1
|
Yi X, Abas R, Raja Muhammad Rooshdi RAW, Yan J, Liu C, Yang C, Gao T, Sun W, Daut UN. Time-restricted feeding reduced blood pressure and improved cardiac structure and function by regulating both circulating and local renin-angiotensin systems in spontaneously hypertensive rat model. PLoS One 2025; 20:e0321078. [PMID: 40179126 PMCID: PMC11967951 DOI: 10.1371/journal.pone.0321078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/02/2025] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVE To investigate whether time-restricted feeding (TRF) can reduce blood pressure (BP) and improve cardiac structure and function in spontaneously hypertensive rats (SHRs) by regulating the renin-angiotensin system (RAS). METHODS Wistar Kyoto rats and SHR underwent 16 weeks of TRF intervention, with daily feeding restricted to 9 am-5 pm. The effects of TRF on systolic BP, diastolic BP, mean BP, body weight (BW), heart weight (HW), HW/BW ratio, cardiac structure and function, and RAS activity in the circulating and left ventricular (LV) tissues were investigated. RESULTS TRF effectively reduced systolic BP, mean BP, diastolic BP, and BW; improved hypertension-induced cardiac structural and functional damage; and inhibited the ACE-Ang-II-AT1 axis in circulating and LV tissues. CONCLUSION TRF effectively inhibits RAS activity in both circulating and LV tissues, thereby lowering BP and mitigating structural and functional cardiac damage associated with hypertension.
Collapse
Affiliation(s)
- Xin Yi
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department 1 of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, China
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jie Yan
- Department 1 of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, China
| | - Canzhang Liu
- Department 1 of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, China
| | - Chongshuang Yang
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Teng Gao
- Department 1 of Cardiovasology, North China University of Science and Technology Affiliated Hospital, Tangshan City, Hebei Province, China
| | - Weijing Sun
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ummi Nadira Daut
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Ahmed ST, Nasir MI, Amir KF, Siddiqui PQR. Spectrum of AGT (M235T) rs699 and AGTR1 (A1166C) rs5186 gene variants and its association with coronary artery disease in Pakistani patients. Pak J Med Sci 2025; 41:1151-1156. [PMID: 40290236 PMCID: PMC12022596 DOI: 10.12669/pjms.41.4.9993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 02/14/2025] [Accepted: 03/15/2025] [Indexed: 04/30/2025] Open
Abstract
Background and Objective Coronary artery disease (CAD) is a multifaceted ailment influenced by genetic and acquired factors. In this study we tried to determine the association of CAD with polymorphisms in renin-angiotensin-aldosterone system (RAAS) genes AGT(M235T) rs699 and AGTRI(A1166C) rs5186. Method This case-control study was conducted at Ziauddin University and National Institute of Cardiovascular Diseases Karachi from January, 2019 to June, 2020. It included 239 participants between 30-70years from both genders via convenient sampling. The participants were divided into two groups of 160 controls and 79 angiographically diagnosed CAD patients. Genotyping of AGT(M235T) and AGTRI(A1166C) was investigated by the allele-specific polymerase chain reaction (AS-PCR). Statistical analysis was done using SPSS Version-22. Independent sample t-test was applied for comparison of quantitative variables. The AGT(M235T) and AGRT1(A1166) genes were compared by Chi- square test. Results There was no significant association found between CAD and AGT(M235T) gene variants CC, CT and TT (p=0.3; p=0.1; p=0.6 respectively). AGTRI(A1166) of AA and CC variety showed significant association with CAD(p<0.001), while its AC variant showed no significant association with the disease. The odds of CC of AGRT1(A1166C) having CAD were 14 times more, whereas having CAD with AA of AGRT1(A1166C) were 70% less. Conclusion Individuals with CC polymorphisms of AGTRI(A1166) gene are 14 times more likely to develop CAD, whereas those with AA variation are less likely to develop the disease. AC variation of the AGTRI(A1166) gene along with all variations of the AGT(M235T) gene were not associated with development of CAD.
