1
|
Sahnoon L, Bajbouj K, Mahboub B, Hamoudi R, Hamid Q. Targeting IL-13 and IL-4 in Asthma: Therapeutic Implications on Airway Remodeling in Severe Asthma. Clin Rev Allergy Immunol 2025; 68:44. [PMID: 40257546 PMCID: PMC12011922 DOI: 10.1007/s12016-025-09045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Asthma is a chronic respiratory disorder affecting individuals across all age groups. It is characterized by airway inflammation and remodeling and leads to progressive airflow restriction. While corticosteroids remain a mainstay therapy, their efficacy is limited in severe asthma due to genetic and epigenetic alterations, as well as elevated pro-inflammatory cytokines interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), which drive structural airway changes including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. This underscores the critical need for biologically targeted therapies. This review systematically examines the roles of IL-4 and IL-13, key drivers of type-2 inflammation, in airway remodeling and their potential as therapeutic targets. IL-4 orchestrates eosinophil recruitment, immunoglobulin class switching, and Th2 differentiation, whereas IL-13 directly modulates structural cells, including fibroblasts and epithelial cells, to promote mucus hypersecretion and extracellular matrix (ECM) deposition. Despite shared signaling pathways, IL-13 emerges as the dominant cytokine in remodeling processes including mucus hypersecretion, fibrosis and smooth muscle hypertrophy. While IL-4 primarily amplifies inflammatory cascades by driving IgE switching, promoting Th2 cell polarization that sustain cytokine release, and inducing chemokines to recruit eosinophils. In steroid-resistant severe asthma, biologics targeting IL-4/IL-13 show promise in reducing exacerbations and eosinophilic inflammation. However, their capacity to reverse established remodeling remains inconsistent, as clinical trials prioritize inflammatory biomarkers over long-term structural outcomes. This synthesis highlights critical gaps in understanding the durability of IL-4/IL-13 inhibition on airway structure and advocates for therapies combining biologics with remodeling-specific strategies. Through the integration of mechanistic insights and clinical evidence, this review emphasizes the need for long-term studies utilizing advanced imaging, histopathological techniques, and patient-reported outcomes to evaluate how IL-4/IL-13-targeted therapies alter airway remodeling and symptom burden, thereby informing more effective treatment approaches for severe, steroid-resistant asthma.
Collapse
Affiliation(s)
- Lina Sahnoon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health, 4545, Dubai, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, UK.
- Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
2
|
Khawas S, Sharma N. Cell death crosstalk in respiratory diseases: unveiling the relationship between pyroptosis and ferroptosis in asthma and COPD. Mol Cell Biochem 2025; 480:1305-1326. [PMID: 39112808 DOI: 10.1007/s11010-024-05062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/29/2024] [Indexed: 02/21/2025]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous obstructive diseases characterized by airflow limitations and are recognized as significant contributors to fatality all over the globe. Asthma accounts for about 4, 55,000 deaths, and COPD is the 3rd leading contributor of mortality worldwide. The pathogenesis of these two obstructive disorders is complex and involves numerous mechanistic pathways, including inflammation-mediated and non-inflammation-mediated pathways. Among all the pathological categorizations, programmed cell deaths (PCDs) play a dominating role in the progression of these obstructive diseases. The two major PCDs that are involved in structural and functional remodeling in the progression of asthma and COPD are Pyroptosis and Ferroptosis. Pyroptosis is a PCD mechanism mediated by the activation of the Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, leading to the maturation and release of Interleukin-1β and Interleukin-18, whereas ferroptosis is a lipid peroxidation-associated cell death. In this review, the major molecular pathways contributing to these multifaceted cell deaths have been discussed, and crosstalk among them regarding the pathogenesis of asthma and COPD has been highlighted. Further, the possible therapeutic approaches that can be utilized to mitigate both cell deaths at once have also been illustrated.
Collapse
Affiliation(s)
- Sayak Khawas
- Department of Pharmaceutical Science & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Science & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
3
|
Goswami V, Sodhi KK, Singh CK. Innovative approaches to asthma treatment: harnessing nanoparticle technology. DISCOVER NANO 2025; 20:21. [PMID: 39922940 PMCID: PMC11807046 DOI: 10.1186/s11671-025-04211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
In the domain of respiratory illnesses, asthma remains a critical obstacle. The heterogeneous nature of this chronic inflammatory disease poses challenges during its treatment. Glucocorticoid-based combination drug therapy now dominates clinical treatments for asthma; however, glucocorticoid resistance, numerous adverse effects, the incidence of inadequate drug delivery, and other factors need the development of more effective therapies. In recent years, there has been extensive research on nanotechnology in medicine. It has been shown in studies that these drug delivery systems can greatly enhance targeting and bioavailability and decrease the toxicity of medication. Nanoparticle drug delivery systems offer improved therapeutic efficacy compared to conventional administration techniques. Nanotechnology enables advancements in precision medicine, offering benefits for heterogeneous conditions such as asthma. This review will examine the critical factors of asthma to consider when formulating medications, as well as the role of nanomaterials and their mechanisms of action in pulmonary medicine for asthma treatment.
