1
|
Bernhardt I, Kaestner L. Historical View and Some Unsolved Problems in Red Blood Cell Membrane Research. FRONT BIOSCI-LANDMRK 2025; 30:25331. [PMID: 40152370 DOI: 10.31083/fbl25331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 03/29/2025]
Abstract
The article provides a comprehensive overview of biological membrane lipid composition and distribution and ion transport processes, focusing particularly on red blood cells (RBCs). It begins with a historical perspective, detailing the introduction of the terms 'cell' and 'membrane' in biological sciences, and the development of the fluid-mosaic model of membrane structure. Early findings on ion transport highlighted the non-equilibrium distribution of Na+ and K+ across cell membranes, leading to the discovery of the Na+/K+ pump. The article delves into the lipid composition of RBC membranes, emphasising the roles of various lipids, including cardiolipin, and the concept of lipid rafts. These rafts, enriched with sphingolipids and cholesterol, play crucial roles in cellular processes. Variations in RBC shapes are discussed, with biophysical theories explaining transformations and pathological conditions affecting RBC morphology, such as sickle cell anaemia. Na+ and K+ transporters in RBC membranes are explored, highlighting the almost ubiquitous presence of the Na+/K+ pump (absent in Carnivora RBCs) and various ion channels, including the Gárdos and Piezo1 channels. The article notes species-specific differences in ion transport mechanisms and the activation or suppression of transporters during RBC maturation. The mechanism of residual ion transport is examined, questioning whether a Na+(K+)/H+ antiporter exists in the human RBC membrane. Residual ion fluxes are mediated by this antiporter, influenced by the fatty acid composition of the RBC membrane. The outlook section underscores the need for further research to fully understand the complexities of RBC membrane structure and function, suggesting that many questions remain unanswered despite significant advances.
Collapse
Affiliation(s)
- Ingolf Bernhardt
- Department of Biology, Saarland University, 66123 Saarbrücken, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Piegols L, Dwyer T, Glotzer SC, Eniola-Adefeso O. Shape-Dependent Structural Order of Red Blood Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1876-1888. [PMID: 39807598 PMCID: PMC11780740 DOI: 10.1021/acs.langmuir.4c04335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells. The onset of local hexatic bond order of spherical RBCs in mixed disc-sphere systems coincides with the appearance of clustering of spherical cells as the number fraction of spherocytes increases. Additionally, the radial distribution function in mixed-shape systems begins to change with the onset of local hexatic order and clustering of spherical RBCs. By analyzing the radial distribution functions of RBCs, local hexatic bond order, and clustering, we show that the structure of settled RBCs is dictated by shape. These shape-dictated structures may provide a basis for future tools for detecting RBC shape-altering diseases and disorders.
Collapse
Affiliation(s)
- Logan
D. Piegols
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tobias Dwyer
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sharon C. Glotzer
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Omolola Eniola-Adefeso
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Lin J, Meng H, Shafeng N, Li J, Sun H, Yang X, Chen Z, Hou S. Exploring the pathophysiological mechanisms and wet biomarkers of VPS13A disease. Front Neurol 2024; 15:1482936. [PMID: 39659962 PMCID: PMC11628379 DOI: 10.3389/fneur.2024.1482936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
VPS13A disease (also known as Chorea-Acanthocytosis, ChAc) is a representative subtype of the neuroacanthocytosis (NA) syndromes, characterized by neurodegeneration in the central nervous system and acanthocytosis in peripheral blood. It is a rare autosomal recessive genetic disorder caused by loss-of-function variants in the VPS13A gene, which is currently the only known pathogenic gene for ChAc. VPS13A protein is a member of novel bridge-like lipid transfer proteins family located at membrane contact sites, forming direct channels for lipid transport. The specific mechanism underlying how the loss of VPS13A function leads to the hematological and neurological phenotypes of the disease remains unclear. Here we present a review of recent studies on VPS13A protein and ChAc, focusing on the potential role of the VPS13A protein in pathophysiology of ChAc and also review the known and potential wet biomarkers of ChAc to enhance our comprehension of this rare disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Okamoto S, Mori Y, Nakamura S, Kanai Y, Ukita Y, Nagai M, Shibata T. Proposal of a Rapid Detection System Using Image Analysis for ELISA with an Autonomous Centrifugal Microfluidic System. MICROMACHINES 2024; 15:1387. [PMID: 39597199 PMCID: PMC11596746 DOI: 10.3390/mi15111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