Collapse
Affiliation(s)
- Syed Tousif Ahmed
- Syed Tousif Ahmed, MBBS, M.Phil Professor & Head, Department of Physiology, Ziauddin University, Karachi, Pakistan
| | - Muhammad Israr Nasir
- Muhammad Israr Nasir, M.Sc. PhD. Associate Prof Molecular Pathology, Department of Molecular Pathology, Fizaiya Ruth Pfau Medical College Karachi Campus, Air University Islamabad, Pakistan
| | - Kanwal Fatima Amir
- Kanwal Fatima Amir, MBBS, FCPS Associate Professor, National Institute of Cardiovascular Diseases, Karachi, Pakistan
| | - Pirzada Qasim Raza Siddiqui
- Pirzada Qasim Raza Siddiqui, M.Sc, M.Phil, PhD Professor Emeritus, Department of Physiology, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
3
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
4
|
Bustamante M, Quiroga C, Mancilla G, Gomez W, Tapia A, Figueroa R, Mondaca-Ruff D, Oyarzún I, Verdejo HE, Lavandero S, Castro P. Autophagy fine-tuning by angiotensin-(1-9) in cultured rat cardiomyocytes. Front Cardiovasc Med 2025; 12:1408325. [PMID: 40144934 PMCID: PMC11937029 DOI: 10.3389/fcvm.2025.1408325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background The renin-angiotensin system (RAS) plays a pivotal role in regulating blood volume, systemic vascular resistance, and electrolyte balance, serving as a key component of cardiovascular health. Recent findings highlight the role of angiotensin II (Ang II) in inducing autophagy through angiotensin II receptor type 1 (AT1R). Autophagy, a process of self-degradation and turnover of cellular components, is a homeostatic response that eliminates superfluous materials. Abnormal autophagy promotes cardiomyocyte loss and is critical in hypertrophy and heart failure progression. The RAS's non-canonical axis, which includes the angiotensin 1-9 peptide [Ang-(1-9)], has an anti-hypertrophic effect in cardiomyocytes via an unknown mechanism. In the present study, we aimed to elucidate the effect of Ang-(1-9) on cardiomyocyte autophagy. Methods We isolated and cultured neonatal ventricular cardiomyocytes and then co-treated them with Ang-(1-9) in the presence of chloroquine (CQ), Ang-II, and chemical inhibitors of different signaling pathways. After treatment, total RNA and protein extracts were obtained to analyze the abundance of different autophagy markers. Likewise, cells were fixed, and autophagy was analyzed through epifluorescence microscopy. Results Our findings show that CQ leads to a reduction in autophagy markers, such as microtubule-associated protein 1 light chain 3-II (LC3-II) and total LC3, suggesting Ang-(1-9)'s regulatory role in basal autophagy levels. Furthermore, Ang-(1-9) opposes Ang-II-induced autophagy and induces the phosphorylation of the S234 residue of Beclin-1 (BCN1) via an angiotensin II receptor type 2 (AT2R)/Akt-dependent pathway. Conclusions This reduction of Ang-II-induced autophagy by Ang-(1-9) unveils a novel aspect of its action, potentially contributing to its cardioprotective effects.
Collapse
Affiliation(s)
- Mario Bustamante
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georthan Mancilla
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Physiology and Biophysics Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anita Tapia
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Figueroa
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology & Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ingrid Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Transducción de Señales Moleculares, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Castro
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
De Bartolo A, Angelone T, Rocca C. Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging. Vascul Pharmacol 2025; 158:107462. [PMID: 39805379 DOI: 10.1016/j.vph.2025.107462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.e., chronic low-grade inflammation-inflammaging), oxidative stress, and mitochondrial dysfunction in aging vascular compartment. We focus on the interplay between these events, which contribute to generating a vicious cycle driving the progressive alterations in vascular structure and function during cardiovascular aging. We also discuss the primary role of senescent endothelial cells and vascular smooth muscle cells, and the potential link between vascular and myeloid cells, in impairing plaque stability and promoting the progression of atherosclerosis. The aim of this summary is to provide potential novel insights into targeting these processes for therapeutic benefit.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
