1
|
Zailaa J, Scoffoni C, Brodersen CR. Stomatal closure as a driver of minimum leaf conductance declines at high temperature and vapor pressure deficit in Quercus. PLANT PHYSIOLOGY 2024; 197:kiae551. [PMID: 39418086 DOI: 10.1093/plphys/kiae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Rising global temperatures and vapor pressure deficits (VPDs) are increasing plant water demand and becoming major drivers of large-scale plant mortality. Controlling transient leaf water loss after stomatal closure (minimum stomatal conductance [gmin]) is recognized as a key trait determining how long plants survive during soil drought. Yet, substantial uncertainty remains regarding how gmin responds to elevated temperatures and VPD and the underlying mechanisms. We measured gmin in 24 Quercus species from temperate and Mediterranean climates to determine whether gmin was sensitive to a coupled temperature and VPD increase. We also explored mechanistic links to phenology, climate, evolutionary history, and leaf anatomy. We found that gmin in all species exhibited a nonlinear negative temperature and VPD dependence. At 25 °C (VPD = 2.2 kPa), gmin varied from 1.19 to 8.09 mmol m-2 s-1 across species but converged to 0.57 ± 0.06 mmol m-2 s-1 at 45 °C (VPD = 6.6 kPa). In a subset of species, the effect of temperature and VPD on gmin was reversible and linked to the degree of stomatal closure, which was greater at 45 °C than at 25 °C. Our results show that gmin is dependent on temperature and VPD, is highly conserved in Quercus species, and is linked to leaf anatomy and stomatal behavior.
Collapse
Affiliation(s)
- Joseph Zailaa
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032, USA
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
2
|
O'Connell BP, Wiley E. Heatwaves do not limit recovery following defoliation but alter leaf drought tolerance traits. PLANT, CELL & ENVIRONMENT 2024; 47:482-496. [PMID: 37877185 DOI: 10.1111/pce.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
As heatwave frequency increases, they are more likely to coincide with other disturbances like insect defoliation. But it is unclear if high temperatures after defoliation impact canopy recovery or leaf traits which may affect response to further stressors like drought. To examine these stressor interactions, we subjected defoliated (DEF) and undefoliated (UNDEF) oak saplings to a simulated spring heatwave of +10°C for 25 days. We measured gas exchange, leaf area recovery, carbohydrate storage, turgor loss point (ΨTLP ), and minimum leaf conductance (gmin ). During the heatwave, stem respiration exhibited stronger thermal acclimation in DEF than UNDEF saplings, while stomatal conductance and net photosynthesis increased. The heatwave did not affect leaf area recovery or carbohydrate storage of DEF saplings, but reflush leaves had higher gmin than UNDEF leaves, and this was amplified by the heatwave. Across all treatments, higher gmin was associated with higher daytime stomatal conductance and a lower ΨTLP . The results suggest defoliation stress may not be exacerbated by higher temperatures. However, reflush leaves are less conservative in their water use, limiting their ability to minimise water loss. While lower ΨTLP could help DEF trees maintain gas exchange under mild drought, they may be more vulnerable to dehydration under severe drought.
Collapse
Affiliation(s)
| | - Erin Wiley
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| |
Collapse
|
3
|
Hu Y, Xiang W, Schäfer KVR, Lei P, Deng X, Forrester DI, Fang X, Zeng Y, Ouyang S, Chen L, Peng C. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154517. [PMID: 35278541 DOI: 10.1016/j.scitotenv.2022.154517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Drought events lead to depressions in gross primary productivity (GPP) of forest ecosystems. Photosynthetic and hydraulic traits are important factors governing GPP variation. However, how these functional traits affect GPP responses to drought has not been well understood. We quantified the capacity of GPP to withstand changes during droughts (GPP_resistance) and its post-drought responses (GPP_resilience) using eddy covariance data from the FLUXNET2015 dataset, and investigated how functional traits of dominant tree species that comprised >80% of the biomass (or composition) influenced GPP_resistance or GPP_resilience. Light-saturated photosynthetic rate of dominant tree species was negatively related to GPP_resistance, and was positively correlated with GPP_resilience. Forests dominated by species with higher hydraulic safety margins (HSM), smaller vessel diameter (Vdia) and lower sensitivity of canopy stomatal conductance per unit land area (Gs) to droughts had a higher GPP_resistance, while those dominated by species with lower HSM, larger Vdia and higher sensitivity of Gs to droughts exhibited a higher GPP_resilience. Differences in functional traits of forests located in diverse climate regions led to distinct GPP sensitivities to droughts. Forests located in humid regions had a higher GPP_resilience while those in arid regions exhibited a higher GPP_resistance. Forest GPP_resistance was negatively related to drought intensity, and GPP_resilience was negatively related to drought duration. Our findings highlight the significant role of functional traits in governing forest resistance and resilience to droughts. Overall, forests dominated by species with higher hydraulic safety were more resistant to droughts, while forests containing species with higher photosynthetic and hydraulic efficiency recovered better from drought stress.
