1
|
Mahgoup EM. "Gut Microbiota as a Therapeutic Target for Hypertension: Challenges and Insights for Future Clinical Applications" "Gut Microbiota and Hypertension Therapy". Curr Hypertens Rep 2025; 27:14. [PMID: 40261509 DOI: 10.1007/s11906-025-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW Systemic hypertension is a major risk factor for cardiovascular disease and remains challenging to manage despite the widespread use of antihypertensive medications and lifestyle modifications. This review explores the role of gut microbiota in hypertension development and regulation, highlighting key mechanisms such as inflammation, gut-brain axis modulation, and bioactive metabolite production. We also assess the potential of microbiota-targeted therapies for hypertension management. RECENT FINDINGS Emerging evidence indicates that microbial dysbiosis, high-salt diets, and gut-derived metabolites such as short-chain fatty acids (SCFAs) and bile acids significantly influence blood pressure regulation. Preclinical and early clinical studies suggest that interventions targeting gut microbiota, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), and dietary modifications, may help modulate hypertension. However, variability in gut microbiota composition among individuals and limited human trial data pose challenges to translating these findings into clinical practice. While microbiota-based therapies show promise for hypertension management, further research is needed to establish their efficacy and long-term effects. Large-scale, standardized clinical trials are crucial for understanding the therapeutic potential and limitations of gut microbiota interventions. A deeper understanding of the gut-hypertension axis could lead to novel, personalized treatment strategies for hypertension.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
- Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Jain P, Jain A, Deshmukh R, Samal P, Satapathy T, Ajazuddin. Metabolic dysfunction-associated steatotic liver disease (MASLD): Exploring systemic impacts and innovative therapies. Clin Res Hepatol Gastroenterol 2025; 49:102584. [PMID: 40157567 DOI: 10.1016/j.clinre.2025.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), which includes the inflammatory subtype metabolic dysfunction-associated steatohepatitis, is a prominent cause of chronic liver disease with systemic effects. Insulin resistance, obesity, and dyslipidaemia produce MASLD in over 30 % of adults. It is a global health issue. From MASLD to MASH, hepatic inflammation and fibrosis grow, leading to cirrhosis, hepatocellular cancer, and extrahepatic complications such CVD, CKD, and sarcopenia. Effects of MASLD to MASH are mediated through mechanisms that include inflammation, oxidative stress, dysbiosis, and predisposition through genetic makeup. Advances in diagnostic nomenclature in the past few years have moved the emphasis away from NAFLD to MASLD, focusing on the metabolic etiology and away from the stigma of an alcoholic-related condition. Epidemiological data show a large geographical variability and increasing prevalence in younger populations, particularly in regions with high carbohydrate-rich diets and central adiposity. Lifestyle modification is considered as the main management of MASLD currently. This may include dietary intervention, exercise, and weight loss management. Pharmaceutical management is primarily aimed at metabolic dysfunction with promising findings for GLP-1 receptor agonists, pioglitazone and SGLT-2 inhibitors, which can correct both hepatic and systemic outcome. However, it still depends on well-integrated multidisciplinary care models by considering complex relationships between MASLD and its effects on extrahepatic organs. Determining complications at an early stage; developing precision medicine strategies; exploring new therapeutic targets will represent crucial factors in improving their outcomes. This review discuss the systemic nature of MASLD and calls for multiple collaborations to reduce its far-reaching health impacts and our quest for understanding its pathological mechanisms. Thus, collective efforts that are required to address MASLD are under the public health, clinical care, and research angles toward effectively containing its rapidly increasing burden.
