1
|
Wang R, Wang Y, Fu S, Liao S, Jiang T, Zhou B. Combining whole genome and transcriptome sequencing to analyze the pathogenic mechanism of Diplodia sapinea blight in Pinus sylvestris var. mongolica Litv. Virulence 2025; 16:2490216. [PMID: 40223234 PMCID: PMC12005458 DOI: 10.1080/21505594.2025.2490216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/16/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
Diplodia sapinea (= Sphaeropsis sapinea) is an opportunistic pathogen that usually lives in symbiosis (the coexistence of dissimilar organisms) with its host and can cause disease under extreme climatic or physiological stress. In this study, we generated a high-quality genome map of D. sapinea using PacBio Circular Consensus Sequencing (CCS) technology and analysed the key disease-causing genes of D. sapinea by RNA sequencing (RNA-seq). In the study, a number of cell wall degrading enzyme genes were identified to be up-regulated during pathogen infection, which may be involved in biotic stress response in P. sylvestris var. mongolica Litv. It was also found that the expression of antioxidant-related genes, such as those involved in carotenoid biosynthesis, ascorbate and glutathione metabolism, was up-regulated in the P. s. var. mongolica Litv. after fungus infection. Differently expressed genes (DEGs) -based protein-protein interaction (PPI) network was constructed that included 163 pairs of significantly positively correlated proteins, forming three highly interacting gene clusters, and the PPI network was predicted to be associated with the replication and propagation processes of the fungus. These results provide important information for understanding the pathogenic mechanisms of Diplodia tip blight and developing control strategies in P. s. var. mongolica Litv.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuting Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Sina Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shixian Liao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Xie W, Li X, Yue X, Zuo S, Yuan M. OsVQ32- OsWRKY53 Module Regulates Rice Resistance to Bacterial Blight by Suppressing OsPrx30-Mediated ROS Scavenging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40312814 DOI: 10.1021/acs.jafc.4c12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
WRKY transcription factors play crucial roles in regulating plant immune responses. Our previous research showed that OsWRKY53 negatively affects rice resistance to bacterial blight by reducing the thickness of the cell wall. In this study, we identified a physical interaction between the OsWRKY53 and the OsVQ32, revealing that the OsWRKY53 functions as a downstream component of the OsMPK4-OsVQ32 cascade. OsWRKY53 can directly bind to the promoter of OsPrx30, a gene that negatively affects rice resistance to bacterial blight, thereby activating its expression. OsWRKY53-overexpressing plants exhibited a significant increase in peroxidase activity and a decrease in hydrogen peroxide content, whereas the opposite effects were observed in the oswrky53 mutants. Furthermore, we found that the interaction between OsVQ32 and OsWRKY53 forms a complex that represses OsPrx30 transcription by enhancing the DNA-binding activity of OsWRKY53. OsVQ32 phosphorylation by the OsMPK4 further enhanced this suppression. In conclusion, our findings suggest that the OsVQ32-OsWRKY53 complex regulates the expression of OsPrx30, modulating resistance to bacterial blight by suppressing the scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xinru Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuanyu Yue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Kumari M, Sharma P, Singh A. Pipecolic acid: A positive regulator of systemic acquired resistance and plant immunity. Biochim Biophys Acta Gen Subj 2025; 1869:130808. [PMID: 40252741 DOI: 10.1016/j.bbagen.2025.130808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Pipecolic acid (Pip) is a naturally occurring non-protein amino acid, that builds up in plants in response to pathogen infection. Pip is upregulated in autophagy mutants, indicating its role as a crucial regulator of plant immunity by upregulating systemic acquired resistance (SAR). This broad-spectrum defense mechanism protects uninfected parts of the plant during subsequent pathogen attacks. Pip has been identified as a SAR chemical signal and acts before the NO-ROS-AzA-G3P. The biosynthesis of Pip begins with lysine by the activity of ALD1 and SARD4 in a sequential manner; ALD1, a lysine aminotransferase, catabolizes lysine to Δ 1-piperidine-2-carboxylic acid, which is further modified to Pip by the activity of ornithine cyclodeaminase activity of SARD4. Additionally, FMO 1, a flavin monooxygenase, catalyzes the synthesis of N-hydroxy-pipecolic acid (NHP, the final, SAR-inducing defense hormone) from Pip. Pip and its active form accumulate at the infection site in the phloem and are transported to distal parts of the plant via symplast to trigger SAR. This review focuses on the roles of Pip and NHP in regulating SAR and how they interact with other defense signals like salicylic acid (SA) to modulate plant immunity.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Prashansa Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, New Delhi, India.
| |
Collapse
|
4
|
Liu F, Xiao J, Wang XF, Wang YX, Yang HH, Cai YB, Lai FX, Fu Q, Wan PJ. Role of carbohydrate-active enzymes in brown planthopper virulence and adaptability. FRONTIERS IN PLANT SCIENCE 2025; 16:1554498. [PMID: 40303855 PMCID: PMC12038449 DOI: 10.3389/fpls.2025.1554498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Introduction Herbivorous insects, including the brown planthopper (BPH), Nilaparvata lugens, are among the most damaging pests to agricultural crops worldwide, particularly rice. These insects employ a variety of strategies to overcome plant defenses, including the secretion of carbohydrate-active enzymes (CAZymes) that degrade plant cell walls. While CAZymes are well-studied in other insect species, their role in BPH virulence remains largely unexplored. Methods This study aims to address this gap by analyzing CAZymes in 182 insect genomes, followed by a detailed genomic and transcriptomic analysis of BPH. Results We identified 644 CAZymes in BPH, including enzymes related to plant cell wall degradation. Through quantitative real-time PCR (RT-qPCR) and subcellular localization experiments, we found that 5 candidate genes exhibited increased expression during feeding on the susceptible rice variety TN1, a well-characterized variety highly susceptible to BPH and these genes were localized to the plasma membrane. Our results suggest that BPH CAZymes play a critical role in the insect's ability to feed and damage rice plants. Discussion This study provides valuable insights into the molecular mechanisms underlying insect adaptation and virulence in the co-evolutionary process between plants and herbivorous insects. By exploring the function of pest-related genes in the BPH and examining their differential responses in rice varieties with varying resistance to BPH, we aim to contribute to the development of targeted pest management strategies.