6
|
Zisis M, Chondrogianni ME, Androutsakos T, Rantos I, Oikonomou E, Chatzigeorgiou A, Kassi E. Linking Cardiovascular Disease and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): The Role of Cardiometabolic Drugs in MASLD Treatment. Biomolecules 2025; 15:324. [PMID: 40149860 PMCID: PMC11940321 DOI: 10.3390/biom15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
The link between cardiovascular disease (CVD) and metabolic dysfunction-associated steatotic liver disease (MASLD) is well-established at both the epidemiological and pathophysiological levels. Among the common pathophysiological mechanisms involved in the development and progression of both diseases, oxidative stress and inflammation, insulin resistance, lipid metabolism deterioration, hepatokines, and gut dysbiosis along with genetic factors have been recognized to play a pivotal role. Pharmacologic interventions with drugs targeting common modifiable cardiometabolic risk factors, such as T2DM, dyslipidemia, and hypertension, are a reasonable strategy to prevent CVD development and progression of MASLD. Recently, a novel drug for metabolic dysfunction-associated steatohepatitis (MASH), resmetirom, has shown positive effects regarding CVD risk, opening new opportunities for the therapeutic approach of MASLD and CVD. This review provides current knowledge on the epidemiologic association of MASLD to CVD morbidity and mortality and enlightens the possible underlying pathophysiologic mechanisms linking MASLD with CVD. The role of cardiometabolic drugs such as anti-hypertensive drugs, hypolipidemic agents, glucose-lowering medications, acetylsalicylic acid, and the thyroid hormone receptor-beta agonist in the progression of MASLD is also discussed. Metformin failed to prove beneficial effects in MASLD progression. Studies on the administration of thiazolinediones in MASLD suggest effectiveness in improving steatosis, steatohepatitis, and fibrosis, while newer categories of glucose-lowering agents such as GLP-1Ra and SGLT-2i are currently being tested for their efficacy across the whole spectrum of MASLD. Statins alone or in combination with ezetimibe have yielded promising results. The conduction of long-duration, large, high-quality, randomized-controlled trials aiming to assess by biopsy the efficacy of cardiometabolic drugs to reverse MASLD progression is of great importance.
Collapse
Affiliation(s)
- Marios Zisis
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Ilias Rantos
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Patel TA, Gao L, Boomer SH, Liu X, Patel KP, Zheng H. Downregulation of neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus in Ins2 Akita-type-1 diabetic mice contributes to sympatho-excitation. Nitric Oxide 2025; 154:1-7. [PMID: 39521242 PMCID: PMC11729414 DOI: 10.1016/j.niox.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Activation of both renin-angiotensin system (RAS) and the sympathetic system is the primary etiologic event in developing cardiovascular complications in diabetes mellitus (DM). However, the precise mechanisms for sympathetic activation in DM have not been elucidated. Here we attempted to investigate diabetes-linked cardiovascular dysregulation due to angiotensin II (Ang II)-mediated reduction in neuronal nitric oxide (NO) synthase (nNOS) within the paraventricular neuleus (PVN). In the present study, we used Ins2+/-Akita (a spontaneous, insulin-dependent genetic diabetic non-obese murine model) and wild-type (WT) littermates mice as controls. At 14 weeks of age, we found the Akita mice had increased renal sympathetic nerve activity and elevated levels of plasma norepinephrine. There was decreased expression of nNOS protein (Akita 0.43 ± 0.11 vs. WT 0.75 ± 0.05, P < 0.05) in the PVN of Akita mice. Akita mice had increased expression of angiotensin-converting enzyme (ACE) (Akita 0.58 ± 0.05 vs. WT 0.34 ± 0.04, P < 0.05) and Ang II type 1 receptor (Akita 0.49 ± 0.03 vs. WT 0.29 ± 0.09, P < 0.05), decreased expressions of ACE2 (Akita 0.17 ± 0.05 vs. WT 0.27 ± 0.03, P < 0.05) and angiotensin (1-7) Mas receptor (Akita 0.46 ± 0.02 vs. WT 0.77 ± 0.07, P < 0.05). Futher, there were increased protein levels of protein inhibitor of nNOS (PIN) (Akita 1.75 ± 0.08 vs. WT 0.71 ± 0.09, P < 0.05) with concomitantly decreased catalytically active dimers of nNOS (Akita 0.11 ± 0.04 vs. WT 0.19 ± 0.02, P < 0.05) in the PVN in Akita mice. Our studies suggest that activation of the excitatory arm of RAS, leads to a decrease NO, causing an over-activation of the sympathetic drive in DM.