Collapse
Affiliation(s)
- Parag Jain
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India, 490024.
| | - Akanksha Jain
- Department of Biotechnology, Bharti University, Durg, C.G., India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, India, 281406
| | - Pradeep Samal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G., India
| | - Trilochan Satapathy
- Department of Pharmacy, Columbia Institute of Pharmaceutical Sciences, Raipur, C.G., India, 493111
| | - Ajazuddin
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India, 490024
| |
Collapse
|
3
|
Mahmod AI, Govindaraju K, Lokanathan Y, Said NABM, Ibrahim B. Exploring the Potential of Stem Cells in Modulating Gut Microbiota and Managing Hypertension. Stem Cells Dev 2025; 34:99-116. [PMID: 39836384 DOI: 10.1089/scd.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood. Recent studies indicate that an imbalance in gut microbiota, referred to as dysbiosis, may promote hypertension, affecting blood pressure regulation through metabolites such as short-chain fatty acids and trimethylamine N-oxide. Current antihypertensive medications face limitations, including resistance and adherence issues, highlighting the need for novel therapeutic approaches. Stem cell therapy, an emerging field in regenerative medicine, shows promise in addressing these challenges. Stem cells, with mesenchymal stem cells being a prime example, have regenerative, anti-inflammatory, and immunomodulatory properties. Emerging research indicates that stem cells can modulate gut microbiota, reduce inflammation, and improve vascular health, potentially aiding in blood pressure management. Research has shown the positive impact of stem cells on gut microbiota in various disorders, suggesting their potential therapeutic role in treating hypertension. This review synthesizes the recent studies on the complex interactions between gut microbiota, stem cells, and systemic arterial hypertension. By offering a thorough analysis of the current literature, it highlights key insights, uncovers critical gaps, and identifies emerging trends that will inform and guide future investigations in this rapidly advancing field.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Chulenbayeva L, Issilbayeva A, Sailybayeva A, Bekbossynova M, Kozhakhmetov S, Kushugulova A. Short-Chain Fatty Acids and Their Metabolic Interactions in Heart Failure. Biomedicines 2025; 13:343. [PMID: 40002756 PMCID: PMC11853371 DOI: 10.3390/biomedicines13020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Short-chain fatty acids (SCFAs), produced through fermentation of dietary fibers by gut bacteria, play a central role in modulating cardiovascular function and heart failure (HF) development. The progression of HF is influenced by intestinal barrier dysfunction and microbial translocation, where SCFAs serve as key mediators in the gut-heart axis. This review examines the complex metabolic interactions between SCFAs and other gut microbiota metabolites in HF, including their relationships with trimethylamine N-oxide (TMAO), aromatic amino acids (AAAs), B vitamins, and bile acids (BAs). We analyze the associations between SCFA production and clinical parameters of HF, such as left ventricular ejection fraction (LVEF), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and glomerular filtration rate (GFR). Gaining insights into metabolic networks offers new potential therapeutic targets and prognostic markers for managing heart failure, although their clinical significance needs further exploration.
Collapse
Affiliation(s)
- Laura Chulenbayeva
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (S.K.); (A.K.)
| | - Argul Issilbayeva
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (S.K.); (A.K.)
| | - Aliya Sailybayeva
- Heart Center, CF “University Medical Center”, Astana 010000, Kazakhstan; (A.S.); (M.B.)
| | | | - Samat Kozhakhmetov
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (S.K.); (A.K.)
| | - Almagul Kushugulova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (S.K.); (A.K.)
- Heart Center, CF “University Medical Center”, Astana 010000, Kazakhstan; (A.S.); (M.B.)