Collapse
Affiliation(s)
- Fang Liu
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Xiao
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xin-Feng Wang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Ya-Xuan Wang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Hou-Hong Yang
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Yu-Biao Cai
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Feng-Xiang Lai
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Qiang Fu
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Pin-Jun Wan
- The National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Sabelleck B, Deb S, Levecque SCJ, Freh M, Reinstädler A, Spanu PD, Thordal-Christensen H, Panstruga R. A powdery mildew core effector protein targets the host endosome tethering complexes HOPS and CORVET in barley. PLANT PHYSIOLOGY 2025; 197:kiaf067. [PMID: 39973312 PMCID: PMC12002017 DOI: 10.1093/plphys/kiaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 02/21/2025]
Abstract
Powdery mildew fungi are serious pathogens affecting many plant species. Their genomes encode extensive repertoires of secreted effector proteins that suppress host immunity. Here, we revised and analyzed the candidate secreted effector protein (CSEP) effectome of the powdery mildew fungus, Blumeria hordei (Bh). We identified seven putative effectors that are broadly conserved in powdery mildew species, suggesting that they are core effectors of these phytopathogens. We showed that one of these effectors, CSEP0214, interacts with the barley (Hordeum vulgare) vacuolar protein-sorting 18 (VPS18) protein, a shared component of the class C core vacuole/endosome tethering (CORVET) and homotypic fusion and protein-sorting (HOPS) endosomal tethering complexes that mediate fusion of early endosomes and multivesicular bodies, respectively, with the central vacuole. Overexpression of CSEP0214 and knockdown of either VPS18, HOPS-specific VPS41, or CORVET-specific VPS8 blocked the vacuolar pathway and the accumulation of the fluorescent vacuolar marker protein (SP)-RFP-AFVY in the endoplasmic reticulum. Moreover, CSEP0214 inhibited the interaction between VPS18 and VPS16, which are both shared components of CORVET as well as HOPS. Additionally, introducing CSEP0214 into barley leaf cells blocked the hypersensitive cell death response associated with resistance gene-mediated immunity, indicating that endomembrane trafficking is required for this process. CSEP0214 expression also prevented callose deposition in cell wall appositions at attack sites and encasements of fungal infection structures. Our results indicate that the powdery mildew core effector CSEP0214 is an essential suppressor of plant immunity.
Collapse
Affiliation(s)
- Björn Sabelleck
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Sohini Deb
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Sophie C J Levecque
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Anja Reinstädler
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
6
|
Wang Q, Veley KM, Johnson JMB, Sumner J, van Erven G, Kabel MA, Dhungana S, Berry J, Boyher A, Braun DM, Vermerris W, Bart RS. Three Xanthomonas Cell Wall Degrading Enzymes and Sorghum Brown midrib12 Contribute to Virulence and Resistance in the Bacterial Leaf Streak Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI05240051R. [PMID: 39928577 DOI: 10.1094/mpmi-05-24-0051-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
With an increasing demand for renewable fuels, bioenergy crops are being developed with high sugar content and altered cell walls to improve processing efficiency. These traits may have unintended consequences for plant disease resistance. Xanthomonas vasicola pv. holcicola (Xvh), the causal agent of sorghum bacterial leaf streak, is a widespread bacterial pathogen. Here, we show that Xvh expresses several bacterial cell wall degrading enzymes (CWDEs) during sorghum infection, and these are required for full virulence. In tolerant sorghum, Xvh infection results in the induction of a key enzyme in monolignol biosynthesis, Brown midrib12 (Bmr12), but this did not affect lignin content nor composition. Mutation of Bmr12 rendered the tolerant genotype susceptible. Bmr12 encodes caffeic acid O-methyltransferase (COMT), an enzyme that generates sinapaldehyde as its major product. Growth inhibition of Xvh in the presence of sinapaldehyde was observed in vitro. We conclude that mutations that alter the components of the sorghum cell wall can reduce sorghum resistance to Xvh and that Xvh CWDEs contribute to bacterial virulence. Given the enhanced bioprocessing characteristics of bmr12 sorghum, these results provide a cautionary tale for current and future efforts aimed at developing dedicated bioenergy crops. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Qi Wang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | - Kira M Veley
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | | | - Josh Sumner
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University and Research, 6708 WG, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University and Research, 6708 WG, Wageningen, The Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, 6708 WG, Wageningen, The Netherlands
| | | | - Jeffrey Berry
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | - Adam Boyher
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | | | - Wilfred Vermerris
- UF Genetics Institute and Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, U.S.A
| | - Rebecca S Bart
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| |
Collapse
|
7
|
Marcianò D, Kappel L, Ullah SF, Srivastava V. From glycans to green biotechnology: exploring cell wall dynamics and phytobiota impact in plant glycopathology. Crit Rev Biotechnol 2025; 45:314-332. [PMID: 39004515 DOI: 10.1080/07388551.2024.2370341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Filamentous plant pathogens, including fungi and oomycetes, pose significant threats to cultivated crops, impacting agricultural productivity, quality and sustainability. Traditionally, disease control heavily relied on fungicides, but concerns about their negative impacts motivated stakeholders and government agencies to seek alternative solutions. Biocontrol agents (BCAs) have been developed as promising alternatives to minimize fungicide use. However, BCAs often exhibit inconsistent performances, undermining their efficacy as plant protection alternatives. The eukaryotic cell wall of plants and filamentous pathogens contributes significantly to their interaction with the environment and competitors. This highly adaptable and modular carbohydrate armor serves as the primary interface for communication, and the intricate interplay within this compartment is often mediated by carbohydrate-active enzymes (CAZymes) responsible for cell wall degradation and remodeling. These processes play a crucial role in the pathogenesis of plant diseases and contribute significantly to establishing both beneficial and detrimental microbiota. This review explores the interplay between cell wall dynamics and glycan interactions in the phytobiome scenario, providing holistic insights for efficiently exploiting microbial traits potentially involved in plant disease mitigation. Within this framework, the incorporation of glycobiology-related functional traits into the resident phytobiome can significantly enhance the plant's resilience to biotic stresses. Therefore, in the rational engineering of future beneficial consortia, it is imperative to recognize and leverage the understanding of cell wall interactions and the role of the glycome as an essential tool for the effective management of plant diseases.