In this study, with the aim of adapting an enzyme-linked immunosorbent assay (ELISA) system for point-of-care testing (POCT), we propose an image analysis method for ELISAs using a centrifugal microfluidic device that automatically executes the assay. The developed image analysis method can be used to quantify the color development reaction on a TMB (3,3',5,5'-tetramethylbenzidine) substrate. In a conventional ELISA, reaction stopping reagents are required at the end of the TMB reaction. In contrast, the developed image analysis method can analyze color in the color-developing reaction without a reaction stopping reagent. This contributes to a reduction in total assay time. The microfluidic devices used in this study could execute reagent control for ELISAs by steady rotation. In the demonstration of the assay and image analysis, a calibration curve for mouse IgG detection was successfully prepared, and it was confirmed that the image analysis method had the same performance as the conventional analysis method. Moreover, the changes in the amount of color over time confirmed that a calibration curve equal to the endpoint analysis was obtained within 2 min from the start of the TMB reaction. As the assay time before the TMB reaction was approximately 7.5 min, the developed ELISA system could detect TMB in just 10 min. In conventional methods using a plate reader, the assay required a time of 90 min for manual handling using microwell plates, and in the case of using automatic microfluidic devices, 30 min were required. The time of 10 min realized by this proposed method is equal to the time required for detection in an immunochromatographic assay with a lateral flow assay; therefore, it is expected that ELISAs can be performed sufficiently to adapt to POCT.
Collapse
Affiliation(s)
- Shunya Okamoto
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Yuto Mori
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Shota Nakamura
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Yusuke Kanai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Yoshiaki Ukita
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu 400-0016, Japan
| | - Moeto Nagai
- Institute for Research on Next-Generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| |
Collapse
|
5
|
Hernández CA, Peikert K, Qiao M, Darras A, de Wilde JRA, Bos J, Leibowitz M, Galea I, Wagner C, Rab MAE, Walker RH, Hermann A, van Beers EJ, van Wijk R, Kaestner L. Osmotic gradient ektacytometry - a novel diagnostic approach for neuroacanthocytosis syndromes. Front Neurosci 2024; 18:1406969. [PMID: 39091345 PMCID: PMC11292800 DOI: 10.3389/fnins.2024.1406969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction The unique red blood cell (RBC) properties that characterize the rare neuroacanthocytosis syndromes (NAS) have prompted the exploration of osmotic gradient ektacytometry (Osmoscan) as a diagnostic tool for these disorders. In this exploratory study, we assessed if Osmoscans can discriminate NAS from other neurodegenerative diseases. Methods A comprehensive assessment was conducted using Osmoscan on a diverse group of patients, including healthy controls (n = 9), neuroacanthocytosis syndrome patients (n = 6, 2 VPS13A and 4 XK disease), Parkinson's disease patients (n = 6), Huntington's disease patients (n = 5), and amyotrophic lateral sclerosis patients (n = 4). Concurrently, we collected and analyzed RBC indices and patients' characteristics. Results Statistically significant changes were observed in NAS patients compared to healthy controls and other conditions, specifically in osmolality at minimal elongation index (Omin), maximal elongation index (EImax), the osmolality at half maximal elongation index in the hyperosmotic part of the curve (Ohyper), and the width of the curve close to the osmolality at maximal elongation index (Omax-width). Discussion This study represents an initial exploration of RBC properties from NAS patients using osmotic gradient ektacytometry. While specific parameters exhibited differences, only Ohyper and Omax-width yielded 100% specificity for other neurodegenerative diseases. Moreover, unique correlations between Osmoscan parameters and RBC indices in NAS versus controls were identified, such as osmolality at maximal elongation index (Omax) vs. mean cellular hemoglobin content (MCH) and minimal elongation index (EImin) vs. red blood cell distribution width (RDW). Given the limited sample size, further studies are essential to establish diagnostic guidelines based on these findings.