Collapse
Affiliation(s)
- Vanshika Goswami
- Department of Zoology, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Kushneet Kaur Sodhi
- Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, 110007, India
| | | |
Collapse
|
4
|
McCullough M, Joshi IV, Pereira NL, Fuentes N, Krishnan R, Druey KM. Targeting cytoskeletal biomechanics to modulate airway smooth muscle contraction in asthma. J Biol Chem 2025; 301:108028. [PMID: 39615690 PMCID: PMC11721269 DOI: 10.1016/j.jbc.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
To contract, to deform, and remodel, the airway smooth muscle cell relies on dynamic changes in the structure of its mechanical force-bearing cytoskeleton. These alternate between a "fluid-like" (relaxed) state characterized by weak contractile protein-protein interactions within the cytoskeletal apparatus and a "solid-like" (contractile) state promoted by strong and highly organized molecular interactions. In this review, we discuss the roles for actin, myosin, factors promoting actin polymerization and depolymerization, adhesome complexes, and cell-cell junctions in these dynamic processes. We describe the relationship between these cytoskeletal factors, extracellular matrix components of bronchial tissue, and mechanical stretch and other changes within the airway wall in the context of the physical mechanisms of cytoskeletal fluidization-resolidification. We also highlight studies that emphasize the distinct processes of cell shortening and force transmission in airway smooth muscle and previously unrecognized roles for actin in cytoskeletal dynamics. Finally, we discuss the implications of these discoveries for understanding and treating airway obstruction in asthma.
Collapse
Affiliation(s)
- Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Ilin V Joshi
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Nicolas L Pereira
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, Massachusetts, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Pereira NL, Schaible N, Desai A, Chan EC, Ablooglu AJ, Capuano J, Lin E, An Z, Gebski E, Jester W, Ganesan S, Balenga N, Koziol-White C, Panettieri RA, Choudhury S, Krishnan R, Druey KM. N-cadherin antagonism is bronchoprotective in severe asthma models. SCIENCE ADVANCES 2024; 10:eadp8872. [PMID: 39612338 PMCID: PMC11606448 DOI: 10.1126/sciadv.adp8872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Severe asthma induces substantial mortality and chronic disability due to intractable airway obstruction, which may become resistant to currently available therapies including corticosteroids and β-adrenergic agonist bronchodilators. A key effector of these changes is exaggerated airway smooth muscle (ASM) cell contraction to spasmogens. No drugs in clinical use effectively prevent ASM hyperresponsiveness in asthma across all severities. We find that N-cadherin, a membrane cell-cell adhesion protein up-regulated in ASM from patients with severe asthma, is required for the development of airway obstruction induced by allergic airway inflammation in mice. Inhibition of N-cadherin by ADH-1 reduced airway hyperresponsiveness independent of allergic inflammation, prevented bronchoconstriction, and actively promoted bronchodilation of airways ex vivo. ADH-1 inhibited ASM contraction by disrupting N-cadherin-δ-catenin interactions, which decreased intracellular actin remodeling. These data provide evidence for an intercellular communication pathway mediating ASM contraction and identify N-cadherin as a potential therapeutic target for inhibiting bronchoconstriction in asthma.
Collapse
Affiliation(s)
- Nicolas L. Pereira
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Abhishek Desai
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eunice C. Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ararat J. Ablooglu
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline Capuano
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Erika Lin
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Zheming An
- Division of Genetics and Genomics, Manton Center for Cell Discovery Research, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - William Jester
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nariman Balenga
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sangita Choudhury
- Division of Genetics and Genomics, Manton Center for Cell Discovery Research, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Liu Y, Li J, Chen R, Shi F, Xiong Y. Airway epithelial cells promote in vitro airway smooth muscle cell proliferation by activating the Wnt/β-catenin pathway. Respir Physiol Neurobiol 2024; 331:104368. [PMID: 39536926 DOI: 10.1016/j.resp.2024.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Asthma is a common chronic inflammatory airway disease, imposing a substantial health and economic burden on society and individuals. Current treatments primarily focus on symptom relief and lung function improvement, often failing to address the underlying pathology. Thus, exploring new therapeutic approaches is crucial. Airway smooth muscle cells (ASMCs) play a key role in regulating airway tone and airflow, while abnormal ASMCs proliferation contributes to airway remodeling in asthma. Airway epithelial cells (AECs), serving as the first barrier against pathogens and allergens, also have critical immune functions. This study focuses on the interaction between AECs and ASMCs, as AECs are more accessible for drug delivery due to their location at the airway surface. Investigating this relationship could facilitate novel interventions targeting AECs to inhibit pathological ASMCs activity. In our experiment, we isolated ASMCs and AECs from healthy mice and found that AECs significantly promoted ASMCs proliferation in co-culture. RNA sequencing revealed that this process might be linked to the activation of the canonical Wnt signaling pathway in ASMCs. By using Wnt pathway inhibitors (endo-IWR1) and siRNA to disrupt Wnt receptors, we reversed this phenotype. This finding suggests that AECs may promote ASMCs proliferation by activating the Wnt pathway in ASMCs. The Wnt/β-catenin pathway appears to play an important role in ASMCs proliferation, indicating that future pathological studies should consider the potential involvement of the Wnt pathway in airway remodeling.