Collapse
Affiliation(s)
- Demetrio Marcianò
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Lisa Kappel
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| |
Collapse
|
8
|
Pretorius CJ, Steenkamp PA, Dubery IA. Metabolome profiling dissects the oat (Avena sativa L.) innate immune response to Pseudomonas syringae pathovars. PLoS One 2025; 20:e0311226. [PMID: 39899505 PMCID: PMC11790117 DOI: 10.1371/journal.pone.0311226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 02/05/2025] Open
Abstract
One of the most important characteristics of successful plant defence is the ability to rapidly identify potential threats in the surrounding environment. Plants rely on the perception of microbe-derived molecular pattern chemicals for this recognition, which initiates a number of induced defence reactions that ultimately increase plant resistance. The metabolome acts as a metabolic fingerprint of the biochemical activities of a biological system under particular conditions, and therefore provides a functional readout of the cellular mechanisms involved. Untargeted metabolomics was applied to decipher the biochemical processes related to defence responses of oat plants inoculated with pathovars of Pseudomonas syringae (pathogenic and non-pathogenic on oat) and thereby identify signatory markers that are involved in host or nonhost defence responses. The strains were P. syringae pv. coronafaciens (Ps-c), P. syringae pv. tabaci, P. syringae pv. tomato DC3000 and the hrcC mutant of DC3000. At the seedling growth stage, metabolic alterations in the Dunnart oat cultivar (tolerant to Ps-c) in response to inoculation with the respective P. syringae pathovars were examined following perception and response assays. Following inoculation, plants were monitored for symptom development and harvested at 2-, 4- and 6 d.p.i. Methanolic leaf extracts were analysed by ultra-high-performance liquid chromatography (UHPLC) connected to high-definition mass spectrometry. Chemometric modelling and multivariate statistical analysis indicated time-related metabolic reconfigurations that point to host and nonhost interactions in response to bacterial inoculation/infection. Metabolic profiles derived from further multivariate data analyses revealed a range of metabolite classes involved in the respective defence responses, including fatty acids, amino acids, phenolic acids and phenolic amides, flavonoids, saponins, and alkaloids. The findings in this study allowed the elucidation of metabolic changes involved in oat defence responses to a range of pathovars of P. syringae and ultimately contribute to a more comprehensive view of the oat plant metabolism under biotic stress during host vs nonhost interactions.
Collapse
Affiliation(s)
- Chanel J. Pretorius
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Johannesburg, South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Johannesburg, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
9
|
Li X, Qi S, Meng L, Su P, Sun Y, Li N, Wang D, Fan Y, Song Y. Genome-wide identification of the wall-associated kinase gene family and their expression patterns under various abiotic stresses in soybean ( Glycine max (L.) Merr). FRONTIERS IN PLANT SCIENCE 2025; 15:1511681. [PMID: 39886685 PMCID: PMC11779729 DOI: 10.3389/fpls.2024.1511681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 02/01/2025]
Abstract
The wall-associated kinase (WAK) gene family encodes functional cell wall-related proteins. These genes are widely presented in plants and serve as the receptors of plant cell membranes, which perceive the external environment changes and activate signaling pathways to participate in plant growth, development, defense, and stress response. However, the WAK gene family and the encoded proteins in soybean (Glycine max (L.) Merr) have not been systematically investigated. In this study, the soybean WAK genes (GmWAK) were identified based on genome-wide sequence information, the basic characteristics, chromosome location, gene replication, expression pattern, and responses to stress were comprehensively analyzed. A total of 74 GmWAK genes were identified and mapped to 19 different chromosomes in the soybean genome. Seventy-four GmWAK genes were divided into four groups, and GmWAK genes in the same group shared similar gene structures and conserved motifs. Thirty-seven duplicate pairs were identified in 74 GmWAK genes. Segmental duplication (SD) was critical in soybean WAK gene family expansion, and purification selection occurred during evolution. The promoter cis-element analysis displayed many hormone- and stress-related response elements in the promoter regions of GmWAK genes. GmWAK genes were diversely expressed in different organs and tissues, with most actively responding to cold, heat, salt, drought, and heavy metal stresses, suggesting that GmWAK genes could exhibit relevant roles in various bioprocesses.
