Ezzat I, Zallocchi M. Integrin Alpha8 Beta1 (81): An In-Depth Review of an Overlooked RGD-Binding Receptor. BIOCELL 2025; 49:789-811. [PMID: 40510035 PMCID: PMC12162094 DOI: 10.32604/biocell.2025.062325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Integrins are heterodimeric transmembrane receptors that mediate bidirectional interactions between the intracellular cytoskeletal array and the extracellular matrix. These interactions are critical in tissue development and function by regulating gene expression and sustaining tissue architecture. In humans, the integrin family is composed of 18 alpha (α) and 8 beta (β) subunits, constituting 24 distinct αβ combinations. Based on their structure and ligand-binding properties, only a subset of integrins, 8 out of 24, recognizes the arginine-glycine-aspartate (RGD) tripeptide motif in the native ligand. One of the major RGD binding integrins is integrin alpha 8 beta 1 (α8β1), a central Ras homolog gene family member A (RHOA)-dependent modulator highly expressed in cells with contractile function. This review focuses on the recent advances regarding α8β1 function during organ development, with a particular interest in kidney and inner ear development. We also discuss α8β1's role in injury and disease and its importance for mesenchymal to epithelial transition during cancer development. Finally, we highlight α8β1's importance for hearing function and its future use as a potential diagnostic and therapeutic tool for disease elimination.
Collapse
Affiliation(s)
- Iman Ezzat
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
2
|
Arroyo-Ataz G, Yagüe AC, Breda JC, Mazzilli SA, Jones D. Single-Cell Transcriptomics and Lineage Tracing Unveil Parallels in Lymphatic Muscle and Venous Smooth Muscle Development, Identity, and Function. Arterioscler Thromb Vasc Biol 2025. [PMID: 40371470 DOI: 10.1161/atvbaha.125.322567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Lymphatic muscle cells (LMCs) are indispensable for lymphatic vessel contraction, and their aberrant recruitment or absence is associated with both primary and secondary lymphedema. Despite their critical role in lymphatic vessel function, the cellular and molecular bases that confer the unique contractile properties to LMCs are largely undefined, limiting the development of therapeutic interventions that precisely target LMCs. METHODS We used single-cell RNA sequencing, genetic lineage tracing, whole mount immunostaining, and intravital imaging to investigate the basis for the hybrid cardiomyocyte and blood vascular smooth muscle cell (SMC) characteristics that have been described for LMCs. RESULTS Using single-cell RNA sequencing, the transcriptomes of LMCs and venous SMCs exhibited more similarities than differences, with both cell types exhibiting enrichment in overlapping molecular markers. Notably, LMCs and venous SMCs were both markedly distinct from that of arteriole SMCs. Functionally, both lymphatic vessels and blood vessels in the murine hind limb displayed pulsatile contractility, and their functions were regulated by gabapentin and nifedipine, which target the activity of voltage-gated calcium channels. Although LMCs express genes that overlap with the venous SMC transcriptome, lineage tracing demonstrates that LMCs do not originate from Myh11 (myosin heavy chain 11) lineage-derived SMCs, Nkx2.5 (NK2 homeobox 5) cardiomyocyte progenitors, or Wnt1 (Wnt family member 1) neural crest progenitors. Instead, most LMCs and SMCs in the hind limb and inguinal-axillary region originate from WT1+ (Wilms tumor gene 1) mesodermal progenitors from the lateral plate mesoderm. LMCs derived from WT1+ progenitors were critical for the maintenance of lymphatic vessel contractility. CONCLUSIONS Overall, our findings suggest that venous SMCs and LMCs derive from a related mesodermal progenitor and acquire a similar gene expression program that facilitates their contractile properties.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, MA. (G.A.-A., A.C.Y., D.J.)
| | - Alejandra Carrasco Yagüe
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, MA. (G.A.-A., A.C.Y., D.J.)
| | - Julia C Breda
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, MA. (J.C.B., S.A.M.)
| | - Sarah A Mazzilli
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, MA. (J.C.B., S.A.M.)