Collapse
Affiliation(s)
- Yilun Liu
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518038, China
| | - Jiana Li
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518038, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province 518109, China
| | - Fei Shi
- Emergency Department, Shenzhen People's Hospital, Shenzhen, Guangdong Province 518106, China.
| | - Yi Xiong
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province 518038, China.
| |
Collapse
|
7
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
8
|
Januskevicius A, Vasyle E, Rimkunas A, Malakauskas K. Integrative Cross-Talk in Asthma: Unraveling the Complex Interactions Between Eosinophils, Immune, and Structural Cells in the Airway Microenvironment. Diagnostics (Basel) 2024; 14:2448. [PMID: 39518415 PMCID: PMC11545034 DOI: 10.3390/diagnostics14212448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Asthma is a chronic inflammatory process that leads to airway narrowing, causing breath loss followed by spasms, wheezing, and shortness of breath. Within the asthmatic lungs, interaction among various immune cells and structural cells plays a significant role in orchestrating an inflammatory response in which eosinophils hold central importance. In these settings, allergens or other environmental exposures commonly drive the immune response to recruit eosinophils to the airways. The appearance of eosinophils in the airways indicates a dynamic interplay of various cell types within lung tissue and does not represent a passive effect of inflammation. The cellular cross-talk causes the persistence of eosinophilic inflammation, and if left untreated, it results in long-term damage to the airway structure and function. Further exacerbation of the condition occurs because of this. We discuss how this complex interplay of eosinophils, immune, and structural cells within the airway microenvironment leads to the distinct pathophysiological features in asthma, the variability in disease severity, and the response to biological treatments.
Collapse
Affiliation(s)
- Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Egle Vasyle
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (E.V.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| |
Collapse
|
9
|
Zhao XO, Melo FR, Sommerhoff CP, Paivandy A, Pejler G. Mast cell chymase suppresses functional parameters in primary human airway smooth muscle cells. Allergy 2024; 79:2524-2527. [PMID: 38409848 DOI: 10.1111/all.16085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Affiliation(s)
- Xinran O Zhao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fabio Rabelo Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Christian P Sommerhoff
- Institute of Medical Education and Institute of Laboratory Medicine, LMU University Hospital, Munich, Germany
| | - Aida Paivandy
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Yang Z, Li X, Wei L, Bao L, Hu H, Liu L, Tan W, Tong X, Huang F. Involucrasin B suppresses airway inflammation in obese asthma by inhibiting the TLR4-NF-κB-NLRP3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155850. [PMID: 39029138 DOI: 10.1016/j.phymed.2024.155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Obese asthma is an asthma phenotype that causes more severe lung inflammation and airway hyperresponsiveness than allergic asthma and it is resistant to conventional therapy. Involucrasin B (IB) is a dihydroflavonoid isolated from Shuteria involucrata (Wall.) Wight & Arn., a traditional "Dai" and "Wa" medicine was used in southern China to treat the "phlegm and wetness of sputum" (obesity disease) as well as lung inflammation. However, whether IB can ameliorate obese asthma remains unclear, and the underlying mechanisms and molecular expression in obese asthma specifically targeted by IB are still not fully understood. METHODS An in vivo C57BL/6 J mouse model of obese asthma was established using house dust mites (HDMs) and high-fat diet (HFD) as inducers to evaluate the therapeutic effect of IB. An in vitro cell culture of human THP-1 monocytic cell culture was used to investigate the effect of IB after the treatment with lipopolysaccharide (LPS) and palmitic acid (PA). RESULTS In vivo, we found that intervention with IB improved airway hyperresponsiveness and lung histopathology and significantly inhibited the secretion of relevant inflammatory factors, such as interleukin (IL)-1β, IL-17A, and IL-22 in bronchoalveolar lavage fluid, and total-IgE and HDM-IgE in serum compared with the model group (HFD+HDM). The findings indicate that IB could decrease the expression of granulocyte receptor 1 (Gr-1) and neutrophil extracellular traps (NETs) in lung tissue, as well as the expression of NLR family pyrin domain containing 3 (NLRP3) and inducible nitric oxide synthase in M1 macrophages (M1). IB also reduced the population of ILC3/Th17 cells, which are responsible for producing IL-17A, a crucial mediator of neutrophil-mediated inflammation, confirming that the therapeutic effect of IB in obesity-related asthma was related to neutrophils and M1 cells. In addition, IB regulated lipid metabolism and inhibited the production of macrophages in adipose tissue. The in vitro results revealed that IB inhibited the secretion of IL-1β, IL-18, and tumor necrosis factor-α (TNF-α) from THP-1 cells, and the expression of NLRP3-related protein in THP-1 cells compared with the model groups (LPS, PA, and LPS+PA), confirming that the action of IB involved the TLR4-NF-κB-NLRP3 pathway. CONCLUSION This study demonstrated the therapeutic effect of IB in obese asthma for the first time and further clarified its mechanistic pathway as the TLR4-NF-κB-NLRP3 pathway.