Collapse
Affiliation(s)
- Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China.
| | - Karina V R Schäfer
- Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Xiangwen Deng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - David I Forrester
- Swiss Federal Institute of Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Xi Fang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Changhui Peng
- Department of Biological Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
4
|
Guo JS, Bush SE, Hultine KR. Temporal variation in stomatal sensitivity to vapor pressure deficit in western riparian forests. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jessica S. Guo
- Arizona Experiment Station, College of Agriculture and Life Sciences University of Arizona Tucson, AZ 85721 USA
| | - Susan E. Bush
- Department of Biological Sciences University of Utah Salt Lake City, UT 84112 USA
| | - Kevin R. Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden Phoenix, AZ 85008 USA
| |
Collapse
|
5
|
Schönbeck L, Grossiord C, Gessler A, Gisler J, Meusburger K, D'Odorico P, Rigling A, Salmon Y, Stocker BD, Zweifel R, Schaub M. Photosynthetic acclimation and sensitivity to short- and long-term environmental changes in a drought-prone forest. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2576-2588. [PMID: 35134157 DOI: 10.1093/jxb/erac033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (gs) and reduced gs sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (Vcmax) and electron transport (Jmax) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought.
Collapse
Affiliation(s)
- Leonie Schönbeck
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, EPFL, Station 2, 1015 Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Station 2, 1015 Lausanne, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, EPFL, Station 2, 1015 Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Station 2, 1015 Lausanne, Switzerland
| | - Arthur Gessler
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Katrin Meusburger
- Biogeochemistry Unit, Swiss Federal Research Institute for Forest, Snow and Landscape research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Petra D'Odorico
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Andreas Rigling
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, 00014 University of Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, 00014 University of Helsinki, Finland
| | - Benjamin D Stocker
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Roman Zweifel
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
6
|
Denham SO, Oishi AC, Miniat CF, Wood JD, Yi K, Benson MC, Novick KA. Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand. TREE PHYSIOLOGY 2021; 41:944-959. [PMID: 33185239 DOI: 10.1093/treephys/tpaa153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/24/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Hydraulic stress in plants occurs under conditions of low water availability (soil moisture; θ) and/or high atmospheric demand for water (vapor pressure deficit; D). Different species are adapted to respond to hydraulic stress by functioning along a continuum where, on one hand, they close stomata to maintain a constant leaf water potential (ΨL) (isohydric species), and on the other hand, they allow ΨL to decline (anisohydric species). Differences in water-use along this continuum are most notable during hydrologic stress, often characterized by low θ and high D; however, θ and D are often, but not necessarily, coupled at time scales of weeks or longer, and uncertainty remains about the sensitivity of different water-use strategies to these variables. We quantified the effects of both θ and D on canopy conductance (Gc) among widely distributed canopy-dominant species along the isohydric-anisohydric spectrum growing along a hydroclimatological gradient. Tree-level Gc was estimated using hourly sap flow observations from three sites in the eastern United States: a mesic forest in western North Carolina and two xeric forests in southern Indiana and Missouri. Each site experienced at least 1 year of substantial drought conditions. Our results suggest that sensitivity of Gc to θ varies across sites and species, with Gc sensitivity being greater in dry than in wet sites, and greater for isohydric compared with anisohydric species. However, once θ limitations are accounted for, sensitivity of Gc to D remains relatively constant across sites and species. While D limitations to Gc were similar across sites and species, ranging from 16 to 34% reductions, θ limitations to Gc ranged from 0 to 40%. The similarity in species sensitivity to D is encouraging from a modeling perspective, though it implies that substantial reduction to Gc will be experienced by all species in a future characterized by higher D.
Collapse
Affiliation(s)
- Sander O Denham
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - A Christopher Oishi
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - Chelcy F Miniat
- USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, 3160 Coweeta Lab Rd, Otto, NC 28763, USA
| | - Jeffrey D Wood
- School of Natural Resources, University of Missouri, 1111 Rollins St., Columbia, MO 65211, USA
| | - Koong Yi
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
- Department of Environmental Sciences, University of Virginia, 291 McCormick Rd, Charlottesville, VA 29904, USA
| | - Michael C Benson
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, 702 N. Walnut Grove Ave, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Chen X, Zhao P, Hu Y, Zhao X, Ouyang L, Zhu L, Ni G. The sap flow-based assessment of atmospheric trace gas uptake by three forest types in subtropical China on different timescales. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28431-28444. [PMID: 30088244 DOI: 10.1007/s11356-018-2891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Assessing the uptake of trace gases by forests contributes to understanding the mechanisms of gas exchange between vegetation and the atmosphere and to evaluating the potential risk of these pollutant gases to forests. In this study, the multi-timescale characteristics of the stomatal uptake of NO, NO2, SO2 and O3 by Schima superba, Eucalyptus citriodora and Acacia auriculiformis were investigated by continuous sap flow measurements for a 3-year period. The peak canopy stomatal conductance (GC) for these three species appeared between 9:00 and 12:00, which was jointly regulated by the vapour pressure deficit (VPD) and photosynthetically active radiation (PAR). Additionally, annual and seasonal variations in the stomatal uptake of trace gases for these three tree species suggested that there was a combination effect between canopy stomatal conductance and ambient concentration on the uptake of trace gases. Furthermore, the result demonstrated that the trace gas absorption capacities among these three forest types followed the order of S. superba > E. citriodora > A. auriculiformis. The findings of this study have theoretical significance and application value in assessing air purification and the risk of harm to forests in Southern China.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
| | - Yanting Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Xiuhua Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Lei Ouyang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Liwei Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
8
|
Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia. WATER 2017. [DOI: 10.3390/w9060404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Carlo NJ, Renninger HJ, Clark KL, Schäfer KVR. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain. TREE PHYSIOLOGY 2016; 36:967-982. [PMID: 27259637 DOI: 10.1093/treephys/tpw044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems.