Collapse
Affiliation(s)
- Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, USA
| | - Shane H Boomer
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Xuefei Liu
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Hong Zheng
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
8
|
Parvan R, Aboumsallem JP, Meijers WC, De Boer RA, Danser AHJ. Innovative hypertension treatments: Transitioning from conventional therapies to siRNA-based solutions. Eur J Pharmacol 2024; 985:177110. [PMID: 39547406 DOI: 10.1016/j.ejphar.2024.177110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Hypertension remains a critical global health issue, despite significant advancements in treatment, management and preventive approaches. Current antihypertensive drugs have limitations, such as low adherence, renin-angiotensin-aldosterone system reactivation, and drug resistance,. Ongoing preclinical and clinical studies for siRNA therapies show promising results, demonstrating significant blood pressure reductions and their potential as effective, durable treatments. This narrative review explores the potential of siRNA therapies in transforming hypertension management covering the literature until May 2024 and offering a precision medicine approach. We searched various databases, including PubMed, http://www.clinicaltrial.gov, and www.Espacenet.com, using 'hypertension' and 'siRNA' as the main keywords to retrieve relevant studies. The impact of these therapies could be profound, offering improved efficacy, reduced side effects, and enhanced patient adherence. As research continues to validate their safety and effectiveness, siRNA therapies may become integral components of hypertension management.
Collapse
Affiliation(s)
- Reza Parvan
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - Joseph Pierre Aboumsallem
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands.
| | - Wouter C Meijers
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - Rudolf A De Boer
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| |
Collapse
|
9
|
Mileva N, Panayotov P, Hristova I, Koleva G, Georgieva D, Ivanova R, Vassilev D. Impact of renin-angiotensin system targeted therapy on aortic elastic properties assessed by computed tomography. IJC HEART & VASCULATURE 2024; 55:101562. [PMID: 39649025 PMCID: PMC11625146 DOI: 10.1016/j.ijcha.2024.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/10/2024]
Abstract
Background Aortic stiffening is a well-known cardiovascular risk factor. Computed tomography (CT) has proven to be a valuable tool in the assessment of aortic elastic properties. Drugs that inhibit the renin-angiotensin system (RAS) play a central role in cardioprotective therapy. We aimed to evaluate the relationship between aortic elastic properties and RAS-targeted therapy in hypertensive patients. Methods This is an observational prospective study of hypertensive patients with nonobstructive coronary artery disease who underwent coronary CT angiography (CCTA). Aortic compliance and distensibility were calculated from the ECG-gated CCTA image. Patients were divided into two groups - those with RAS-targeted therapy - RAS(+) and those with non-RAS-targeted therapy - RAS(-). The elastic properties of the aorta were compared between the two groups. Results A total of 142 patients were included in the final analysis. 53.5 % of the population were in the RAS(+) group and 46.5 % in the RAS(-) group. Elastic properties of ascending and descending aorta were significantly higher in the RAS(+) group compared to the RAS(-) group: AA compliance 1.42 ± 0.75 mm2/mmHg in the RAS(+) vs 1.03 ± 0.91 mm2/mmHg in the RAS(-), p = 0.024; AA distensibility 2.86 ± 1.11 x10-3mm3 in the RAS(+) vs 1.82 ± 0.97 x10-3mm3 in RAS(-), p < 0.001; DA compliance 1.45 ± 1.10 mm2/mmHg in the RAS(+) vs 1.11 ± 0.91 mm2/mmHg in the RAS(-), p 0.031; DA distensibility 2.35 ± 0.84 x10-3mm3 in the RAS(+) vs 1.73 ± 1.21 x10-3mm3 in RAS(-), p < 0.001. There was an excellent correlation between RAS therapy and ascending aorta compliance and distensibility (r = 0.901, p < 0.001 and r = 0.875, p < 0.001, respectively). Conclusion Patients receiving RAS-blocking treatment revealed significantly higher compliance and distensibility of ascending and descending aorta. In addition, aortic elastic properties were significantly correlated with the RAS-targeted therapy.