Collapse
Affiliation(s)
- Zhuya Yang
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaohong Li
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lisha Wei
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lue Bao
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Liu
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wenhong Tan
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaoyun Tong
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China.
| | - Feng Huang
- Key Laboratory of Yunnan Provincial Department of Education on Substance Benchmark Research of Ethnic Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
11
|
Goleij P, Rahimi M, Pourshahroudi M, Tabari MAK, Muhammad S, Suteja RC, Daglia M, Majma Sanaye P, Hadipour M, Khan H, Sadeghi P. The role of IL-2 cytokine family in asthma. Cytokine 2024; 180:156638. [PMID: 38761716 DOI: 10.1016/j.cyto.2024.156638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The interleukin-2 (IL-2) family of cytokines, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, are pivotal regulators of the immune response, impacting both innate and adaptive immunity. Understanding their molecular characteristics, receptor interactions, and signalling pathways is essential for elucidating their roles in health and disease. OBJECTIVES This review provides a comprehensive overview of the IL-2 family of cytokines, highlighting their molecular biology, receptor interactions, and signalling mechanisms. Furthermore, it explores the involvement of IL-2 family cytokines in the pathogenesis of chronic respiratory diseases, with a specific focus on chronic obstructive pulmonary disease (COPD) and asthma. METHODS A thorough literature review was conducted to gather insights into the molecular biology, receptor interactions, and signalling pathways of IL-2 family cytokines. Additionally, studies investigating the roles of these cytokines in chronic respiratory diseases, particularly COPD and asthma, were analysed to discern their implications in wider pathophysiology of disease. RESULTS IL-2 family cytokines exert pleiotropic effects on immune cells, modulating cellular proliferation, differentiation, and survival. Dysregulation of IL-2 family cytokines has been implicated in the pathogenesis of chronic respiratory illnesses, including COPD and asthma. Elevated levels of IL-2 and IL-9 have been associated with disease severity in COPD, while IL-4 and IL-9 play crucial roles in asthma pathogenesis by promoting airway inflammation and remodelling. CONCLUSION Understanding the intricate roles of IL-2 family cytokines in chronic respiratory diseases provides valuable insights into potential therapeutic targets for these conditions. Targeting specific cytokines or their receptors may offer novel treatment modalities to attenuate disease progression and improve clinical outcomes in patients with COPD and asthma.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Rahimi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran.
| | - Motahareh Pourshahroudi
- Department of Public Health, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Syed Muhammad
- Farooqia College of Pharmacy, Mysuru, Karnataka, India.
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | | | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Parniyan Sadeghi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Alanazi AH, Selim MS, Yendamuri MR, Zhang D, Narayanan SP, Somanath PR. The impact of diabetes mellitus on blood-tissue barrier regulation and vascular complications: Is the lung different from other organs? Tissue Barriers 2024:2386183. [PMID: 39072526 DOI: 10.1080/21688370.2024.2386183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetes Mellitus presents a formidable challenge as one of the most prevalent and complex chronic diseases, exerting significant strain on both patients and the world economy. It is recognized as a common comorbidity among severely ill individuals, often leading to a myriad of micro- and macro-vascular complications. Despite extensive research dissecting the pathophysiology and molecular mechanisms underlying vascular complications of diabetes, relatively little attention has been paid to potential lung-related complications. This review aims to illuminate the impact of diabetes on prevalent respiratory diseases, including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), tuberculosis (TB), pneumonia infections, and asthma, and compare the vascular complications with other vascular beds. Additionally, we explore the primary mechanistic pathways contributing to these complications, such as the expression modulation of blood-tissue-barrier proteins, resulting in increased paracellular and transcellular permeability, and compromised immune responses rendering diabetes patients more susceptible to infections. The activation of inflammatory pathways leading to cellular injury and hastening the onset of these respiratory complications is also discussed.
Collapse
Affiliation(s)
- Abdulaziz H Alanazi
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Clinical Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Mohamed S Selim
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Manyasreeprapti R Yendamuri
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
13
|
Allam VSRR, Akula S, Waern I, Taha S, Wernersson S, Pejler G. Monensin Suppresses Multiple Features of House Dust Mite-Induced Experimental Asthma in Mice. Inflammation 2024:10.1007/s10753-024-02090-7. [PMID: 38958812 DOI: 10.1007/s10753-024-02090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Despite intense efforts to develop efficient therapeutic regimes for asthma, there is a large demand for novel treatment strategies in this disease. Here we evaluated the impact of monensin, a drug with potent anti-mast cell effects, in a mouse model of asthma. Allergic airway inflammation was induced by sensitization of mice with house dust mite (HDM) antigen, and effects of monensin on airway hyperreactivity and inflammatory parameters were studied. Following intraperitoneal administration, monensin did not suppress airway hyperreactivity but was shown to have anti-inflammatory properties, as manifested by reduced eosinophil- and lymphocyte infiltration into the airway lumen, and by suppressed inflammation of the lung tissue. After intranasal instillation, monensin exhibited similar anti-inflammatory effects as seen after intraperitoneal administration. Moreover, intranasally administered monensin was demonstrated to suppress goblet cell hyperplasia, and to cause a reduction in the expression of genes coding for key inflammatory markers. Further, monensin blocked mast cell degranulation in the airways of allergen-sensitized mice. Together, this study reveals that monensin has the capacity to suppress key pathological events associated with allergic airway inflammation.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Srinivas Akula