Collapse
Affiliation(s)
- Carolina A. Hernández
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
| | - Min Qiao
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- Heoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Alexis Darras
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Jonathan R. A. de Wilde
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
| | - Jennifer Bos
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
| | - Maya Leibowitz
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christian Wagner
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Minke A. E. Rab
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, United States
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Eduard J. van Beers
- Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Richard van Wijk
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, trecht University, Utrecht, Netherlands
| | - Lars Kaestner
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
- Heoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
6
|
Recktenwald SM, Rashidi Y, Graham I, Arratia PE, Del Giudice F, Wagner C. Morphology, repulsion, and ordering of red blood cells in viscoelastic flows under confinement. SOFT MATTER 2024; 20:4950-4963. [PMID: 38873747 DOI: 10.1039/d4sm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Red blood cells (RBC), the primary carriers of oxygen in the body, play a crucial role across several biomedical applications, while also being an essential model system of a deformable object in the microfluidics and soft matter fields. However, RBC behavior in viscoelastic liquids, which holds promise in enhancing microfluidic diagnostic applications, remains poorly studied. We here show that using viscoelastic polymer solutions as a suspending carrier causes changes in the clustering and shape of flowing RBC in microfluidic flows when compared to a standard Newtonian suspending liquid. Additionally, when the local RBC concentration increases to a point where hydrodynamic interactions take place, we observe the formation of equally-spaced RBC structures, resembling the viscoelasticity-driven ordered particles observed previously in the literature, thus providing the first experimental evidence of viscoelasticity-driven cell ordering. The observed RBC ordering, unaffected by polymer molecular architecture, persists as long as the surrounding medium exhibits shear-thinning, viscoelastic properties. Complementary numerical simulations reveal that viscoelasticity-induced repulsion between RBCs leads to equidistant structures, with shear-thinning modulating this effect. Our results open the way for the development of new biomedical technologies based on the use of viscoelastic liquids while also clarifying fundamental aspects related to multibody hydrodynamic interactions in viscoelastic microfluidic flows.
Collapse
Affiliation(s)
- Steffen M Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Yazdan Rashidi
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | - Ian Graham
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Del Giudice
- Complex Fluid Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
7
|
Isiksacan Z, D’Alessandro A, McKenna DH, Tessier SN, Kucukal E, Gokaltun AA, William N, Sandlin RD, Bischof J, Mohandas N, Busch MP, Elbuken C, Gurkan UA, Toner M, Acker JP, Yarmush ML, Usta OB. Reply to Kaestner et al.: Pioneering quantitative platforms for stored red blood cell assessment open the door for precision transfusion medicine. Proc Natl Acad Sci U S A 2024; 121:e2320521121. [PMID: 38437566 PMCID: PMC10945785 DOI: 10.1073/pnas.2320521121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Affiliation(s)
- Ziya Isiksacan
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO80045
| | - David H. McKenna
- Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Shannon N. Tessier
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | | | - A. Aslihan Gokaltun
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Chemical Engineering, Hacettepe University, Ankara06532, Turkey
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
| | - Rebecca D. Sandlin
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | | | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA94105
- Department of Laboratory Medicine, University of California, San Francisco, CA94105
| | - Caglar Elbuken
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara06800, Turkey
- Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, Oulu90014, Finland
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd., Oulu90570, Finland
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| | - Mehmet Toner
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Jason P. Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, ABT6G 2R8, Canada
| | - Martin L. Yarmush
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ08854
| | - O. Berk Usta
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| |
Collapse
|
8
|