| |
Collapse
|
5
|
Leng X, Wei X, Wang J, Yao X, Zhang M, Sun D, Liang J, Chi L, Cheng Y. Impacts of intestinal microbiota metabolite trimethylamine N-oxide on cardiovascular disease: a bibliometric analysis. Front Microbiol 2025; 15:1491731. [PMID: 39834376 PMCID: PMC11743947 DOI: 10.3389/fmicb.2024.1491731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Background Trimethylamine N-oxide (TMAO), a metabolite dependent on intestinal microbiota, is closely related to the emergence, progression, and prognosis of cardiovascular disease (CVD), and has received increasing attention in recent years. Objective The current research hotspots and future development trends in TMAO and CVD field are found through bibliometrics analysis, which provides reference for further study. Methods The bibliometrics tools VOSviewer and CiteSpace were used to analyze the publications from the Web of Science Core Collection (WOSCC) database. The articles published from 2004 to 2024 about the relationship between TMAO and CVD were retrieved. Bibliometric analysis includes annual publications, countries/regions, institutions, authors and co-cited authors, journals and cited-journals, references and keywords. Results After searching and screening, 1,466 publications were included for subsequent bibliometric analysis. Since 2014, the number of publications exposing the relationship between TMAO and CVD has increased rapidly, as has the frequency of citations. China, USA and Italy are the countries that publish the most relevant research. Cleveland Clinic is the leading institution in this field. Stanley L Hazen, Zeneng Wang and W H Wilson Tang are the most prolific authors in this field, and the latter two have the closest academic cooperation. American Journal of Clinical Nutrition and Journal of the American Heart Association are influential journals that publish research in this field. "Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk" is the most frequently cited article. Keyword analysis shows that gut microbiota, metabolism, phosphatidylcholine and atherosclerosis (AS) are the hotspots in this field. Conclusion This study summarizes the research situation of TMAO and CVD in the past 20 years, focusing on the effect of TMAO on pathogenesis of AS, predictive value of TMAO on CVD risk, and dietary and drug intervention for TMAO. Probiotics and natural products may be the research focus of preventing and treating CVD by intervening TMAO in the future.
Collapse
Affiliation(s)
- Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Yantai Yuhuangding Hospital, Yantai, China
| | - Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jun Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaodong Yao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junwei Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Cifuentes M, Verdejo HE, Castro PF, Corvalan AH, Ferreccio C, Quest AFG, Kogan MJ, Lavandero S. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda) 2025; 40:0. [PMID: 39078396 DOI: 10.1152/physiol.00021.2024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, the persistence of the harmful trigger or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated with the development of several increasingly prevalent and serious chronic conditions, such as obesity, cancer, and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms, and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases, and cancer. We examine the state of the art in selected aspects of the topic and propose future directions and approaches for the field.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- OMEGA Laboratory, Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Hematology and Oncology, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Public Health, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Department of Pharmacological & Toxicological Chemistry, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
- Department of Biochemistry & Molecular Biology, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
7
|
Alexandrescu L, Suceveanu AP, Stanigut AM, Tofolean DE, Axelerad AD, Iordache IE, Herlo A, Nelson Twakor A, Nicoara AD, Tocia C, Dumitru A, Dumitru E, Condur LM, Aftenie CF, Tofolean IT. Intestinal Insights: The Gut Microbiome's Role in Atherosclerotic Disease: A Narrative Review. Microorganisms 2024; 12:2341. [PMID: 39597729 PMCID: PMC11596410 DOI: 10.3390/microorganisms12112341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances have highlighted the gut microbiota as a significant contributor to the development and progression of atherosclerosis, which is an inflammatory cardiovascular disease (CVD) characterized by plaque buildup within arterial walls. The gut microbiota, consisting of a diverse collection of microorganisms, impacts the host's metabolism, immune responses, and lipid processing, all of which contribute to atherosclerosis. This review explores the complex mechanisms through which gut dysbiosis promotes atherogenesis. We emphasize the potential of integrating microbiota modulation with traditional cardiovascular care, offering a holistic approach to managing atherosclerosis. Important pathways involve the translocation of inflammatory microbial components, modulation of lipid metabolism through metabolites such as trimethylamine-N-oxide (TMAO), and the production of short-chain fatty acids (SCFAs) that influence vascular health. Studies reveal distinct microbial profiles in atherosclerosis patients, with increased pathogenic bacteria (Megamonas, Veillonella, Streptococcus) and reduced anti-inflammatory genera (Bifidobacterium, Roseburia), highlighting the potential of these profiles as biomarkers and therapeutic targets. Probiotics are live microorganisms that have health benefits on the host. Prebiotics are non-digestible dietary fibers that stimulate the growth and activity of beneficial gut bacteria. Interventions targeting microbiota, such as probiotics, prebiotics, dietary modifications, and faecal microbiota transplantation (FMT), present effective approaches for restoring microbial equilibrium and justifying cardiovascular risk. Future research should focus on longitudinal, multi-omics studies to clarify causal links and refine therapeutic applications.