Collapse
Affiliation(s)
- Nicholas J Carlo
- Department of Earth and Environmental Sciences, Rutgers University, 101 Warren St, Newark, NJ 07102, USA
| | - Heidi J Renninger
- Department of Biological Sciences, Rutgers University, 195 University Ave., Newark, NJ 07012, USA Department of Forestry, Mississippi State University, Thompson Hall, Box 9681, Mississippi State, MS 39762, USA
| | - Kenneth L Clark
- Silas Little Experimental Forest, USDA Forest Service, 501 Four Mile Road, New Lisbon, NJ 08064, USA
| | - Karina V R Schäfer
- Department of Earth and Environmental Sciences, Rutgers University, 101 Warren St, Newark, NJ 07102, USA Department of Biological Sciences, Rutgers University, 195 University Ave., Newark, NJ 07012, USA
| |
Collapse
|
10
|
Renninger HJ, Carlo NJ, Clark KL, Schäfer KVR. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest. FRONTIERS IN PLANT SCIENCE 2015; 6:297. [PMID: 25999966 PMCID: PMC4423344 DOI: 10.3389/fpls.2015.00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/13/2015] [Indexed: 05/30/2023]
Abstract
Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.
Collapse
Affiliation(s)
- Heidi J. Renninger
- Department of Biological Sciences, Rutgers, The State University of New JerseyNewark, NJ, USA
| | - Nicholas J. Carlo
- Department of Earth and Environmental Sciences, Rutgers, The State University of New JerseyNewark, NJ, USA
| | - Kenneth L. Clark
- Silas Little Experimental Forest, Northern Research Station, United States Department of Agriculture Forest ServiceNew Lisbon, NJ, USA
| | - Karina V. R. Schäfer
- Department of Biological Sciences, Rutgers, The State University of New JerseyNewark, NJ, USA
- Department of Earth and Environmental Sciences, Rutgers, The State University of New JerseyNewark, NJ, USA
| |
Collapse
|
11
|
Song X, Clark KS, Helliker BR. Interpreting species-specific variation in tree-ring oxygen isotope ratios among three temperate forest trees. PLANT, CELL & ENVIRONMENT 2014; 37:2169-82. [PMID: 24588709 DOI: 10.1111/pce.12317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 05/13/2023]
Abstract
Although considerable variation has been documented in tree-ring cellulose oxygen isotope ratios (δ(18)O(cell)) among co-occurring species, the underlying causes are unknown. Here, we used a combination of field measurements and modelling to investigate the mechanisms behind variations in late-wood δ(18) O(cell) (δ(18)O(lc)) among three co-occurring species (chestnut oak, black oak and pitch pine) in a temperate forest. For two growing seasons, we quantified among-species variation in δ(18)O(lc), as well as several variables that could potentially cause the δ(18)O(lc) variation. Data analysis based on the δ(18) O(cell) model rules out leaf water enrichment (Δ(18)O(lw)) and tree-ring formation period (Δt), but highlights source water δ(18) O (δ(18) O(sw)) as an important driver for the measured difference in δ(18)O(lc) between black and chestnut oak. However, the enriched δ(18)O(lc) in pitch pine relative to the oaks could not be sufficiently explained by consideration of the above three variables only, but rather, we show that differences in the proportion of oxygen exchange during cellulose synthesis (p(ex)) is most likely a key mechanism. Our demonstration of the relevance of some species-specific features (or lack thereof) to δ(18)O(cell) has important implications for isotope based ecophysiological/paleoclimate studies.
Collapse
Affiliation(s)
- Xin Song
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
12
|
Schäfer KVR, Renninger HJ, Carlo NJ, Vanderklein DW. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain. FRONTIERS IN PLANT SCIENCE 2014; 5:294. [PMID: 25018759 PMCID: PMC4072175 DOI: 10.3389/fpls.2014.00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.
Collapse
Affiliation(s)
- Karina V. R. Schäfer
- Department of Biological Sciences, Rutgers University NewarkNewark, NJ, USA
- Earth and Environmental Science Department, Rutgers University NewarkNewark, NJ, USA
| | - Heidi J. Renninger
- Department of Biological Sciences, Rutgers University NewarkNewark, NJ, USA
| | - Nicholas J. Carlo
- Earth and Environmental Science Department, Rutgers University NewarkNewark, NJ, USA
| | - Dirk W. Vanderklein
- Department of Biology and Molecular Biology, Montclair State UniversityMontclair, NJ, USA
| |
Collapse
|