Collapse
Affiliation(s)
- Xiangnan Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Sifei Qi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Lingzhi Meng
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Peisen Su
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yongwang Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Nan Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Dan Wang
- Economic Crop Research Institute, Puyang Academy of Agriculture and Forestry Sciences, Puyang, China
| | - Yinglun Fan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yong Song
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| |
Collapse
|
10
|
Sangwan A, Singh N. Advanced Nanostrategies for Biomolecule Delivery in Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:66-84. [PMID: 39715428 DOI: 10.1021/acs.jafc.4c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Sustainable plant disease management has long been a major issue in agriculture since the excessive reliance on broad-spectrum pesticides exacerbates chemical resistance, presenting environmental and health hazards. Taking cues from nature's intricate defense mechanisms, scientists are exploiting bioactive agents involved in plant-pathogen/pest interactions to develop novel strategies to combat diseases. Embracing biomolecules in agriculture offers an ecofriendly alternative to chemical pesticides. However, traditional delivery methods for biomolecules often suffer from low utilization rates and low field stability, diminishing the overall effectiveness of active compounds. The advent of nanotechnology has facilitated the design of novel delivery systems for biomolecular cargos, further enhancing their capacity to adhere to plant surfaces and make disease control strategies effective. Tailored depending upon the extent of infection and type of plant species, innovative nanoparticle strategies maximize the effectiveness of delivery by modifying the size, surface characteristics, and adhesion capacity of the particles to suit particular requirements. This review examines how the various biological factors involved in innate plant defenses can be exploited, as well as the potential of various nanocarriers in biomolecule delivery for plant disease management.
Collapse
Affiliation(s)
- Anju Sangwan
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
11
|
Liu C, Tan X, Wang J, Sun Y, Xu Q, Han C, Wang Q. Upgrading of the genetic engineering toolkit accelerated the discovery process of the virulence effect of PsGH7d on Phytophthora sojae invasion. PHYSIOLOGIA PLANTARUM 2025; 177:e70083. [PMID: 39936449 DOI: 10.1111/ppl.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025]
Abstract
The genus of Phytophthora includes numerous phytopathogens that have devastating impacts on agricultural production. However, the limited availability of selection markers for numerous pathogenicity pathogens of the genus Phytophthora genetic transformation hinders further research on their pathogenic functional genes. Here we report a gene of NAT I, which serves as a novel selection marker for the Phytophthora sojae transformation. Additionally, we developed a new genetic manipulation toolkit based on vectors containing NAT I, which facilitates gene editing in P. sojae. With the toolkit, the gene PsGH7d of P. sojae, which encodes a glycosyl hydrolase, was edited consecutively via the CRISPR/Cas9 system to obtain gene knockout and enzymatic active site mutation strains. The pathogenicity analysis of these transformants revealed that PsGH7d is a virulence factor dependent on its bifunctional glucanase-xylanase activities. This study develops an updated toolkit for the genus Phytophthora genetic transformation and provides initial insights into the virulence of the bifunctional enzyme PsGH7d.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xinwei Tan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jiayu Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yujing Sun
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Qian Xu
- College of Agronomy, Shandong Agricultural University, Taian, China
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, China
| | - Chao Han
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Qunqing Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, China
| |
Collapse
|
12
|
Barakat O, Zhang F, Zeng M, Wang Y. Luciferase-mediated assay to detect the PAMP-triggered gene expression in transgenic Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2024; 19:2411918. [PMID: 39585200 PMCID: PMC11591477 DOI: 10.1080/15592324.2024.2411918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 11/26/2024]
Abstract
Luciferase is one of the bioluminescence-producing agents, which was widely used as a reporter enzyme for constructing bioassay systems to study gene expression with high accuracy and within a broad dynamic spectrum. Perception of pathogen associated molecular patterns (PAMPs) in plants often lead to significant transcriptional changes. The transcriptional changes of defense-related genes are often used as a marker to assay PAMP-triggered plant immune response. In this study, we showed that the marker gene CYP71D20 was rapidly activated in Nicotiana benthamiana upon treatment with the bacterial PAMP flg22 and the Phytophthora elicitin INF1. In addition, we generated transgenic N. benthamiana using the luciferase as a reporter gene to analyze CYP71D20 gene expression upon PAMP treatment. The transgenic line carrying the luciferase gene driven by CYP71D20 promoter was treated with the bacterial PAMP flg22 or Phytophthora elicitin INF1. Transcriptional activation of CYP71D20 was measured by monitoring the luciferase activity. The results showed that the LUC activity was increased after treatment with different PAMPs, indicating that the CYP71D20-promotor luciferase assay can be used to study the PAMP-triggered gene expression in N. benthamiana.