Collapse
Affiliation(s)
- Luana Alexandrescu
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Adrian Paul Suceveanu
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Alina Mihaela Stanigut
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
- Nephrology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Doina Ecaterina Tofolean
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
- Pneumology Department, Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Ani Docu Axelerad
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Ionut Eduard Iordache
- Department of General Surgery, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Alexandra Herlo
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Andreea Nelson Twakor
- Internal Medicine Department, Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Alina Doina Nicoara
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
- Internal Medicine Department, Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Cristina Tocia
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Andrei Dumitru
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
| | - Eugen Dumitru
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
- Academy of Romanian Scientist, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Laura Maria Condur
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Cristian Florentin Aftenie
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| | - Ioan Tiberiu Tofolean
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (A.M.S.); (D.E.T.); (A.D.A.); (A.D.N.); (L.M.C.); (C.F.A.)
| |
Collapse
|
8
|
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Wei G, Wang Z, Ning Z. Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 2024; 28:427. [PMID: 39301250 PMCID: PMC11411594 DOI: 10.3892/etm.2024.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/03/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota refers to the diverse bacterial community residing in the gastrointestinal tract. Recent data indicate a strong correlation between alterations in the gut microbiota composition and the onset of various diseases, notably cardiovascular disorders. Evidence suggests the gut-cardiovascular axis signaling molecules released by the gut microbiota play a pivotal role in regulation. This review systematically delineates the association between dysbiosis of the gut microbiota and prevalent cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction and heart failure. Furthermore, it provides an overview of the putative pathogenic mechanisms by which dysbiosis in the gut microbiota contributes to the progression of cardiovascular ailments. The potential modulation of gut microbiota as a preventive strategy against cardiovascular diseases through dietary interventions, antibiotic therapies and probiotic supplementation is also explored and discussed within the present study.
Collapse
Affiliation(s)
- Li Lin
- Department of Biochemistry, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shaowei Xiang
- Department of Neurosurgery, Enshi State Central Hospital, Enshi, Hubei 445000, P.R. China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yan Liu
- Department of Internal Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dingwen Shen
- Department of Parasitology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xiaoping Yu
- Department of Function, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Kequan Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jia Luo
- School of Sport, Xianning Vocational and Technical College, Xianning, Hubei 437100, P.R. China
| | - Guilai Wei
- School of Art and Design, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhiguo Wang
- Department of Dermatology, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
9
|
Wang Z, Shao Y, Wu F, Luo D, He G, Liang J, Quan X, Chen X, Xia W, Chen Y, Liu Y, Chen L. Berberine ameliorates vascular dysfunction by downregulating TMAO-endoplasmic reticulum stress pathway via gut microbiota in hypertension. Microbiol Res 2024; 287:127824. [PMID: 39053076 DOI: 10.1016/j.micres.2024.127824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The gut microbial metabolite trimethylamine N-oxide (TMAO) is regarded as a novel risk factor for hypertension. Berberine (BBR) exerts cardiovascular protective effects by regulating the gut microbiota-metabolite production pathway. However, whether and how BBR alleviates TMAO-induced vascular dysfunction in hypertension remains unclear. In the present study, we observed that plasma TMAO and related bacterial abundance were significantly elevated and negatively correlated with vascular function in 86 hypertensive patients compared with 46 normotensive controls. TMAO activated endoplasmic reticulum stress (ERS) signaling pathway to promote endothelial cell dysfunction and apoptosis in vitro. BBR (100, 200 mg · kg-1 ·d-1) for 4 weeks ameliorates TMAO-induced vascular dysfunction and ERS activation in a choline-angiotensin II hypertensive mouse model. We found that plasma TMAO levels in 15 hypertensive patients treated with BBR (0.4 g, tid) were reduced by 8.8 % and 16.7 % at months 1 and 3, respectively, compared with pretreatment baseline. The oral BBR treatment also improved vascular function and lowered blood pressure. Faecal 16 S rDNA showed that BBR altered the gut bacterial composition and reduced the abundance of CutC/D bacteria in hypertensive mice and patients. In vitro bacterial cultures and enzyme reaction systems indicated that BBR inhibited the biosynthesis of TMAO precursor in the gut microbiota by binding to and inhibiting the activity of CutC/D enzyme. Our results indicate that BBR improve vascular dysfunction at least partially by decreasing TMAO via regulation of the gut microbiota in hypertension.