Kaestner L, Schlenke P, von Lindern M, El Nemer W. Translatable tool to quantitatively assess the quality of red blood cell units and tailored cultured red blood cells for transfusion. Proc Natl Acad Sci U S A 2024; 121:e2318762121. [PMID: 38437568 PMCID: PMC10945767 DOI: 10.1073/pnas.2318762121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Affiliation(s)
- Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Campus Saarland University Hospital, Homburg/Saar66424, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken66123, Germany
| | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz8036, Austria
| | - Marieke von Lindern
- Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105AZ, The Netherlands
- Department Hematopoiesis, Sanquin Blood Supply Foundation, Amsterdam1066CX, The Netherlands
| | - Wassim El Nemer
- Etablissement Français du Sang Prevence Alpes Côte d’Azur-Corse, Aix Marseille University, Centre national de la recherche scientifique (CNRS), Anthropologie bio-culturelle, Droit, Ethique et Santé (UMR 7268), Globule Rouge laboratory of excellence (GR-Ex), Marseille13005, France
| |
Collapse
|
9
|
Nouaman M, Darras A, Wagner C, Recktenwald SM. Confinement effect on the microcapillary flow and shape of red blood cells. BIOMICROFLUIDICS 2024; 18:024104. [PMID: 38577010 PMCID: PMC10994673 DOI: 10.1063/5.0197208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
The ability to change shape is essential for the proper functioning of red blood cells (RBCs) within the microvasculature. The shape of RBCs significantly influences blood flow and has been employed in microfluidic lab-on-a-chip devices, serving as a diagnostic biomarker for specific pathologies and enabling the assessment of RBC deformability. While external flow conditions, such as the vessel size and the flow velocity, are known to impact microscale RBC flow, our comprehensive understanding of how their shape-adapting ability is influenced by channel confinement in biomedical applications remains incomplete. This study explores the impact of various rectangular and square channels, each with different confinement and aspect ratios, on the in vitro RBC flow behavior and characteristic shapes. We demonstrate that rectangular microchannels, with a height similar to the RBC diameter in combination with a confinement ratio exceeding 0.9, are required to generate distinctive well-defined croissant and slipper-like RBC shapes. These shapes are characterized by their equilibrium positions in the channel cross section, and we observe a strong elongation of both stable shapes in response to the shear rate across the different channels. Less confined channel configurations lead to the emergence of unstable other shape types that display rich shape dynamics. Our work establishes an experimental framework to understand the influence of channel size on the single-cell flow behavior of RBCs, providing valuable insights for the design of biomicrofluidic single-cell analysis applications.
Collapse
Affiliation(s)
- Mohammed Nouaman
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Alexis Darras
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | | | | |
Collapse
|
10
|
Bogdanova A, Kaestner L. Advances in Red Blood Cells Research. Cells 2024; 13:359. [PMID: 38391972 PMCID: PMC10887574 DOI: 10.3390/cells13040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
This Editorial 'Advances in Red Blood Cell Research' is the preface for the special issue with the same title which files 14 contributions listed in Table 1 [...].
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Group, Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Campus of Saarland University Hospital, Saarland University, 66424 Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Murciano N, Kaestner L. The Putative Role of the Transient Receptor Potential Ion Channel of Vanilloid Type 2 in Red Blood Cell Storage Lesions. Transfus Med Hemother 2024; 51:52-54. [PMID: 38314245 PMCID: PMC10836854 DOI: 10.1159/000531282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 02/06/2024] Open
Affiliation(s)
- Nicoletta Murciano
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
12
|
Baskaran RKR, Link A, Porr B, Franke T. Classification of chemically modified red blood cells in microflow using machine learning video analysis. SOFT MATTER 2024; 20:952-958. [PMID: 38088860 DOI: 10.1039/d3sm01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We classify native and chemically modified red blood cells with an AI based video classifier. Using TensorFlow video analysis enables us to capture not only the morphology of the cell but also the trajectories of motion of individual red blood cells and their dynamics. We chemically modify cells in three different ways to model different pathological conditions and obtain classification accuracies for all three classification tasks of more than 90% between native and modified cells. Unlike standard cytometers that are based on immunophenotyping our microfluidic cytometer allows to rapidly categorize cells without any fluorescence labels simply by analysing the shape and flow of red blood cells.