Collapse
Affiliation(s)
- Ola Barakat
- Plant Protection College, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Plant Protection Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Fushuang Zhang
- Plant Protection College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengzhu Zeng
- Plant Protection College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanchao Wang
- Plant Protection College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Liu L, Li C, Liang F, Han S, Li S, Yang C, Liu Y. Global characterization of GH11 family xylanases genes in Neostagonosporella sichuanensis and functional analysis of Nsxyn1 and Nsxyn2. Front Microbiol 2024; 15:1507998. [PMID: 39640849 PMCID: PMC11618621 DOI: 10.3389/fmicb.2024.1507998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Rhombic-spot disease, caused mainly by Neostagonosporella sichuanensis, significantly impacts the yield and quality of fishscale bamboo (Phyllostachys heteroclada). Xylanases are essential for pathogenic fungi infection, yet their specific functions in the physiology and pathogenicity of N. sichuanensis remain unclear. Here, we characterized three xylanase proteins with glycosyl hydrolase 11 domains from the N. sichuanensis SICAUCC 16-0001 genome and examined the function of Nsxyn1 and Nsxyn2. Purified Nsxyn1 and Nsxyn2 proteins displayed specific xylanase activity in vitro and induced cell death in Nicotiana benthamiana, independent of their enzymatic function. Both proteins possessed signal peptides and were confirmed as secreted proteins using a yeast secretion system. Subcellular localization revealed that Nsxyn1 and Nsxyn2 localized in both the cytoplasm and nucleus and can trigger cell death in N. benthamiana through Agrobacterium tumefaciens-mediated transient transformation. qRT-PCR results showed notable upregulation of Nsxyn1 and Nsxyn2 during infection, with Nsxyn1 exhibiting an 80-fold increase at 15 days post-inoculation. Deletion of Nsxyn1 and Nsxyn2 in N. sichuanensis impaired xylan degradation, adaptation to osmotic and oxidative stress, and pathogenic full virulence. Deletion of Nsxyn1 notably slowed fungal growth and reduced spore production, whereas only a reduction in microconidial production was observed in Nsxyn2 mutants. Complementation of Nsxyn1 and Nsxyn2 only partially restored these phenotypic defects in the ∆Nsxyn1 and ∆Nsxyn2 mutants. These findings suggest that Nsxyn1 and Nsxyn2 contribute to N. sichuanensis virulence and induced plant defense responses, providing new insights into the function of xylanases in the interaction between fishscale bamboo and N. sichuanensis.
Collapse
Affiliation(s)
- Lijuan Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chengsong Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fang Liang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Manickam P, Abulfaraj AA, Alhoraibi HM, Veluchamy A, Almeida-Trapp M, Hirt H, Rayapuram N. Arabidopsis Actin-Binding Protein WLIM2A Links PAMP-Triggered Immunity and Cytoskeleton Organization. Int J Mol Sci 2024; 25:11642. [PMID: 39519192 PMCID: PMC11545931 DOI: 10.3390/ijms252111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Arabidopsis LIM proteins are named after the initials of three proteins Lin-11, Isl-1, and MEC-3, which belong to a class of transcription factors that play an important role in the developmental regulation of eukaryotes and are also involved in a variety of life processes, including gene transcription, the construction of the cytoskeleton, signal transduction, and metabolic regulation. Plant LIM proteins have been shown to regulate actin bundling in different cells, but their role in immunity remains elusive. Mitogen-activated protein kinases (MAPKs) are a family of conserved serine/threonine protein kinases that link upstream receptors to their downstream targets. Pathogens produce pathogen-associated molecular patterns (PAMPs) that trigger the activation of MAPK cascades in plants. Recently, we conducted a large-scale phosphoproteomic analysis of PAMP-induced Arabidopsis plants to identify putative MAPK targets. One of the identified phospho-proteins was WLIM2A, an Arabidopsis LIM protein. In this study, we investigated the role of WLIM2A in plant immunity. We employed a reverse-genetics approach and generated wlim2a knockout lines using CRISPR-Cas9 technology. We also generated complementation and phosphosite-mutated WLIM2A expression lines in the wlim2a background. The wlim2a lines were compromised in their response to Pseudomonas syringae Pst DC3000 but showed enhanced resistance to the necrotrophic fungus Botrytis cinereae. Transcriptome analyses of wlim2a mutants revealed the deregulation of immune hormone biosynthesis and signaling of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways. The wlim2a mutants also exhibited altered stomatal phenotypes. Analysis of plants expressing WLIM2A variants of the phospho-dead or phospho-mimicking MAPK phosphorylation site showed opposing stomatal behavior and resistance phenotypes in response to Pst DC3000 infection, proving that phosphorylation of WLIM2A plays a crucial role in plant immunity. Overall, these data demonstrate that phosphorylation of WLIM2A by MAPKs regulates Arabidopsis responses to plant pathogens.
Collapse
Affiliation(s)
- Prabhu Manickam
- BESE Division 4700, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Hanna M. Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| | - Alaguraj Veluchamy
- BESE Division 4700, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Marilia Almeida-Trapp
- Core Labs, King Abdullah University of Science and Technology (KAUST), Makkah 23955, Saudi Arabia
| | - Heribert Hirt
- BESE Division 4700, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Naganand Rayapuram
- BESE Division 4700, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| |
Collapse
|
15
|
Otulak-Kozieł K, Kozieł E, Bujarski JJ. Editorial: Investigating the elements of plant defense mechanisms within plant immune responses against pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1507236. [PMID: 39524563 PMCID: PMC11543438 DOI: 10.3389/fpls.2024.1507236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Józef Julian Bujarski
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
16
|
Santhosh A, Neuhauser S. Host-Parasite interaction between brown algae and eukaryote biotrophic pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100306. [PMID: 39558936 PMCID: PMC11570863 DOI: 10.1016/j.crmicr.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Brown algae belong to the class Phaeophyceae which are mainly multicellular, photosynthetic organisms, however they evolved independently from terrestrial plants, green and red algae. In the past years marine aquaculture involving brown algae has gained enormous momentum. In both natural environments and aquaculture, brown algae are susceptible to infection by various prokaryotic and eukaryotic parasites. While our understanding of host-parasite interactions in brown algae is gaining recognition, our understanding of how brown algae react to biotic stress remains incomplete. The objective of this review is to address research gaps in the field by providing a summary of what is already known about the response of brown algae to abiotic and biotic stress. The biology of eukaryotic zoosporic pathogens Maullinia ectocarpii, Eurychasma dicksonii, Anisolpidium ectocarpii is also discussed, as those parasites have been used in laboratory experiments to study diseases of brown algae. These studies often relied on parasites-infecting Ectocarpus siliculosus which has become a brown algal model organism to study host-pathogen interactions. Stress response in brown algae involves processes similar to hypersensitivity response, oxidative stress response, and activation of peroxidases, but also the production of blue fluorescent metabolites and deposition of β-1,3-glucan in the cell wall. Cell wall modification, expression of several defence related proteins, and secondary metabolite production also hold a crucial role in brown algal defence mechanism. Understanding host-pathogen interactions and the associated mechanisms is vital to discover strategies to control pathogens in the growing aquaculture sector.