Collapse
Affiliation(s)
- Niya Mileva
- Medica Cor Hospital, 1713 Ruse, Bulgaria
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Panayot Panayotov
- Medica Cor Hospital, 1713 Ruse, Bulgaria
- Department of Cardiology, Pulmonology and Endocrinology, Medical Faculty, Medical University of Pleven, Bulgaria
| | | | | | | | - Raya Ivanova
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Dobrin Vassilev
- Medica Cor Hospital, 1713 Ruse, Bulgaria
- Ruse University “Angel Kanchev”, Ruse, Bulgaria
| |
Collapse
|
10
|
Asar TO, Al-Abbasi FA, Sheikh RA, Zeyadi MAM, Nadeem MS, Naqvi S, Kumar V, Anwar F. Metformin's dual impact on Gut microbiota and cardiovascular health: A comprehensive analysis. Biomed Pharmacother 2024; 178:117128. [PMID: 39079259 DOI: 10.1016/j.biopha.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/25/2024] Open
Abstract
Cardiovascular diseases (CVD) cause significant global morbidity, mortality and public health burden annually. CVD alters richness, diversity, and composition of Gut microbiota along with RAS and histopathological differences. Present study explores Metformin role in mitigating doxorubicin induced cardiovascular toxicity/remodeling. Animals were divided into 4 groups with n=6: Group I (N. Control) free access to diet and water; Group II (MET. Control) on oral Metformin (250 mg/kg) daily; Group III (DOX. Control) alternate day intraperitoneal Doxorubicin (3 mg/kg) totaling 18 mg/kg; Group IV (DOX. MET. Control) received both daily oral Metformin (250 mg/kg) and alternate day Doxorubicin (3 mg/kg). Gut microbial analysis was made from stool before animals were sacrificed for biochemical and histopathological analysis. Significant alterations were observed in ɑ and β-diversity with new genus from Firmicutes, specifically Clostridia_UCG-014, Eubacterium ruminantium, and Tunicibacter, were prevalent in both the DOX. Control and DOX.MET groups. Proteobacteria, represented by Succinivibrio, were absent in all groups. Additionally, Parabacteroides from the Bacteroidia phylum was absent in all groups except the N. control. In the DOX.MET Control group, levels of Angiotensin II ( 7.75± 0.49 nmol/min, p<0.01) and Renin (2.60±0.26 ng/ml/hr) were significantly reduced. Conversely, levels of CK-MB, Fibrinogen, Troponin, CRP ( p < 0.0001), and TNFɑ (p < 0.05) were elevated. Histopathological examination revealed substantial cardiac changes, including Fibrinogen and fat deposition and eosinophilic infiltration, as well as liver damage characterized by binucleated cells and damaged hepatocytes, along with altered renal tissues in the DOX.MET.Control group. The findings suggest that MET. significantly modifies gut microbiota, particularly impacting the Firmicutes and Proteobacteria phyla. The reduction in Angiotensin II levels, alongside increased inflammatory markers and myocardial damage, highlights the complex interactions and potential adverse effects associated with MET therapy on cardiovascular health.
Collapse
Affiliation(s)
- Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia.
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | | | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India.
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
11
|
Todor SB, Ichim C, Boicean A, Mihaila RG. Cardiovascular Risk in Philadelphia-Negative Myeloproliferative Neoplasms: Mechanisms and Implications-A Narrative Review. Curr Issues Mol Biol 2024; 46:8407-8423. [PMID: 39194713 DOI: 10.3390/cimb46080496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs), encompassing disorders like polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are characterized by clonal hematopoiesis without the Philadelphia chromosome. The JAK2 V617F mutation is prevalent in PV, ET, and PMF, while mutations in MPL and CALR also play significant roles. These conditions predispose patients to thrombotic events, with PMF exhibiting the lowest survival among MPNs. Chronic inflammation, driven by cytokine release from aberrant leukocytes and platelets, amplifies cardiovascular risk through various mechanisms, including atherosclerosis and vascular remodeling. Additionally, MPN-related complications like pulmonary hypertension and cardiac fibrosis contribute to cardiovascular morbidity and mortality. This review consolidates recent research on MPNs' cardiovascular implications, emphasizing thrombotic risk, chronic inflammation, and vascular stiffness. Understanding these associations is crucial for developing targeted therapies and improving outcomes in MPN patients.