Collapse
Affiliation(s)
- R K Rajaram Baskaran
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK.
| | - A Link
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK.
| | - B Porr
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK.
| | - T Franke
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK.
| |
Collapse
|
13
|
van Dijk MJ, van Oirschot BA, Harrison AN, Recktenwald SM, Qiao M, Stommen A, Cloos AS, Vanderroost J, Terrasi R, Dey K, Bos J, Rab MAE, Bogdanova A, Minetti G, Muccioli GG, Tyteca D, Egée S, Kaestner L, Molday RS, van Beers EJ, van Wijk R. A novel missense variant in ATP11C is associated with reduced red blood cell phosphatidylserine flippase activity and mild hereditary hemolytic anemia. Am J Hematol 2023; 98:1877-1887. [PMID: 37671681 DOI: 10.1002/ajh.27088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.
Collapse
Affiliation(s)
- Myrthe J van Dijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Benign Hematology, Thrombosis and Hemostasis-Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Brigitte A van Oirschot
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexander N Harrison
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | - Min Qiao
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Amaury Stommen
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anne-Sophie Cloos
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Kuntal Dey
- Red Blood Cell Group, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Jennifer Bos
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Minke A E Rab
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Hematology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anna Bogdanova
- Red Blood Cell Group, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Giampaolo Minetti
- Department of Biology and Biotechnology "L. Spallanzani", Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Platform, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Stéphane Egée
- UMR 8227 CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Lars Kaestner
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eduard J van Beers
- Center for Benign Hematology, Thrombosis and Hemostasis-Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Bourguignon C, Ansel C, Gineys JP, Schuldiner S, Isèbe D, Geitner M, Taraconat P, Gris JC. New erythrocyte parameters derived from the Coulter principle relate with red blood cell properties-A pilot study in diabetes mellitus. PLoS One 2023; 18:e0293356. [PMID: 37883361 PMCID: PMC10602249 DOI: 10.1371/journal.pone.0293356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
In routine hematological instruments, blood cells are counted and sized by monitoring the impedance signals induced during their passage through a Coulter orifice. However, only signals associated with centered paths in the aperture are considered for analysis, while the rejected measurements, caused by near-wall trajectories, can provide additional information on red blood cells (RBC), as recent publications suggest. To assess usefulness of two new parameters in describing alterations in RBC properties, we performed a pilot study to compare blood samples from patients with diabetes mellitus (DM), frequent pathological condition associated with impairment in RBC deformability, versus controls. A total of 345 blood samples were analyzed: 225 in the DM group and 120 in the control group. A diagram of [Formula: see text] and [Formula: see text], the two new parameters derived from the analysis of impedancemetry pulses, was used to compare distribution of RBC subpopulations between groups. To discriminate RBC from DM and control individuals, based on our multiparametric analysis, we built a score from variables derived from [Formula: see text] matrix which showed good performances: area under the receiving operating characteristic curve 0.948 (0.920-0.970), p<0.0001; best discriminating value: negative predictive value 94.7%, positive predictive value was 78.4%. These results seem promising to approach RBC alterations in routine laboratory practice. The related potential clinically relevant outcomes remain to be investigated.