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, MA. (G.A.-A., A.C.Y., D.J.)
| |
Collapse
|
3
|
Lei PJ, Ruscic KJ, Roh K, Rajotte JJ, O'Melia MJ, Bouta EM, Marquez M, Pereira ER, Kumar AS, Razavi MS, Zhou H, Menzel L, Huang L, Kumra H, Duquette M, Huang P, Baish JW, Munn LL, Kurpios NA, Ubellacker JM, Padera TP. Aging-induced changes in lymphatic muscle cell transcriptomes are associated with reduced pumping of peripheral collecting lymphatic vessels in mice. Dev Cell 2025; 60:1118-1133.e5. [PMID: 39731913 PMCID: PMC11981864 DOI: 10.1016/j.devcel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/23/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024]
Abstract
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of peripheral collecting lymphatic vessels from mice across the lifespan. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and identified a proinflammatory microenvironment that suppresses the contractile apparatus in LMCs from advanced-aged mice. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Katarina J Ruscic
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Johanna J Rajotte
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| | - Meghan J O'Melia
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Echoe M Bouta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marla Marquez
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ethel R Pereira
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ashwin S Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad S Razavi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hengbo Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lutz Menzel
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Liqing Huang
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark Duquette
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James W Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, PA 17837, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Jing Y, Zhai J, Gao M, Xu X, Zhao ZG, Zhao ZA. Different Transcriptome Signatures of the Lymphatic and the Blood Vessels From Rat Mesentery Reveal Distinct Function Characteristics. Microcirculation 2025; 32:e70003. [PMID: 39945040 DOI: 10.1111/micc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 02/02/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE Lymphatic vessels and blood vessels have some similarities in structure, but they have distinct contraction characteristics and functions. Revealing the detailed transcriptional differences of lymphatic, artery and vein are required for circulation research. METHODS The tissues of the mesenteric lymphatic, artery, and vein were collected from Wistar rats. The transcriptome signatures of these tissues from RNA-seq (RNA sequencing) were analyzed using bioinformatic methods. RESULTS GO (gene ontology) enrichment showed the three tissues have distinct gene expression patterns in extracellular matrix, cell adhesion molecule binding, receptor ligand activity, and contractile fiber. The genes involved in cell contractility were also differently expressed, which were enriched into the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of cytoskeleton in muscle cells, vascular smooth muscle contraction, and renin-angiotensin system. Through PPI (protein-protein interaction) analysis, we identified 43 differently expressed hub genes in the three tissues. Thirty-four transcription factors and cofactors were identified as important for the normal function of the three tissues. Furthermore, we screened out 20 potential marker genes for each tissue. CONCLUSIONS Our study described the transcriptome signatures of mesenteric lymphatic, artery, and vein, shedding light on the distinct contraction mechanisms of these tissues. These results also provided potential therapeutic targets for circulation diseases and potential markers for lymphatic and blood vessel studies.
Collapse
Affiliation(s)
- Yumeng Jing
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiayi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Department of Pathology, Yanqing District Hospital, Beijing and Yanqing Hospital, Peking University Third Hospital, Beijing, China
| | - Min Gao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Xiu Xu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Hebei, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, Hebei, China
| |
Collapse
|
5
|
Arroyo-Ataz G, Yagüe AC, Breda JC, Mazzilli SA, Jones D. Transcriptional, developmental, and functional parallels of lymphatic and venous smooth muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604042. [PMID: 39091770 PMCID: PMC11291064 DOI: 10.1101/2024.07.18.604042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for lymphatic vessel contraction and their aberrant recruitment or absence is associated with both primary and secondary lymphedema. Despite their critical role in lymphatic vessel function, the transcriptomic and developmental basis that confer the unique contractile properties to LMCs are largely undefined. In this study, we employed single-cell RNA sequencing (scRNAseq), lineage tracing and in vivo imaging to investigate the basis for the hybrid cardiomyocyte and blood vascular smooth muscle cell (SMC) characteristics that have been described for LMCs. Using scRNAseq, the transcriptomes of LMC and venous SMCs from the murine hindlimb exhibited more similarities than differences, although both were markedly distinct from that of arteriole SMCs in the same tissue. Functionally, both lymphatic vessels and blood vessels in the murine hindlimb displayed pulsatile contractility. However, despite expressing genes that overlap with the venous SMC transcriptome, through lineage tracing we show that LMCs do not originate from Myh11+ SMC progenitors. Previous studies have shown that LMCs express cardiac-related genes, whereas in our study we found that arteriole SMCs, but not LMCs, expressed cardiac-related genes. Through lineage tracing, we demonstrate that a subpopulation of LMCs and SMCs originate from WT1+ mesodermal progenitors, which are known to give rise to SMCs. LMCs, however, do not derive from Nkx2.5+ cardiomyocyte progenitors. Overall, our findings suggest that venous SMCs and LMCs and may derive from a related mesodermal progenitor and adopt a similar gene expression program that enable their contractile properties.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Alejandra Carrasco Yagüe
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Julia C. Breda
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, 75 E. Newton Street, Boston, Massachusetts 02118, USA
| | - Sarah A. Mazzilli
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, 75 E. Newton Street, Boston, Massachusetts 02118, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| |
Collapse
|
6
|
Harlow RC, Pea GA, Broyhill SE, Patro A, Bromert KH, Stewart RH, Heaps CL, Castorena-Gonzalez JA, Dongaonkar RM, Zawieja SD. Loss of anoctamin 1 reveals a subtle role for BK channels in lymphatic muscle action potentials. J Physiol 2024; 602:3351-3373. [PMID: 38704841 PMCID: PMC11250503 DOI: 10.1113/jp285459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.