Collapse
Affiliation(s)
- Zhichao Wang
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Wu
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dangu Luo
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Guoyifan He
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianwen Liang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoqing Quan
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiehui Chen
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ye Chen
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Long Chen
- The International Medical Department, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
10
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
11
|
Jing L, Zhang H, Xiang Q, Hu H, Zhai C, Xu S, Tian H. Role of Trimethylamine N-Oxide in Heart Failure. Rev Cardiovasc Med 2024; 25:240. [PMID: 39139438 PMCID: PMC11317343 DOI: 10.31083/j.rcm2507240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 08/15/2024] Open
Abstract
Heart failure (HF) is a clinical syndrome characterizing by typical physical signs and symptomatology resulting from reduced cardiac output and/or intracardiac pressure at rest or under stress due to structural and/or functional abnormalities of the heart. HF is often the final stage of all cardiovascular diseases and a significant risk factor for sudden cardiac arrest, death, and liver or kidney failure. Current pharmacological treatments can only slow the progression and recurrence of HF. With advancing research into the gut microbiome and its metabolites, one such trimethylamine N-oxide (TMAO)-has been implicated in the advancement of HF and is correlated with poor prognosis in patients with HF. However, the precise role of TMAO in HF has not yet been clarified. This review highlights and concludes the available evidence and potential mechanisms associated with HF, with the hope of contributing new insights into the diagnosis and prevention of HF.
Collapse
Affiliation(s)
- Lele Jing
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, 314000 Jiaxing, Zhejiang, China
| | - Honghong Zhang
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, 314000 Jiaxing, Zhejiang, China
| | - Qiannan Xiang
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, 314000 Jiaxing, Zhejiang, China
| | - Huilin Hu
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, 314000 Jiaxing, Zhejiang, China
| | - Changlin Zhai
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, 314000 Jiaxing, Zhejiang, China
| | - Suining Xu
- Department of Cardiology, The First Affiliated Hospital, Xi’an Jiaotong University, 710061 Xi’an, Shaanxi, China
| | - Hongen Tian
- Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, 314000 Jiaxing, Zhejiang, China
| |
Collapse
|
12
|
Patel MJ, Emerenini C, Wang X, Bottiglieri T, Kitzman H. Metabolomic and Physiological Effects of a Cardiorenal Protective Diet Intervention in African American Adults with Chronic Kidney Disease. Metabolites 2024; 14:300. [PMID: 38921435 PMCID: PMC11205948 DOI: 10.3390/metabo14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic kidney disease (CKD) impacts 14% of adults in the United States, and African American (AA) individuals are disproportionately affected, with more than 3 times higher risk of kidney failure as compared to White individuals. This study evaluated the effects of base-producing fruit and vegetables (FVs) on cardiorenal outcomes in AA persons with CKD and hypertension (HTN) in a low socioeconomic area. The "Cardiorenal Protective Diet" prospective randomized trial evaluated the effects of a 6-week, community-based FV intervention compared to a waitlist control (WL) in 91 AA adults (age = 58.3 ± 10.1 years, 66% female, 48% income ≤ USD 25K). Biometric and metabolomic variables were collected at baseline and 6 weeks post-intervention. The change in health outcomes for both groups was statistically insignificant (p > 0.05), though small reductions in albumin to creatinine ratio, body mass index, total cholesterol, and systolic blood pressure were observed in the FV group. Metabolomic profiling identified key markers (p < 0.05), including C3, C5, 1-Met-His, kynurenine, PC ae 38:5, and choline, indicating kidney function decline in the WL group. Overall, delivering a directed cardiorenal protective diet intervention improved cardiorenal outcomes in AA adults with CKD and HTN. Additionally, metabolomic profiling may serve as a prognostic technique for the early identification of biomarkers as indicators for worsening CKD and increased CVD risk.