Collapse
Affiliation(s)
- Chloé Bourguignon
- Department of Haematology, Nîmes University Hospital and University of Montpellier, Nîmes, France
- UMR UA11 INSERM - Montpellier University IDESP, Montpellier, France
| | - Clémentine Ansel
- Department of Haematology, Nîmes University Hospital and University of Montpellier, Nîmes, France
- HORIBA Medical, Parc Euromédecine, Rue du Caducée, Montpellier, France
| | | | - Sophie Schuldiner
- Department of Metabolic Diseases and Endocrinology, Nîmes University Hospital, Nîmes, France
| | - Damien Isèbe
- HORIBA Medical, Parc Euromédecine, Rue du Caducée, Montpellier, France
| | - Michael Geitner
- HORIBA Medical, Parc Euromédecine, Rue du Caducée, Montpellier, France
| | - Pierre Taraconat
- HORIBA Medical, Parc Euromédecine, Rue du Caducée, Montpellier, France
| | - Jean-Christophe Gris
- Department of Haematology, Nîmes University Hospital and University of Montpellier, Nîmes, France
- UMR UA11 INSERM - Montpellier University IDESP, Montpellier, France
- Department of Gynaecology and Obstetrics, First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
15
|
Link A, Pardo IL, Porr B, Franke T. AI based image analysis of red blood cells in oscillating microchannels. RSC Adv 2023; 13:28576-28582. [PMID: 37780736 PMCID: PMC10537593 DOI: 10.1039/d3ra04644c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
The flow dynamics of red blood cells in vivo in blood capillaries and in vitro in microfluidic channels is complex. Cells can obtain different shapes such as discoid, parachute, slipper-like shapes and various intermediate states depending on flow conditions and their viscoelastic properties. We use artificial intelligence based analysis of red blood cells (RBCs) in an oscillating microchannel to distinguish healthy red blood cells from red blood cells treated with formaldehyde to chemically modify their viscoelastic behavior. We used TensorFlow to train and validate a deep learning model and achieved a testing accuracy of over 97%. This method is a first step to a non-invasive, label-free characterization of diseased red blood cells and will be useful for diagnostic purposes in haematology labs. This method provides quantitative data on the number of affected cells based on single cell classification.
Collapse
Affiliation(s)
- Andreas Link
- Division of Biomedical Engineering, School of Engineering, University of Glasgow Oakfield Avenue G12 8LT Glasgow UK
| | - Irene Luna Pardo
- Division of Biomedical Engineering, School of Engineering, University of Glasgow Oakfield Avenue G12 8LT Glasgow UK
| | - Bernd Porr
- Division of Biomedical Engineering, School of Engineering, University of Glasgow Oakfield Avenue G12 8LT Glasgow UK
| | - Thomas Franke
- Division of Biomedical Engineering, School of Engineering, University of Glasgow Oakfield Avenue G12 8LT Glasgow UK
| |
Collapse
|
16
|
Lopes MG, Recktenwald SM, Simionato G, Eichler H, Wagner C, Quint S, Kaestner L. Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control. Transfus Med Hemother 2023; 50:163-173. [PMID: 37408647 PMCID: PMC10319094 DOI: 10.1159/000530458] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 07/07/2023] Open
Abstract
Background "Artificial intelligence" and "big data" increasingly take the step from just being interesting concepts to being relevant or even part of our lives. This general statement holds also true for transfusion medicine. Besides all advancements in transfusion medicine, there is not yet an established red blood cell quality measure, which is generally applied. Summary We highlight the usefulness of big data in transfusion medicine. Furthermore, we emphasize in the example of quality control of red blood cell units the application of artificial intelligence. Key Messages A variety of concepts making use of big data and artificial intelligence are readily available but still await to be implemented into any clinical routine. For the quality control of red blood cell units, clinical validation is still required.