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sowsan Taha
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Dos Santos TM, Righetti RF, do Nascimento Camargo L, Leick EA, Fukuzaki S, de Campos EC, Galli TT, Saraiva-Romanholo BM, da Silva LLS, Barbosa JAS, João JMLG, Prado CM, de Rezende BG, Bourotte CLM, Dos Santos Lopes FDTQ, de Arruda Martins M, Bensenor IM, de Oliveira Cirillo JV, Bezerra SKM, Silva FJA, Paulo MSL, Lotufo PA, Lopes Calvo Tibério IDF. Effect of VAChT reduction on lung alterations induced by exposure to iron particles in an asthma model. J Inflamm (Lond) 2024; 21:24. [PMID: 38961398 PMCID: PMC11223391 DOI: 10.1186/s12950-024-00399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Pollution harms the health of people with asthma. The effect of the anti-inflammatory cholinergic pathway in chronic allergic inflammation associated to pollution is poorly understood. METHODS One hundred eight animals were divided into 18 groups (6 animals). Groups included: wild type mice (WT), genetically modified with reduced VAChT (VAChTKD), and those sensitized with ovalbumin (VAChTKDA), exposed to metal powder due to iron pelletizing in mining company (Local1) or 3.21 miles away from a mining company (Local2) in their locations for 2 weeks during summer and winter seasons. It was analyzed for hyperresponsivity, inflammation, remodeling, oxidative stress responses and the cholinergic system. RESULTS During summer, animals without changes in the cholinergic system revealed that Local1 exposure increased the hyperresponsiveness (%Rrs, %Raw), and inflammation (IL-17) relative to vivarium animals, while animals exposed to Local2 also exhibited elevated IL-17. During winter, animals without changes in the cholinergic system revealed that Local2 exposure increased the hyperresponsiveness (%Rrs) relative to vivarium animals. Comparing the exposure local of these animals during summer, animals exposed to Local1 showed elevated %Rrs, Raw, and IL-5 compared to Local 2, while in winter, Local2 exposure led to more IL-17 than Local1. Animals with VAChT attenuation displayed increased %Rrs, NFkappaB, IL-5, and IL-13 but reduced alpha-7 compared to animals without changes in the cholinergic system WT. Animals with VAChT attenuation and asthma showed increased the hyperresponsiveness, all inflammatory markers, remodeling and oxidative stress compared to animals without chronic lung inflammation. Exposure to Local1 exacerbated the hyperresponsiveness, oxidative stressand inflammation in animals with VAChT attenuation associated asthma, while Local2 exposure led to increased inflammation, remodeling and oxidative stress. CONCLUSIONS Reduced cholinergic signaling amplifies lung inflammation in a model of chronic allergic lung inflammation. Furthermore, when associated with pollution, it can aggravate specific responses related to inflammation, oxidative stress, and remodeling.
Collapse
Affiliation(s)
- Tabata Maruyama Dos Santos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil.
- Hospital Sírio Libanês, São Paulo, SP, Brazil.
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - Leandro do Nascimento Camargo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | - Elaine Cristina de Campos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | | | | | | | | | | | - Carla Máximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | | | | | | | - Isabela M Bensenor
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Paulo A Lotufo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
15
|
Hernandez-Lara MA, Richard J, Deshpande DA. Diacylglycerol kinase is a keystone regulator of signaling relevant to the pathophysiology of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 327:L3-L18. [PMID: 38742284 PMCID: PMC11380957 DOI: 10.1152/ajplung.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.
Collapse
Affiliation(s)
- Miguel A Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joshua Richard
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
16
|
Qin Y, Yang J, Li H, Li J. Recent advances in the therapeutic potential of nobiletin against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155506. [PMID: 38522319 DOI: 10.1016/j.phymed.2024.155506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Nobiletin is a natural polymethoxylated flavonoid widely present in citrus fruit peels. It has been demonstrated to exert the effects of anti-tumor, anti-inflammation, anti-oxidative, anti-apoptotic and improve cardiovascular function. Increasing evidences suggest that nobiletin plays an important role in respiratory diseases (RDs) treatment. OBJECTIVE This review aimed to investigate the therapeutic potential of nobiletin against RDs, such as lung cancer, COPD, pulmonary fibrosis, asthma, pulmonary infection, acute lung injury, coronavirus disease 2019, and pulmonary arterial hypertension. METHODS We retrieved extensive literature of relevant literatures in English until June 26, 2023 from the database of PubMed, Web of Science, and Scopus databases. The keywords of "nobiletin and lung", "nobiletin and respiratory disease", "nobiletin and chronic respiratory diseases", "nobiletin and metabolites", "nobiletin and pharmacokinetics", "nobiletin and toxicity" were searched in pairs. A total of 298 literatures were retrieved from the above database. After excluding the duplicates and reviews, 53 were included in the current review. RESULTS We found that the therapeutic mechanisms are based on different signaling pathways. Firstly, nobiletin inhibited the proliferation and suppressed the invasion and migration of cancer cells by regulating the related pathway or key target, like Bcl-2, PD-L1, PARP, and Akt/GSK3β/β-catenin in lung cancer treatment. Secondly, nobiletin treats COPD and ALI by targeting classical signaling pathway mediating inflammation. Besides, the available findings show that nobiletin exerts the effect of PF treatment via regulating mTOR pathway. CONCLUSIONS With the wide range of pharmacological activities, high efficiency and low toxicity, nobiletin can be used as a potential agent for preventing and treating RDs. These findings will contribute to further research on the molecular mechanisms of nobiletin and facilitate in-depth studies on nobiletin at both preclinical and clinical levels for the treatment of RDs.