Collapse
Affiliation(s)
- Meera J. Patel
- Peter J. O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Chiamaka Emerenini
- College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA;
| | - Xuan Wang
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (X.W.); (T.B.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (X.W.); (T.B.)
| | - Heather Kitzman
- Peter J. O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
13
|
Charles JA, Habibullah NK, Bautista S, Davis B, Joshi S, Hull SC. Planting the Seed for Blood Pressure Control: The Role of Plant-Based Nutrition in the Management of Hypertension. Curr Cardiol Rep 2024; 26:121-134. [PMID: 38526748 PMCID: PMC10990999 DOI: 10.1007/s11886-023-02008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Hypertension results in significant morbidity, mortality, and healthcare expenditures. Fortunately, it is largely preventable and treatable by implementing dietary interventions, though these remain underutilized. Here, we aim to explore the role of healthy dietary patterns in hypertension management and describe approaches for busy clinicians to address nutrition effectively and efficiently with patients. RECENT FINDINGS DASH, Mediterranean, vegetarian, and vegan diets that include minimally processed, plant-based foods as core elements have consistently shown positive effects on hypertension. Recommendations that distill the most healthful components of these diets can significantly impact patient outcomes. Clinicians can harness evidence-based dietary assessment and counseling tools to implement and support behavioral changes, even during brief office visits. Healthful plant-based dietary patterns can often effectively prevent and treat hypertension. Clinicians may help improve patient outcomes by discussing evidence-based nutrition with their patients. Future work to promote infrastructural change that supports incorporating evidence-based nutrition into medical education, clinical care, and society at large can support these efforts.
Collapse
Affiliation(s)
- Justin A Charles
- Department of Family Medicine and Public Health, UC San Diego Health, San Diego, CA, USA.
| | | | - Saul Bautista
- Ethos Farm to Health/Ethos Primary Care, Long Valley, NJ, USA
| | - Brenda Davis
- Brenda Davis, Nutrition Consultations, Calgary, AB, Canada
| | - Shivam Joshi
- Department of Veterans Affairs, Orlando, FL, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah C Hull
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
- Program for Biomedical Ethics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
15
|
Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. DIABETES & METABOLISM 2024; 50:101506. [PMID: 38141808 DOI: 10.1016/j.diabet.2023.101506] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
With the rising tide of fatty liver disease related to metabolic dysfunction worldwide, the association of this common liver disease with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the old term non-alcoholic fatty liver disease (NAFLD). In 2023, a modified Delphi process was led by three large pan-national liver associations. There was consensus to change the fatty liver disease nomenclature and definition to include the presence of at least one of five common cardiometabolic risk factors as diagnostic criteria. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). The change of nomenclature from NAFLD to MAFLD and then MASLD has resulted in a reappraisal of the epidemiological trends and associations with the risk of developing CKD. The observed association between MAFLD/MASLD and CKD and our understanding that CKD can be an epiphenomenon linked to underlying metabolic dysfunction support the notion that individuals with MASLD are at substantially higher risk of incident CKD than those without MASLD. This narrative review provides an overview of the literature on (a) the evolution of criteria for diagnosing this highly prevalent metabolic liver disease, (b) the epidemiological evidence linking MASLD to the risk of CKD, (c) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of developing CKD, and (d) the potential drug treatments that may benefit both MASLD and CKD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
16
|
Cai M, Lin L, Jiang F, Peng Y, Li S, Chen L, Lin Y. Gut microbiota changes in patients with hypertension: A systematic review and meta-analysis. J Clin Hypertens (Greenwich) 2023; 25:1053-1068. [PMID: 37853925 PMCID: PMC10710550 DOI: 10.1111/jch.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023]
Abstract