Collapse
Affiliation(s)
- Rebecca C Harlow
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Grace A Pea
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E Broyhill
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H Bromert
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Randolph H Stewart
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Cristine L Heaps
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | | | - Ranjeet M Dongaonkar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Stasi E, Sciascia S, Naretto C, Baldovino S, Roccatello D. Lymphatic System and the Kidney: From Lymphangiogenesis to Renal Inflammation and Fibrosis Development. Int J Mol Sci 2024; 25:2853. [PMID: 38474100 DOI: 10.3390/ijms25052853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The lymphatic kidney system plays a crucial role in managing interstitial fluid removal, regulating fluid balance, and tuning immune response. It also assists in the reabsorption of proteins, electrolytes, cytokines, growth factors, and immune cells. Pathological conditions, including tissue damage, excessive interstitial fluid, high blood glucose levels, and inflammation, can initiate lymphangiogenesis-the formation of new lymphatic vessels. This process is associated with various kidney diseases, including polycystic kidney disease, hypertension, ultrafiltration challenges, and complications post-organ transplantation. Although lymphangiogenesis has beneficial effects in removing excess fluid and immune cells, it may also contribute to inflammation and fibrosis within the kidneys. In this review, we aim to discuss the biology of the lymphatic system, from its development and function to its response to disease stimuli, with an emphasis on renal pathophysiology. Furthermore, we explore how innovative treatments targeting the lymphatic system could potentially enhance the management of kidney diseases.
Collapse
Affiliation(s)
- Elodie Stasi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Carla Naretto
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Simone Baldovino
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| | - Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, ASL Città di Torino and Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy
| |
Collapse
|
8
|
Zawieja SD, Pea GA, Broyhill SE, Patro A, Bromert KH, Li M, Norton CE, Castorena-Gonzalez JA, Hancock EJ, Bertram CD, Davis MJ. IP3R1 underlies diastolic ANO1 activation and pressure-dependent chronotropy in lymphatic collecting vessels. J Gen Physiol 2023; 155:e202313358. [PMID: 37851027 PMCID: PMC10585095 DOI: 10.1085/jgp.202313358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Pressure-dependent chronotropy of murine lymphatic collecting vessels relies on the activation of the Ca2+-activated chloride channel encoded by Anoctamin 1 (Ano1) in lymphatic muscle cells. Genetic ablation or pharmacological inhibition of ANO1 results in a significant reduction in basal contraction frequency and essentially complete loss of pressure-dependent frequency modulation by decreasing the rate of the diastolic depolarization phase of the ionic pacemaker in lymphatic muscle cells (LMCs). Oscillating Ca2+ release from sarcoendoplasmic reticulum Ca2+ channels has been hypothesized to drive ANO1 activity during diastole, but the source of Ca2+ for ANO1 activation in smooth muscle remains unclear. Here, we investigated the role of the inositol triphosphate receptor 1 (Itpr1; Ip3r1) in this process using pressure myography, Ca2+ imaging, and membrane potential recordings in LMCs of ex vivo pressurized inguinal-axillary lymphatic vessels from control or Myh11CreERT2;Ip3r1fl/fl (Ip3r1ismKO) mice. Ip3r1ismKO vessels had significant reductions in contraction frequency and tone but an increased contraction amplitude. Membrane potential recordings from LMCs of Ip3r1ismKO vessels revealed a depressed diastolic depolarization rate and an elongation of the plateau phase of the action potential (AP). Ca2+ imaging of LMCs using the genetically encoded Ca2+ sensor GCaMP6f demonstrated an elongation of the Ca2+ flash associated with an AP-driven contraction. Critically, diastolic subcellular Ca2+ transients were absent in LMCs of Ip3r1ismKO mice, demonstrating the necessity of IP3R1 activity in controlling ANO1-mediated diastolic depolarization. These findings indicate a critical role for IP3R1 in lymphatic vessel pressure-dependent chronotropy and contractile regulation.