Collapse
Affiliation(s)
- Samuel Bogdan Todor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | | |
Collapse
|
12
|
Paul S, Kaushik R, Chawla P, Upadhyay S, Rawat D, Akhtar A. Vitamin-D as a multifunctional molecule for overall well-being: An integrative review. Clin Nutr ESPEN 2024; 62:10-21. [PMID: 38901929 DOI: 10.1016/j.clnesp.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
Vitamin D is amongst the most important biomolecules to regularize and help in sustainable health, however, based on the studies, deficiency of this multifunctional vitamin is common. Vitamin D, besides playing a role in the form of vitamins, also acts as a multifunctional hormone (steroid). Vitamin D is synthesized inside the body through various steps starting from ultraviolet radiation exposure and comes from limited food sources, however, vitamin D-fortified food products are still among the major sources of vitamin D. Current review, focused on how vitamin D acts as a multifunctional molecule by effecting different functions in the body in normal or specific conditions and how it is important in fortification and how it can be managed from the available literature till date. During the Covid pandemic, people were aware of vitamin D and took supplementation, fortified foods, and sat under sunlight. As COVID prevalence decreases, people start forgetting about vitamin D. Vitamin D is very crucial for overall well-being as it has protective effects against a broad range of diseases as it can reduce inflammation, cancer cell growth and helps in controlling infection, increase metabolism, muscle, and bone strength, neurotransmitter expression, etc. Therefore, the present review is to provoke the population, and fulfillment of the vitamin D recommended dietary allowance daily must be confirmed.
Collapse
Affiliation(s)
- Snigdha Paul
- UPES, Bidholi, Dehradun 248007, Uttarakhand, India
| | | | - Prince Chawla
- Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Divya Rawat
- UPES, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Ansab Akhtar
- Louisiana State University, School of Medicine, New Orleans, USA
| |
Collapse
|
13
|
Mirahmadi M, Salehi A, Golalipour M, Bakhshandeh A, Shahbazi M. Association of rs5051 and rs699 polymorphisms in angiotensinogen with coronary artery disease in Iranian population: A case-control study. Medicine (Baltimore) 2024; 103:e37045. [PMID: 38489704 PMCID: PMC10939567 DOI: 10.1097/md.0000000000037045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 03/17/2024] Open
Abstract
Coronary artery disease (CAD) is the third most common cause of mortality globally (with 17.8 million deaths annually). Angiotensinogen (AGT) and polymorphisms in this gene can be considered as susceptibility factors for CAD. We performed a retrospective case-control study to determine the correlation of AGT rs5051 and rs699 polymorphisms with CAD in an Iranian population. We genotyped 310 CAD patients and 310 healthy subjects using polymerase chain reaction-based methods. To confirm the accuracy of the screening approach, 10% of genotyped subjects were validated using gold-standard Sanger Sequencing. To evaluate the effect of the candidate polymorphisms, white blood cells were randomly purified from the subjects and AGT expression was measured by quantitative reverse transcriptase-polymerase chain reaction. Sex stratification indicated a significant correlation between CAD and male sex (P = .0101). We found a significant association between the rs5051 A allele (P = .002) and the rs699 C allele, and CAD (P = .0122) in recessive and dominant models. Moreover, our findings showed a significant association of the haplotype, including the rs5051 A/A and rs699 T/C genotypes, with CAD (P = .0405). Finally, AGT mRNA levels were significantly decreased in patients harboring the candidate polymorphisms (P = .03). According to our findings The AGT rs5051 A and AGT rs699 C alleles are predisposing variants of CAD risk and severity in the Iranian population.