Collapse
Affiliation(s)
- Anagha Santhosh
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Sigrid Neuhauser
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Zhang Y, Jia C, Liu Y, Li G, Li B, Shi W, Zhang Y, Hou J, Qin Q, Zhang M, Qin J. The Fungal Transcription Factor BcTbs1 from Botrytis cinerea Promotes Pathogenicity via Host Cellulose Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20816-20830. [PMID: 39261294 DOI: 10.1021/acs.jafc.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Zn(II)2Cys6 proteins constitute the largest group of fungal-specific transcription factors. However, little is known about their functions in the crop killer Botrytis cinerea. In this work, a T-DNA insertion strain M13448 was identified which was inserted into the Zn(II)2Cys6 TF-encoding gene BcTBS1. Knockout of BcTBS1 did not affect mycelia growth, appressorium formation, and sclerotium germination, but impaired fungal conidiation, conidial morphogenesis, conidial germination, infection cushion development, and sclerotial formation. Accordingly, ΔBctbs1 mutants showed reduced virulence in its host plants. Further study proved that BcTBS1, BCIN_15g03870, and BCIN_12g06630 were induced by cellulose. Subsequent cellulase activity assays revealed that the loss of BcTBS1 significantly decreased cellulase activity. In addition, we verified that the BCIN_15g03870 and BCIN_12g06630 genes were positive regulated by BcTBS1 by quantitative real-time reverse-transcription-polymerase chain reaction (qRT-PCR). Taken together, these results suggested that BcTBS1 can promote pathogenicity by modulating cellulase-encoding genes that participate in host cellulose degradation.
Collapse
Affiliation(s)
- Yinshan Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yue Liu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Guihua Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Bin Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wuliang Shi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yubin Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Hou
- Engineering Research Centre of Forestry Biotechnology of Jilin Province in Beihua University, Jilin 132013, China
| | - Qingming Qin
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
18
|
Peracchi LM, Brew-Appiah RAT, Garland-Campbell K, Roalson EH, Sanguinet KA. Genome-wide characterization and expression analysis of the CINNAMYL ALCOHOL DEHYDROGENASE gene family in Triticum aestivum. BMC Genomics 2024; 25:816. [PMID: 39210247 PMCID: PMC11363449 DOI: 10.1186/s12864-024-10648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND CINNAMYL ALCOHOL DEHYDROGENASE (CAD) catalyzes the NADPH-dependent reduction of cinnamaldehydes into cinnamyl alcohols and is a key enzyme found at the final step of the monolignol pathway. Cinnamyl alcohols and their conjugates are subsequently polymerized in the secondary cell wall to form lignin. CAD genes are typically encoded by multi-gene families and thus traditionally organized into general classifications of functional relevance. RESULTS In silico analysis of the hexaploid Triticum aestivum genome revealed 47 high confidence TaCAD copies, of which three were determined to be the most significant isoforms (class I) considered bone fide CADs. Class I CADs were expressed throughout development both in RNAseq data sets as well as via qRT-PCR analysis. Of the 37 class II TaCADs identified, two groups were observed to be significantly co-expressed with class I TaCADs in developing tissue and under chitin elicitation in RNAseq data sets. These co-expressed class II TaCADs were also found to be phylogenetically unrelated to a separate clade of class II TaCADs previously reported to be an influential resistance factor to pathogenic fungal infection. Lastly, two groups were phylogenetically identified as class III TaCADs, which possess distinct conserved gene structures. However, the lack of data supporting their catalytic activity for cinnamaldehydes and their bereft transcriptional presence in lignifying tissues challenges their designation and function as CADs. CONCLUSIONS Taken together, our comprehensive transcriptomic analyses suggest that TaCAD genes contribute to overlapping but nonredundant functions during T. aestivum growth and development across a wide variety of agroecosystems and provide tolerance to various stressors.