Collapse
Affiliation(s)
- Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Grace A. Pea
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E. Broyhill
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H. Bromert
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Edward J. Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | | | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Lyu QR, Fu K. Tissue-specific Cre driver mice to study vascular diseases. Vascul Pharmacol 2023; 153:107241. [PMID: 37923099 DOI: 10.1016/j.vph.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Vascular diseases, including atherosclerosis and abdominal aneurysms, are the primary cause of mortality and morbidity among the elderly worldwide. The life quality of patients is significantly compromised due to inadequate therapeutic approaches and limited drug targets. To expand our comprehension of vascular diseases, gene knockout (KO) mice, especially conditional knockout (cKO) mice, are widely used for investigating gene function and mechanisms of action. The Cre-loxP system is the most common method for generating cKO mice. Numerous Cre driver mice have been established to study the main cell types that compose blood vessels, including endothelial cells, smooth muscle cells, and fibroblasts. Here, we first discuss the characteristics of each layer of the arterial wall. Next, we provide an overview of the representative Cre driver mice utilized for each of the major cell types in the vessel wall and their most recent applications in vascular biology. We then go over Cre toxicity and discuss the practical methods for minimizing Cre interference in experimental outcomes. Finally, we look into the future of tissue-specific Cre drivers by introducing the revolutionary single-cell RNA sequencing and dual recombinase system.
Collapse
Affiliation(s)
- Qing Rex Lyu
- Medical Research Center, Chongqing General Hospital, Chongqing 401147, China; Chongqing Academy of Medical Sciences, Chongqing 401147, China.
| | - Kailong Fu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
10
|
Mehrara BJ, Radtke AJ, Randolph GJ, Wachter BT, Greenwel P, Rovira II, Galis ZS, Muratoglu SC. The emerging importance of lymphatics in health and disease: an NIH workshop report. J Clin Invest 2023; 133:e171582. [PMID: 37655664 PMCID: PMC10471172 DOI: 10.1172/jci171582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment. Recent advances harnessing single-cell technologies, clinical imaging, discovery of biomarkers, and computational tools have led to the development of strategies to study the LS. This Review summarizes the outcomes of the NIH workshop entitled "Yet to be Charted: Lymphatic System in Health and Disease," held in September 2022, with emphasis on major areas for advancement. International experts showcased the current state of knowledge regarding the LS and highlighted remaining challenges and opportunities to advance the field.
Collapse
Affiliation(s)
- Babak J. Mehrara
- Department of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna T. Wachter
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Patricia Greenwel
- Division of Digestive Diseases & Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, and
| | - Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Selen C. Muratoglu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Davis MJ, Castorena-Gonzalez JA, Kim HJ, Li M, Remedi M, Nichols CG. Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with K ATP channel gain-of-function. FUNCTION 2023; 4:zqad017. [PMID: 37214333 PMCID: PMC10194823 DOI: 10.1093/function/zqad017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Cantú Syndrome (CS) is an autosomal dominant disorder caused by gain-of-function (GoF) mutations in the Kir6.1 and SUR2 subunits of KATP channels. KATP overactivity results in a chronic reduction in arterial tone and hypotension, leading to other systemic cardiovascular complications. However, the underlying mechanism of lymphedema, developed by >50% of CS patients, is unknown. We investigated whether lymphatic contractile dysfunction occurs in mice expressing CS mutations in Kir6.1 (Kir6.1[V65M]) or SUR2 (SUR2[A478V], SUR2[R1154Q]). Pressure myograph tests of contractile function of popliteal lymphatic vessels over the physiological pressure range revealed significantly impaired contractile strength and reduced frequency of spontaneous contractions at all pressures in heterozygous Kir6.1[V65M] vessels, compared to control littermates. Contractile dysfunction of intact popliteal lymphatics in vivo was confirmed using near-infrared fluorescence microscopy. Homozygous SUR2[A478V] vessels exhibited profound contractile dysfunction ex vivo, but heterozygous SUR2[A478V] vessels showed essentially normal contractile function. However, further investigation of vessels from all three GoF mouse strains revealed significant disruption in contraction wave entrainment, decreased conduction speed and distance, multiple pacemaker sites, and reversing wave direction. Tests of 2-valve lymphatic vessels forced to pump against an adverse pressure gradient revealed that all CS-associated genotypes were essentially incapable of pumping under an imposed outflow load. Our results show that varying degrees of lymphatic contractile dysfunction occur in proportion to the degree of molecular GoF in Kir6.1 or SUR2. This is the first example of lymphatic contractile dysfunction caused by a smooth muscle ion channel mutation and potentially explains the susceptibility of CS patients to lymphedema.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | | | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Maria Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|