Collapse
Affiliation(s)
- Maryam Mirahmadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Genetics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
- Department of Exomine, PardisGene company, Tehran, Iran
| | - Aref Salehi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Bakhshandeh
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- AryaTinaGene, Biopharmaceutical Company, Gorgan, Iran
| |
Collapse
|
14
|
Szczepanska-Sadowska E. Interplay of Angiotensin Peptides, Vasopressin, and Insulin in the Heart: Experimental and Clinical Evidence of Altered Interactions in Obesity and Diabetes Mellitus. Int J Mol Sci 2024; 25:1310. [PMID: 38279313 PMCID: PMC10816525 DOI: 10.3390/ijms25021310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The present review draws attention to the specific role of angiotensin peptides [angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)], vasopressin (AVP), and insulin in the regulation of the coronary blood flow and cardiac contractions. The interactions of angiotensin peptides, AVP, and insulin in the heart and in the brain are also discussed. The intracardiac production and the supply of angiotensin peptides and AVP from the systemic circulation enable their easy access to the coronary vessels and the cardiomyocytes. Coronary vessels and cardiomyocytes are furnished with AT1 receptors, AT2 receptors, Ang (1-7) receptors, vasopressin V1 receptors, and insulin receptor substrates. The presence of some of these molecules in the same cells creates good conditions for their interaction at the signaling level. The broad spectrum of actions allows for the engagement of angiotensin peptides, AVP, and insulin in the regulation of the most vital cardiac processes, including (1) cardiac tissue oxygenation, energy production, and metabolism; (2) the generation of the other cardiovascular compounds, such as nitric oxide, bradykinin (Bk), and endothelin; and (3) the regulation of cardiac work by the autonomic nervous system and the cardiovascular neurons of the brain. Multiple experimental studies and clinical observations show that the interactions of Ang II, Ang(1-7), AVP, and insulin in the heart and in the brain are markedly altered during heart failure, hypertension, obesity, and diabetes mellitus, especially when these diseases coexist. A survey of the literature presented in the review provides evidence for the belief that very individualized treatment, including interactions of angiotensins and vasopressin with insulin, should be applied in patients suffering from both the cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Holmes D, Colaneri M, Palomba E, Gori A. Exploring post-SEPSIS and post-COVID-19 syndromes: crossovers from pathophysiology to therapeutic approach. Front Med (Lausanne) 2024; 10:1280951. [PMID: 38249978 PMCID: PMC10797045 DOI: 10.3389/fmed.2023.1280951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Sepsis, driven by several infections, including COVID-19, can lead to post-sepsis syndrome (PSS) and post-acute sequelae of COVID-19 (PASC). Both these conditions share clinical and pathophysiological similarities, as survivors face persistent multi-organ dysfunctions, including respiratory, cardiovascular, renal, and neurological issues. Moreover, dysregulated immune responses, immunosuppression, and hyperinflammation contribute to these conditions. The lack of clear definitions and diagnostic criteria hampers comprehensive treatment strategies, and a unified therapeutic approach is significantly needed. One potential target might be the renin-angiotensin system (RAS), which plays a significant role in immune modulation. In fact, RAS imbalance can exacerbate these responses. Potential interventions involving RAS include ACE inhibitors, ACE receptor blockers, and recombinant human ACE2 (rhACE2). To address the complexities of PSS and PASC, a multifaceted approach is required, considering shared immunological mechanisms and the role of RAS. Standardization, research funding, and clinical trials are essential for advancing treatment strategies for these conditions.
Collapse
Affiliation(s)
- Darcy Holmes
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Colaneri
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Emanuele Palomba
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Andrea Gori
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| |
Collapse
|
16
|
Zakiev VD, Kotovskaya YV, Tkacheva ON. [Sartans in the treatment of arterial hypertension: focus on telmisartan and azilsartan. A review]. TERAPEVT ARKH 2023; 95:810-817. [PMID: 38158926 DOI: 10.26442/00403660.2023.09.202423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 01/03/2024]
Abstract
The activity of the renin-angiotensin-aldosterone system is one of the main pathogenetic mechanisms underlying cardiovascular diseases at all stages of the cardiovascular continuum. This article discusses the role of telmisartan and azilsartan as the most powerful sartans in modern cardiology. Azilsartan and especially telmisartan have a significant organoprotection and are superior to other antihypertensive drugs in terms of lowering blood pressure. However, the effect of azilsartan on hard endpoints has not been studied while the efficacy of telmisartan on hard endpoints has been evaluated in plenty clinical trials including 3 large randomized clinical trials with several thousand patients. The article also presents calculations showing the better cost-effectiveness of telmisartan compared to azilsartan.