Collapse
Affiliation(s)
- Marcelle G.M. Lopes
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Cysmic GmbH, Saarbrücken, Germany
| | | | - Greta Simionato
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University, Saarbrücken, Germany
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | | | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Saarbrücken, Germany
| |
Collapse
|
17
|
Nouaman M, Darras A, John T, Simionato G, Rab MAE, van Wijk R, Laschke MW, Kaestner L, Wagner C, Recktenwald SM. Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow. Cells 2023; 12:1529. [PMID: 37296651 PMCID: PMC10252257 DOI: 10.3390/cells12111529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Blood flow in the microcirculatory system is crucially affected by intrinsic red blood cell (RBC) properties, such as their deformability. In the smallest vessels of this network, RBCs adapt their shapes to the flow conditions. Although it is known that the age of RBCs modifies their physical properties, such as increased cytosol viscosity and altered viscoelastic membrane properties, the evolution of their shape-adapting abilities during senescence remains unclear. In this study, we investigated the effect of RBC properties on the microcapillary in vitro flow behavior and their characteristic shapes in microfluidic channels. For this, we fractioned RBCs from healthy donors according to their age. Moreover, the membranes of fresh RBCs were chemically rigidified using diamide to study the effect of isolated graded-membrane rigidity. Our results show that a fraction of stable, asymmetric, off-centered slipper-like cells at high velocities decreases with increasing age or diamide concentration. However, while old cells form an enhanced number of stable symmetric croissants at the channel centerline, this shape class is suppressed for purely rigidified cells with diamide. Our study provides further knowledge about the distinct effects of age-related changes of intrinsic cell properties on the single-cell flow behavior of RBCs in confined flows due to inter-cellular age-related cell heterogeneity.
Collapse
Affiliation(s)
- Mohammed Nouaman
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Alexis Darras
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Thomas John
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Greta Simionato
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Minke A. E. Rab
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Lars Kaestner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Steffen M. Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Guest PC, Hawkins SFC, Rahmoune H. Rapid Detection of SARS-CoV-2 Variants of Concern by Genomic Surveillance Techniques. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:491-509. [PMID: 37378785 DOI: 10.1007/978-3-031-28012-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
This chapter describes the application of genomic, transcriptomic, proteomic, and metabolomic methods in the study of SARS-CoV-2 variants of concern. We also describe the important role of machine learning tools to identify the most significant biomarker signatures and discuss the latest point-of-care devices that can be used to translate these findings to the physician's office or to bedside care. The main emphasis is placed on increasing our diagnostic capacity and predictability of disease outcomes to guide the most appropriate treatment strategies.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Recktenwald SM, Simionato G, Lopes MGM, Gamboni F, Dzieciatkowska M, Meybohm P, Zacharowski K, von Knethen A, Wagner C, Kaestner L, D'Alessandro A, Quint S. Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19. eLife 2022; 11:e81316. [PMID: 36537079 PMCID: PMC9767455 DOI: 10.7554/elife.81316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and can affect multiple organs, among which is the circulatory system. Inflammation and mortality risk markers were previously detected in COVID-19 plasma and red blood cells (RBCs) metabolic and proteomic profiles. Additionally, biophysical properties, such as deformability, were found to be changed during the infection. Based on such data, we aim to better characterize RBC functions in COVID-19. We evaluate the flow properties of RBCs in severe COVID-19 patients admitted to the intensive care unit by using microfluidic techniques and automated methods, including artificial neural networks, for an unbiased RBC analysis. We find strong flow and RBC shape impairment in COVID-19 samples and demonstrate that such changes are reversible upon suspension of COVID-19 RBCs in healthy plasma. Vice versa, healthy RBCs resemble COVID-19 RBCs when suspended in COVID-19 plasma. Proteomics and metabolomics analyses allow us to detect the effect of plasma exchanges on both plasma and RBCs and demonstrate a new role of RBCs in maintaining plasma equilibria at the expense of their flow properties. Our findings provide a framework for further investigations of clinical relevance for therapies against COVID-19 and possibly other infectious diseases.