Hypertension is a major public health issue worldwide. The imbalance of gut microbiota is thought to play an important role in the pathogenesis of hypertension. The authors conducted the systematic review and meta-analysis to clarify the relationship between gut microbiota and hypertension through conducting an electronic search in six databases. Our meta-analysis included 19 studies and the results showed that compared with healthy controls, Shannon significantly decreased in hypertension [SMD = -0.13, 95%CI (-0.22, -0.04), p = .007]; however, Simpson [SMD = -0.01, 95%CI (-0.14, 0.12), p = .87], ACE [SMD = 0.18, 95%CI (-0.06, 0.43), p = .14], and Chao1 [SMD = 0.11, 95%CI (-0.01, 0.23), p = .08] did not differ significantly between hypertension and healthy controls. The F/B ratio significantly increased in hypertension [SMD = 0.84, 95%CI (0.10, 1.58), p = .03]. In addition, Shannon index was negatively correlated with hypertension [r = -0.12, 95%CI (-0.19, -0.05)], but had no significant correlation with SBP [r = 0.10, 95%CI (-0.19, 0.37)] and DBP [r = -0.39, 95%CI (-0.73, 0.12)]. At the phylum level, the relative abundance of Firmicutes [SMD = -0.01, 95%CI (-0.37, 0.34), p = .94], Bacteroidetes [SMD = -0.15, 95%CI (-0.44, 0.14), p = .30], Proteobacteria [SMD = 0.25, 95%CI (-0.01, 0.51), p = .06], and Actinobacteria [SMD = 0.21, 95%CI (-0.11, 0.53), p = .21] did not differ significantly between hypertension and healthy controls. At the genus level, compared with healthy controls, the relative abundance of Faecalibacterium decreased significantly [SMD = -0.16, 95%CI (-0.28, -0.04), p = .01], while the Streptococcus [SMD = 0.20, 95%CI (0.08, 0.32), p = .001] and Enterococcus [SMD = 0.20, 95%CI (0.08, 0.33), p = .002] significantly increased in hypertension. Available evidence suggests that hypertensive patients may have an imbalance of gut microbiota. However, it still needs further validation by large sample size studies of high quality.
Collapse
Affiliation(s)
- Meiling Cai
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Special Reserve Talents LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Lingyu Lin
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Fei Jiang
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Special Reserve Talents LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Yanchun Peng
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Sailan Li
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Liangwan Chen
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Special Reserve Talents LaboratoryFujian Medical University Union HospitalFuzhouChina
| | - Yanjuan Lin
- Department of NursingFujian Medical University Union HospitalFuzhouChina
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Special Reserve Talents LaboratoryFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
17
|
Bhardwaj A, Singh A, Midha V, Sood A, Wander GS, Mohan B, Batta A. Cardiovascular implications of inflammatory bowel disease: An updated review. World J Cardiol 2023; 15:553-570. [PMID: 38058397 PMCID: PMC10696203 DOI: 10.4330/wjc.v15.i11.553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
Emerging data highlights the heightened risk of atherosclerotic cardiovascular diseases (ASCVD) in patients with chronic inflammatory disorders, particularly those afflicted with inflammatory bowel disease (IBD). This review delves into the epidemiological connections between IBD and ASCVD, elucidating potential underlying mechanisms. Furthermore, it discusses the impact of current IBD treatments on cardiovascular risk. Additionally, the cardiovascular adverse effects of novel small molecule drugs used in moderate-to-severe IBD are investigated, drawing parallels with observations in patients with rheumatoid arthritis. This article aims to comprehensively evaluate the existing evidence supporting these associations. To achieve this, we conducted a meticulous search of PubMed, spanning from inception to August 2023, using a carefully selected set of keywords. The search encompassed topics related to IBD, such as Crohn's disease and ulcerative colitis, as well as ASCVD, including coronary artery disease, cardiovascular disease, atrial fibrillation, heart failure, conduction abnormalities, heart blocks, and premature coronary artery disease. This review encompasses various types of literature, including retrospective and prospective cohort studies, clinical trials, meta-analyses, and relevant guidelines, with the objective of providing a comprehensive overview of this critical intersection of inflammatory bowel disease and cardiovascular health.