Collapse
Affiliation(s)
- V D Zakiev
- Pirogov Russian National Research Medical University
| | | | - O N Tkacheva
- Pirogov Russian National Research Medical University
| |
Collapse
|
17
|
Wan Y, Zhang Z, Ling Y, Cui H, Tao Z, Pei J, Maimaiti A, Bai H, Wu Y, Li J, Zhao G, Zaid M. Association of triglyceride-glucose index with cardiovascular disease among a general population: a prospective cohort study. Diabetol Metab Syndr 2023; 15:204. [PMID: 37845738 PMCID: PMC10580532 DOI: 10.1186/s13098-023-01181-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The impact of triglyceride-glucose (TyG) index, a surrogate marker for insulin resistance, on the risk of cardiovascular disease (CVD) in general populations remains controversial. We aimed to comprehensively study the relationship between TyG index with the risk of incident CVD events in the general population in Shanghai. METHODS A total of 42,651 participants without previous history of CVD events from Shanghai Suburban Adult Cohort and Biobank (SSACB) were included. SSACB was a community-based natural population cohort study using multistage cluster sampling method. TyG index was calculated as Ln [fasting serum triglyceride (mg/dL) * fasting blood glucose (mg/dL)/2]. Kaplan-Meier curves, log-rank test and cox proportional hazards model were used to calculate the association between TyG index and incident CVD, including stroke and coronary heart disease (CHD). Restricted cubic spline analyses were used to determine whether there was a non-linear relationship between TyG index and CVD events. RESULTS During a median follow-up of 4.7 years, 1,422 (3.3%) individuals developed CVD, including 674 (1.6%) cases of stroke and 732 (1.7%) cases of CHD. A one unit increment higher TyG index was associated with [HR(95%CI)] 1.16(1.04-1.29) in CVD and with 1.39(1.19-1.61) in stroke. Only linear relationships between TyG and CVD/stroke were observed, while no relationship was observed with CHD after adjustments for confounders. In subgroup analyses, younger (< 50y) and diabetic participants had higher risk of CVD than their counterpart groups, while hypertensive and dyslipidemic participants depicted lower risks than their counterparts. CONCLUSION Elevated TyG index was associated with a higher risk of incident CVD and stroke. TyG index may help in the early stage of identifying people at high risk of CVD.
Collapse
Affiliation(s)
- Yiming Wan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Ziliang Zhang
- Shanghai Depeac Biotechnology Co., Ltd, Shanghai, China
| | - Yong Ling
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Hui Cui
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Zihan Tao
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianfeng Pei
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Aikedan Maimaiti
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Haifan Bai
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yiling Wu
- Songjiang Center for Disease Control and Prevention, Shanghai, China
| | - Jing Li
- Songjiang District Zhongshan Street Community Healthcare Center, Shanghai, China
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Maryam Zaid
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Sahana U, Wehland M, Simonsen U, Schulz H, Grimm D. A Systematic Review of the Effect of Vericiguat on Patients with Heart Failure. Int J Mol Sci 2023; 24:11826. [PMID: 37511587 PMCID: PMC10380763 DOI: 10.3390/ijms241411826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Despite recent advances in heart failure (HF) therapy, the risk of cardiovascular (CV) mortality, morbidity, and HF hospitalization (HFH) are major challenges in HF treatment. We aimed to review the potential of vericiguat as a treatment option for HF. A systematic literature review was performed using the PubMed database and ClinicalTrials.gov. Four randomized controlled trials were identified, which study the safety and efficacy of vericiguat in HF patients. Vericiguat activates soluble guanylate cyclase (sGC) by binding to the beta-subunit, bypassing the requirement for NO-induced activation. The nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway plays an essential role in cardiovascular (CV) regulation and the protection of healthy cardiac function but is impaired in HF. Vericiguat reduced the risk of CV death and HFH in HF patients with reduced ejection fraction (HFrEF) but showed no therapeutic effect on HF with preserved ejection fraction (HFpEF). The trials demonstrated a favorable safety profile with most common adverse events such as hypotension, syncope, and anemia. Therefore, vericiguat is recommended for patients with HFrEF and a minimum systolic blood pressure of 100 mmHg. Treatment with vericiguat is considered when the individual patient experiences decompensation despite being on guideline-recommended medication, e.g., angiotensin-converting inhibitor/AT1 receptor antagonist, beta-adrenoceptor antagonist, spironolactone, and sodium-glucose transporter 2 inhibitors. Furthermore, larger studies are required to investigate any potential effect of vericiguat in HFpEF patients. Despite the limitations, vericiguat can be recommended for patients with HFrEF, where standard-of-care is insufficient, and the disease worsens.
Collapse
Affiliation(s)
- Urjosee Sahana
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| | - Ulf Simonsen
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| | - Daniela Grimm
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| |
Collapse
|