Collapse
Affiliation(s)
- Yanqin Qin
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Jingfan Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China
| | - Haibo Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China
| | - Jiansheng Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China; Department of Respiratory Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China.
| |
Collapse
|
17
|
Goyal RK, Rattan S. Role of mechanoregulation in mast cell-mediated immune inflammation of the smooth muscle in the pathophysiology of esophageal motility disorders. Am J Physiol Gastrointest Liver Physiol 2024; 326:G398-G410. [PMID: 38290993 PMCID: PMC11213482 DOI: 10.1152/ajpgi.00258.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Major esophageal disorders involve obstructive transport of bolus to the stomach, causing symptoms of dysphagia and impaired clearing of the refluxed gastric contents. These may occur due to mechanical constriction of the esophageal lumen or loss of relaxation associated with deglutitive inhibition, as in achalasia-like disorders. Recently, immune inflammation has been identified as an important cause of esophageal strictures and the loss of inhibitory neurotransmission. These disorders are also associated with smooth muscle hypertrophy and hypercontractility, whose cause is unknown. This review investigated immune inflammation in the causation of smooth muscle changes in obstructive esophageal bolus transport. Findings suggest that smooth muscle hypertrophy occurs above the obstruction and is due to mechanical stress on the smooth muscles. The mechanostressed smooth muscles release cytokines and other molecules that may recruit and microlocalize mast cells to smooth muscle bundles, so that their products may have a close bidirectional effect on each other. Acting in a paracrine fashion, the inflammatory cytokines induce genetic and epigenetic changes in the smooth muscles, leading to smooth muscle hypercontractility, hypertrophy, and impaired relaxation. These changes may worsen difficulty in the esophageal transport. Immune processes differ in the first phase of obstructive bolus transport, and the second phase of muscle hypertrophy and hypercontractility. Moreover, changes in the type of mechanical stress may change immune response and effect on smooth muscles. Understanding immune signaling in causes of obstructive bolus transport, type of mechanical stress, and associated smooth muscle changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.NEW & NOTEWORTHY Esophageal disorders such as esophageal stricture or achalasia, and diffuse esophageal spasm are associated with smooth muscle hypertrophy and hypercontractility, above the obstruction, yet the cause of such changes is unknown. This review suggests that smooth muscle obstructive disorders may cause mechanical stress on smooth muscle, which then secretes chemicals that recruit, microlocalize, and activate mast cells to initiate immune inflammation, producing functional and structural changes in smooth muscles. Understanding the immune signaling in these changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.
Collapse
Affiliation(s)
- Raj K Goyal
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, United States
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, United States
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kummel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
18
|
Ge X, Xu T, Wang M, Gao L, Tang Y, Zhang N, Zheng R, Zeng W, Chen G, Zhang B, Dai Y, Zhang Y. Chalcone-derivative L6H21 attenuates the OVA-induced asthma by targeting MD2. Eur J Med Res 2024; 29:65. [PMID: 38245791 PMCID: PMC10799361 DOI: 10.1186/s40001-023-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.
Collapse
Affiliation(s)
- Xiangting Ge
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China
| | - Tingting Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Meiyan Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lijiao Gao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yue Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ningjie Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Weimin Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China.
| | - Yuanrong Dai
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
19
|
Priyadarshini NP, Gopamma D, Srinivas N, Malla RR, Kumar KS. Particulate Matter and Its Impact on Macrophages: Unraveling the Cellular Response for Environmental Health. Crit Rev Oncog 2024; 29:33-42. [PMID: 38989736 DOI: 10.1615/critrevoncog.2024053305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Particulate matter (PM) imposes a significant impact to environmental health with deleterious effects on the human pulmonary and cardiovascular systems. Macrophages (Mφ), key immune cells in lung tissues, have a prominent role in responding to inhaled cells, accommodating inflammation, and influencing tissue repair processes. Elucidating the critical cellular responses of Mφ to PM exposure is essential to understand the mechanisms underlying PM-induced health effects. The present review aims to give a glimpse on literature about the PM interaction with Mφ, triggering the cellular events causing the inflammation, oxidative stress (OS) and tissue damage. The present paper reviews the different pathways involved in Mφ activation upon PM exposure, including phagocytosis, intracellular signaling cascades, and the release of pro-inflammatory mediators. Potential therapeutic strategies targeting Mφ-mediated responses to reduce PM-induced health effects are also discussed. Overall, unraveling the complex interplay between PM and Mφ sheds light on new avenues for environmental health research and promises to develop targeted interventions to reduce the burden of PM-related diseases on global health.