Collapse
Affiliation(s)
- Luigi M Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Kimberly Garland-Campbell
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
- USDA-ARS Wheat Health, Genetics and Quality Research, Pullman, WA, 99164, USA
| | - Eric H Roalson
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
19
|
Arafat MY, Narula K, Kumar M, Chakraborty N, Chakraborty S. Proteo-metabolomic Dissection of Extracellular Matrix Reveals Alterations in Cell Wall Integrity and Calcium Signaling Governs Wall-Associated Susceptibility during Stem Rot Disease in Jute. J Proteome Res 2024; 23:3217-3234. [PMID: 38572503 DOI: 10.1021/acs.jproteome.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The plant surveillance system confers specificity to disease and immune states by activating distinct molecular pathways linked to cellular functionality. The extracellular matrix (ECM), a preformed passive barrier, is dynamically remodeled at sites of interaction with pathogenic microbes. Stem rot, caused by Macrophomina phaseolina, adversely affects fiber production in jute. However, how wall related susceptibility affects the ECM proteome and metabolome remains undetermined in bast fiber crops. Here, stem rot responsive quantitative temporal ECM proteome and metabolome were developed in jute upon M. phaseolina infection. Morpho-histological examination revealed that leaf shredding was accompanied by reactive oxygen species production in patho-stressed jute. Electron microscopy showed disease progression and ECM architecture remodeling due to necrosis in the later phase of fungal attack. Using isobaric tags for relative and absolute quantitative proteomics and liquid chromatography-tandem mass spectrometry, we identified 415 disease-responsive proteins involved in wall integrity, acidification, proteostasis, hydration, and redox homeostasis. The disease-related correlation network identified functional hubs centered on α-galactosidase, pectinesterase, and thaumatin. Gas chromatography-mass spectrometry analysis pointed toward enrichment of disease-responsive metabolites associated with the glutathione pathway, TCA cycle, and cutin, suberin, and wax metabolism. Data demonstrated that wall-degrading enzymes, structural carbohydrates, and calcium signaling govern rot responsive wall-susceptibility. Proteomics data were deposited in Pride (PXD046937; PXD046939).
Collapse
Affiliation(s)
- Md Yasir Arafat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Kanika Narula
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mohit Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
20
|
Nielsen ME. Vesicle trafficking pathways in defence-related cell wall modifications: papillae and encasements. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3700-3712. [PMID: 38606692 DOI: 10.1093/jxb/erae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Filamentous pathogens that cause plant diseases such as powdery mildew, rust, anthracnose, and late blight continue to represent an enormous challenge for farmers worldwide. Interestingly, these pathogens, although phylogenetically distant, initiate pathogenesis in a very similar way by penetrating the cell wall and establishing a feeding structure inside the plant host cell. To prevent pathogen ingress, the host cell responds by forming defence structures known as papillae and encasements that are thought to mediate pre- and post-invasive immunity, respectively. This form of defence is evolutionarily conserved in land plants and is highly effective and durable against a broad selection of non-adapted filamentous pathogens. As most pathogens have evolved strategies to overcome the defences of only a limited range of host plants, the papilla/encasement response could hold the potential to become an optimal transfer of resistance from one plant species to another. In this review I lay out current knowledge of the involvement of membrane trafficking that forms these important defence structures and highlight some of the questions that still need to be resolved.
Collapse
Affiliation(s)
- Mads Eggert Nielsen
- University of Copenhagen, Faculty of Science, CPSC, Department of Plant and Environmental Sciences, 1871 Frederiksberg C, Denmark
| |
Collapse
|
21
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
22
|
Li G, Mo Y, Lv J, Han S, Fan W, Zhou Y, Yang Z, Deng M, Xu B, Wang Y, Zhao K. Unraveling verticillium wilt resistance: insight from the integration of transcriptome and metabolome in wild eggplant. FRONTIERS IN PLANT SCIENCE 2024; 15:1378748. [PMID: 38863534 PMCID: PMC11165189 DOI: 10.3389/fpls.2024.1378748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Verticillium wilt, caused by Verticillium dahliae, is a soil-borne disease affecting eggplant. Wild eggplant, recognized as an excellent disease-resistant resource against verticillium wilt, plays a pivotal role in grafting and breeding for disease resistance. However, the underlying resistance mechanisms of wild eggplant remain poorly understood. This study compared two wild eggplant varieties, LC-2 (high resistance) and LC-7 (sensitive) at the phenotypic, transcriptomic, and metabolomic levels to determine the molecular basis of their resistance to verticillium wilt. These two varieties exhibit substantial phenotypic differences in petal color, leaf spines, and fruit traits. Following inoculation with V. dahliae, LC-2 demonstrated significantly higher activities of polyphenol oxidase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, β-1,3 glucanase, and chitinase than did LC-7. RNA sequencing revealed 4,017 differentially expressed genes (DEGs), with a significant portion implicated in processes associated with disease resistance and growth. These processes encompassed defense responses, cell wall biogenesis, developmental processes, and biosynthesis of spermidine, cinnamic acid, and cutin. A gene co-expression analysis identified 13 transcription factors as hub genes in modules related to plant defense response. Some genes exhibited distinct expression patterns between LC-2 and LC-7, suggesting their crucial roles in responding to infection. Further, metabolome analysis identified 549 differentially accumulated metabolites (DAMs) between LC-2 and LC-7, primarily consisting of compounds such as flavonoids, phenolic acids, lipids, and other metabolites. Integrated transcriptome and metabolome analyses revealed the association of 35 gene-metabolite pairs in modules related to the plant defense response, highlighting the interconnected processes underlying the plant defense response. These findings characterize the molecular basis of LC-2 resistance to verticillium wilt and thus have potential value for future breeding of wilt-resistant eggplant varieties.