Collapse
Affiliation(s)
- Arshia Bhardwaj
- Department of Gastroenterology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Gurpreet Singh Wander
- Department of Cardiology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Bishav Mohan
- Department of Cardiology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Punjab, Ludhiana 141001, India.
| |
Collapse
|
18
|
Golubeva JA, Sheptulina AF, Elkina AY, Liusina EO, Kiselev AR, Drapkina OM. Which Comes First, Nonalcoholic Fatty Liver Disease or Arterial Hypertension? Biomedicines 2023; 11:2465. [PMID: 37760906 PMCID: PMC10525922 DOI: 10.3390/biomedicines11092465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and arterial hypertension (AH) are widespread noncommunicable diseases in the global population. Since hypertension and NAFLD are diseases associated with metabolic syndrome, they are often comorbid. In fact, many contemporary published studies confirm the association of these diseases with each other, regardless of whether other metabolic factors, such as obesity, dyslipidemia, and type 2 diabetes mellites, are present. This narrative review considers the features of the association between NAFLD and AH, as well as possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Julia A. Golubeva
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu. Elkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Ekaterina O. Liusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
19
|
Masenga SK, Povia JP, Lwiindi PC, Kirabo A. Recent Advances in Microbiota-Associated Metabolites in Heart Failure. Biomedicines 2023; 11:2313. [PMID: 37626809 PMCID: PMC10452327 DOI: 10.3390/biomedicines11082313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure is a risk factor for adverse events such as sudden cardiac arrest, liver and kidney failure and death. The gut microbiota and its metabolites are directly linked to the pathogenesis of heart failure. As emerging studies have increased in the literature on the role of specific gut microbiota metabolites in heart failure development, this review highlights and summarizes the current evidence and underlying mechanisms associated with the pathogenesis of heart failure. We found that gut microbiota-derived metabolites such as short chain fatty acids, bile acids, branched-chain amino acids, tryptophan and indole derivatives as well as trimethylamine-derived metabolite, trimethylamine N-oxide, play critical roles in promoting heart failure through various mechanisms. Mainly, they modulate complex signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells, Bcl-2 interacting protein 3, NLR Family Pyrin Domain Containing inflammasome, and Protein kinase RNA-like endoplasmic reticulum kinase. We have also highlighted the beneficial role of other gut metabolites in heart failure and other cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Joreen P. Povia
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Propheria C. Lwiindi
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| |
Collapse
|
20
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Sanni O, Butrous G, Maarman G. Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too. Pulm Circ 2023; 13:e12277. [PMID: 37583483 PMCID: PMC10423855 DOI: 10.1002/pul2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted.
Collapse
Affiliation(s)
- Steve Jacobs
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Carmen Payne
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sara Shaboodien
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Thato Kgatla
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Amy Pretorius
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Chrisstoffel Jumaar
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Olakunle Sanni
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Ghazwan Butrous
- School of Pharmacy, Imperial College of LondonUniversity of KentCanterburyUK
| | - Gerald Maarman
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|