Collapse
Affiliation(s)
- Steffen M Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
| | - Greta Simionato
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Institute for Clinical and Experimental Surgery, Campus University Hospital, Saarland UniversityHomburgGermany
| | - Marcelle GM Lopes
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Cysmic GmbHSaarbrückenGermany
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado DenverAuroraUnited States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado DenverAuroraUnited States
| | - Patrick Meybohm
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital WuerzburgWuerzburgGermany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital FrankfurtFrankfurtGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFrankfurtGermany
| | - Andreas von Knethen
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital FrankfurtFrankfurtGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPFrankfurtGermany
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Department of Physics and Materials Science, University of LuxembourgLuxembourg CityLuxembourg
| | - Lars Kaestner
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland UniversityHomburgGermany
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado DenverAuroraUnited States
| | - Stephan Quint
- Dynamics of Fluids, Department of Experimental Physics, Saarland UniversitySaarbrückenGermany
- Cysmic GmbHSaarbrückenGermany
| |
Collapse
|
20
|
Berndt M, Buttenberg M, Graw JA. Large Animal Models for Simulating Physiology of Transfusion of Red Cell Concentrates-A Scoping Review of The Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1735. [PMID: 36556937 PMCID: PMC9787038 DOI: 10.3390/medicina58121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives: Transfusion of red cell concentrates is a key component of medical therapy. To investigate the complex transfusion-associated biochemical and physiological processes as well as potential risks for human recipients, animal models are of particular importance. This scoping review summarizes existing large animal transfusion models for their ability to model the physiology associated with the storage of erythrocyte concentrates. Materials and Methods: The electronic databases PubMed, EMBASE, and Web of Science were systematically searched for original studies providing information on the intravenous application of erythrocyte concentrates in porcine, ovine, and canine animal models. Results: A total of 36 studies were included in the analysis. The majority of porcine studies evaluated hemorrhagic shock conditions. Pig models showed high physiological similarities with regard to red cell physiology during early storage. Ovine and canine studies were found to model typical aspects of human red cell storage at 42 days. Only four studies provided data on 24 h in vivo survival of red cells. Conclusions: While ovine and canine models can mimic typical human erythrocyte storage for up to 42 days, porcine models stand out for reliably simulating double-hit pathologies such as hemorrhagic shock. Large animal models remain an important area of translational research since they have an impact on testing new pharmacological or biophysical interventions to attenuate storage-related adverse effects and allow, in a controlled environment, to study background and interventions in dynamic and severe disease conditions.
Collapse
Affiliation(s)
- Melanie Berndt
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maximilian Buttenberg
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jan A. Graw
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
21
|
Himbert S, Rheinstädter MC. Structural and mechanical properties of the red blood cell's cytoplasmic membrane seen through the lens of biophysics. Front Physiol 2022; 13:953257. [PMID: 36171967 PMCID: PMC9510598 DOI: 10.3389/fphys.2022.953257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Red blood cells (RBCs) are the most abundant cell type in the human body and critical suppliers of oxygen. The cells are characterized by a simple structure with no internal organelles. Their two-layered outer shell is composed of a cytoplasmic membrane (RBC cm ) tethered to a spectrin cytoskeleton allowing the cell to be both flexible yet resistant against shear stress. These mechanical properties are intrinsically linked to the molecular composition and organization of their shell. The cytoplasmic membrane is expected to dominate the elastic behavior on small, nanometer length scales, which are most relevant for cellular processes that take place between the fibrils of the cytoskeleton. Several pathologies have been linked to structural and compositional changes within the RBC cm and the cell's mechanical properties. We review current findings in terms of RBC lipidomics, lipid organization and elastic properties with a focus on biophysical techniques, such as X-ray and neutron scattering, and Molecular Dynamics simulations, and their biological relevance. In our current understanding, the RBC cm 's structure is patchy, with nanometer sized liquid ordered and disordered lipid, and peptide domains. At the same time, it is surprisingly soft, with bending rigidities κ of 2-4 kBT. This is in strong contrast to the current belief that a high concentration of cholesterol results in stiff membranes. This extreme softness is likely the result of an interaction between polyunsaturated lipids and cholesterol, which may also occur in other biological membranes. There is strong evidence in the literature that there is no length scale dependence of κ of whole RBCs.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|