Collapse
Affiliation(s)
- Nyayapathi Priyanka Priyadarshini
- Department of Environmental Science, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Daka Gopamma
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Namuduri Srinivas
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Kolli Suresh Kumar
- Department of Environmental Science, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
20
|
Ambhore NS, Balraj P, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially modifies lamellipodial and focal adhesion dynamics in airway smooth muscle cell migration. Mol Cell Endocrinol 2024; 579:112087. [PMID: 37827228 PMCID: PMC10842142 DOI: 10.1016/j.mce.2023.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Sex-steroid signaling, especially estrogen, has a paradoxical impact on regulating airway remodeling. In our previous studies, we demonstrated differential effects of 17β-estradiol (E2) towards estrogen receptors (ERs: α and β) in regulating airway smooth muscle (ASM) cell proliferation and extracellular matrix (ECM) production. However, the role of ERs and their signaling on ASM migration is still unexplored. In this study, we examined how ERα versus ERβ affects the mitogen (Platelet-derived growth factor, PDGF)-induced human ASM cell migration as well as the underlying mechanisms involved. We used Lionheart-FX automated microscopy and transwell assays to measure cell migration and found that activating specific ERs had differential effects on PDGF-induced ASM cell migration. Pharmacological activation of ERβ or shRNA mediated knockdown of ERα and specific activation of ERβ blunted PDGF-induced cell migration. Furthermore, specific ERβ activation showed inhibition of actin polymerization by reducing the F/G-actin ratio. Using Zeiss confocal microscopy coupled with three-dimensional algorithmic ZEN-image analysis showed an ERβ-mediated reduction in PDGF-induced expressions of neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related proteins-2/3 (Arp2/3) complex, thereby inhibiting actin-branching and lamellipodia. In addition, ERβ activation also reduces the clustering of actin-binding proteins (vinculin and paxillin) at the leading edge of ASM cells. However, cells treated with E2 or ERα agonists do not show significant changes in actin/lamellipodial dynamics. Overall, these findings unveil the significance of ERβ activation in regulating lamellipodial and focal adhesion dynamics to regulate ASM cell migration and could be a novel target to blunt airway remodeling.
Collapse
Affiliation(s)
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
21
|
Yuan HK, Li B, Wu L, Wang XL, Lv ZY, Liu Z, Xu Z, Lu J, Chen CT, Yang YQ, Zhu W, Yin LM. Discovery of zolinium TSG1180 as a novel agonist of transgelin-2 for treating asthma. Biomed Pharmacother 2023; 167:115556. [PMID: 37778269 DOI: 10.1016/j.biopha.2023.115556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Asthma is a complex and heterogeneous respiratory disease that causes serious social and economic burdens. Current drugs such as β2-agonists cannot fully control asthma. Our previous study found that Transgelin-2 is a potential target for treating asthmatic pulmonary resistance. Herein, we discovered a zolinium compound, TSG1180, that showed a strong interaction with Transgelin-2. The equilibrium dissociation constants (KD) of TSG1180 to Transgelin-2 were determined to be 5.363 × 10-6 and 9.81 × 10-6 M by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Cellular thermal shift assay (CETSA) results showed that the thermal stability of Transgelin-2 increased after coincubation of TSG1180 with lysates of airway smooth muscle cells (ASMCs). Molecular docking showed that Arg39 may be the key residue for the binding. Then, the SPR result showed that the binding affinity of TSG1180 to Transgelin-2 mutant (R39E) was decreased by 1.69-fold. Real time cell analysis (RTCA) showed that TSG1180 treatment could relax ASMCs by 19 % (P < 0.05). Once Transgelin-2 was inhibited, TSG1180 cannot induce a relaxation effect, suggesting that the relaxation effect was specifically mediated by Transgelin-2. In vivo study showed TSG1180 effectively reduced pulmonary resistance by 64 % in methacholine-induced mice model (P < 0.05). Furthermore, the phosphorylation of Ezrin at T567 was increased by 8.06-fold, the phosphorylation of ROCK at Y722 was reduced by 38 % and the phosphorylation of RhoA at S188 was increased by 52 % after TSG1180 treatment. These results suggested that TSG1180 could be a Transgelin-2 agonist for further optimization and development as an anti-asthma drug.
Collapse
Affiliation(s)
- Hong-Kai Yuan
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Bo Li
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leyun Wu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ling Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Zhi-Ying Lv
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Zhikai Liu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Lu
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Cai-Tao Chen
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yong-Qing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
22
|
Toumpanakis D, Usmani OS. Small airways in asthma: Pathophysiology, identification and management. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:171-180. [PMID: 39171124 PMCID: PMC11332871 DOI: 10.1016/j.pccm.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 08/23/2024]
Abstract
Background The aim of this review is to summarize the current evidence regarding small airway disease in asthma, focusing on recent advances in small airway pathophysiology, assessment and therapeutic implications. Methods A search in Medline was performed, using the keywords "small airways", "asthma", "oscillometry", "nitrogen washout" and "imaging". Our review was based on studies from adult asthmatic patients, although evidence from pediatric populations is also discussed. Results In asthma, inflammation in small airways, increased mucus production and airway wall remodelling are the main pathogenetic mechanisms of small airway disease. Small airway dysfunction is a key component of asthma pathophysiology, leading to increased small airway resistance and airway closure, with subsequent ventilation inhomogeneities, hyperresponsiveness and airflow limitation. Classic tests of lung function, such as spirometry and body plethysmography are insensitive to detect small airway disease, providing only indirect measurements. As discussed in our review, both functional and imaging techniques that are more specific for small airways, such as oscillometry and the multiple breath nitrogen washout have delineated the role of small airways in asthma. Small airways disease is prevalent across all asthma disease stages and especially in severe disease, correlating with important clinical outcomes, such as asthma control and exacerbation frequency. Moreover, markers of small airways dysfunction have been used to guide asthma treatment and monitor response to therapy. Conclusions Assessment of small airway disease provides unique information for asthma diagnosis and monitoring, with potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, United Kingdom
- General State Hospital for Thoracic Diseases of Athens “Sotiria”, Athens, 11527, Greece
| | - Omar S. Usmani
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, United Kingdom
| |
Collapse
|
23
|
Kuang L, Ren C, Liao X, Zhang X, Zhou X. Percent Recovery Index Predicts Poor Asthma Control and Exacerbation in Adults. J Asthma Allergy 2023; 16:711-722. [PMID: 37465370 PMCID: PMC10351680 DOI: 10.2147/jaa.s414164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Background Previous studies indicate that the percent recovery index (PRI: the percentage increase from the maximally reduced FEV1 after bronchodilator inhalation), one of the indexes of methacholine bronchial provocation, may predict acute asthma exacerbations in childhood and elderly asthmatics. It is known that childhood (<12) and elder (>60) asthmatics may be different to adult patients in many aspect including prognosis. However, in adults, a research for predicting value of PRI to exacerbation is still absence. Besides exacerbation, predicting value of PRI to poor asthma control is also unknown. We try to detect whether PRI can predict poor asthma control and exacerbation in adults in this research. Meanwhile, we try to detect whether treatment can influence PRI. Methods In 61 adults with asthma, baseline PRI was measured during enrollment. And then baseline PRI was evaluated as a predictor of exacerbation or poor asthma control at an upcoming 3-month follow-up. The covariates included age, sex, BMI, previous exacerbation, smoking status and baseline lung function. After treatment for 3 months, PRI was measured again and compared with baseline PRI. Results After the 3-month follow-up, we found that baseline PRI was significantly related to asthma exacerbation (P = 0.023), poor asthma control (ACT at 3 months, P = 0.014), decreased quality of life (decrease of MiniAQLQ, P = 0.010) and cumulative number of EDHO at 3 months (P = 0.039). Meanwhile, no significant correlation was observed between baseline PRI and inflammation factors (FENO, CaNO, and EOS). Finally, PRI was dramatically reduced after standard treatment for 3 months. Conclusion PRI is efficient in the prediction of poor asthma control and exacerbation in adults. The predictive value of PRI may rely on the inherent property of asthmatic airway smooth muscle (ASM) independent of inflammation factors. Effective treatment can alleviate PRI dramatically and that indicate PRI may also be valuable in evaluation of curative effect.
Collapse
Affiliation(s)
- Lisha Kuang
- Department of Health Management Center, Chongqing University Fuling Hospital, Chongqing, People’s Republic of China
| | - Cheng Ren
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Chongqing, People’s Republic of China
| | - Xiuqing Liao
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Chongqing, People’s Republic of China
| | - Xiaobin Zhang
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Chongqing, People’s Republic of China
| | - Xuegang Zhou
- Department of Respiratory and Critical Care Medicine, Chongqing University Fuling Hospital, Chongqing, People’s Republic of China
| |
Collapse
|
24
|
Li M, Li M, Hou Y, HE H, Jiang R, Wang C, Sun S. Ferroptosis triggers airway inflammation in asthma. Ther Adv Respir Dis 2023; 17:17534666231208628. [PMID: 37947059 PMCID: PMC10638875 DOI: 10.1177/17534666231208628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
Ferroptosis is a regulatory cell death characterized by intracellular iron accumulation and lipid peroxidation that leads to oxidative stress. Many signaling pathways such as iron metabolism, lipid metabolism, and amino acid metabolism precisely regulate the process of ferroptosis. Ferroptosis is involved in a variety of lung diseases, such as acute lung injury, chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. Increasing studies suggest that ferroptosis is involved in the development of asthma. Ferroptosis plays an important role in asthma. Iron metabolism disorders, lipid peroxidation, amino acid metabolism disorders lead to the occurrence of ferroptosis in airway epithelial cells, and then aggravate clinical symptoms in asthmatic patients. Moreover, several regulators of ferroptosis are involved in the pathogenesis of asthma, such as Nrf2, heme oxygenase-1, mevalonate pathway, and ferroptosis inhibitor protein 1. Importantly, ferroptosis inhibitors improve asthma. Thus, the pathogenesis of ferroptosis and its contribution to the pathogenesis of asthma help us better understand the occurrence and development of asthma, and provide new directions in asthma treatment. This article aimed to review the role and mechanism of ferroptosis in asthma, describing the relationship between ferroptosis and asthma based on signaling pathways and related regulatory factors. At the same time, we summarized current observations of ferroptosis in eosinophils, airway epithelial cells, and airway smooth muscle cells in asthmatic patients.
Collapse
Affiliation(s)
- Minming Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatric Medicine Class One, Kunming Medical University, Kunming, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Huilin HE
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Ruonan Jiang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatric Medicine Class One, Kunming Medical University, Kunming, China
| | - Chu Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming 650032, China
| |
Collapse
|