Collapse
Affiliation(s)
- Gengyun Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yunrong Mo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shu Han
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei Fan
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Xu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanyan Wang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kai Zhao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
23
|
Otulak-Kozieł K, Kozieł E, Treder K, Rusin P. Homogalacturonan Pectins Tuned as an Effect of Susceptible rbohD, Col-0-Reactions, and Resistance rbohF-, rbohD/F-Reactions to TuMV. Int J Mol Sci 2024; 25:5256. [PMID: 38791293 PMCID: PMC11120978 DOI: 10.3390/ijms25105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The plant cell wall is an actively reorganized network during plant growth and triggered immunity in response to biotic stress. While the molecular mechanisms managing perception, recognition, and signal transduction in response to pathogens are well studied in the context of damaging intruders, the current understanding of plant cell wall rebuilding and active defense strategies in response to plant virus infections remains poorly characterized. Pectins can act as major elements of the primary cell wall and are dynamic compounds in response to pathogens. Homogalacturonans (HGs), a main component of pectins, have been postulated as defensive molecules in plant-pathogen interactions and linked to resistance responses. This research focused on examining the regulation of selected pectin metabolism components in susceptible (rbohD-, Col-0-TuMV) and resistance (rbohF-, rbohD/F-TuMV) reactions. Regardless of the interaction type, ultrastructural results indicated dynamic cell wall rebuilding. In the susceptible reaction promoted by RbohF, there was upregulation of AtPME3 (pectin methylesterase) but not AtPME17, confirmed by induction of PME3 protein deposition. Moreover, the highest PME activity along with a decrease in cell wall methylesters compared to resistance interactions in rbohD-TuMV were noticed. Consequently, the susceptible reaction of rbohD and Col-0 to TuMV was characterized by a significant domination of low/non-methylesterificated HGs. In contrast, cell wall changes during the resistance response of rbohF and rbohD/F to TuMV were associated with dynamic induction of AtPMEI2, AtPMEI3, AtGAUT1, and AtGAUT7 genes, confirmed by significant induction of PMEI2, PMEI3, and GAUT1 protein deposition. In both resistance reactions, a dynamic decrease in PME activity was documented, which was most intense in rbohD/F-TuMV. This decrease was accompanied by an increase in cell wall methylesters, indicating that the domination of highly methylesterificated HGs was associated with cell wall rebuilding in rbohF and rbohD/F defense responses to TuMV. These findings suggest that selected PME with PMEI enzymes have a diverse impact on the demethylesterification of HGs and metabolism as a result of rboh-TuMV interactions, and are important factors in regulating cell wall changes depending on the type of interaction, especially in resistance responses. Therefore, PMEI2 and PMEI3 could potentially be important signaling resistance factors in the rboh-TuMV pathosystem.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str. 3, 76-009 Bonin, Poland;
| | - Krzysztof Treder
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str. 3, 76-009 Bonin, Poland;
| | - Piotr Rusin
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| |
Collapse
|
24
|
Zhao T, Ma S, Kong Z, Zhang H, Wang Y, Wang J, Liu J, Feng W, Liu T, Liu C, Liang S, Lu S, Li X, Zhao H, Lu C, Latif MZ, Yin Z, Li Y, Ding X. Recognition of the inducible, secretory small protein OsSSP1 by the membrane receptor OsSSR1 and the co-receptor OsBAK1 confers rice resistance to the blast fungus. MOLECULAR PLANT 2024; 17:807-823. [PMID: 38664971 DOI: 10.1016/j.molp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.
Collapse
Affiliation(s)
- Tianfeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shijie Ma
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ziying Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yi Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Junzhe Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Wanzhen Feng
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, Hainan, China
| | - Tong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chunyan Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Suochen Liang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shilin Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xinyu Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
25
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
26
|
Demiwal P, Nabi SU, Mir JI, Verma MK, Yadav SR, Roy P, Sircar D. Methyl jasmonate improves resistance in scab-susceptible Red Delicious apple by altering ROS homeostasis and enhancing phenylpropanoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108371. [PMID: 38271863 DOI: 10.1016/j.plaphy.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Apple (Malus domestica) is an economically important rosaceous fruit crop grown at temperate climate zones. Nevertheless, its production is severely affected by scab disease caused by the ascomycetous fungus Venturia inaequalis (VI). Methyl jasmonate (MeJA) is a stress induced plant hormone, shown to induce resistance against wide range of pathogens. The current study investigated the role of MeJA in promoting scab tolerance in susceptible apple varieties through exogenous application of optimized (100 μM) MeJA concentration, followed by VI infection. According to our analysis, applying MeJA exogenously onto leaf surfaces resulted in increased membrane stability and decreased malondialdehyde levels in Red Delicious, suggesting that MeJA is capable of protecting tissues against oxidative damage through its role in restoring membrane stability. In addition, the changes in the levels of key antioxidative enzymes and reactive oxygen species (ROS) showed that exogenous MeJA maintains ROS homeostasis as well. Higher phenylalanine ammonia-lyase activity and increased accumulation of phenylpropanoids in MeJA-treated VI-infected plants indicated the MeJA reprogrammed phenylpropanoid biosynthesis pathway for scab tolerance. Our study of scab tolerance in apples induced by MeJA provides new insights into its physiological and biochemical mechanisms.
Collapse
Affiliation(s)
- Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sajad Un Nabi
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Mahendra K Verma
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
27
|
Chavarro-Carrero EA, Snelders NC, Torres DE, Kraege A, López-Moral A, Petti GC, Punt W, Wieneke J, García-Velasco R, López-Herrera CJ, Seidl MF, Thomma BPHJ. The soil-borne white root rot pathogen Rosellinia necatrix expresses antimicrobial proteins during host colonization. PLoS Pathog 2024; 20:e1011866. [PMID: 38236788 PMCID: PMC10796067 DOI: 10.1371/journal.ppat.1011866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Rosellinia necatrix is a prevalent soil-borne plant-pathogenic fungus that is the causal agent of white root rot disease in a broad range of host plants. The limited availability of genomic resources for R. necatrix has complicated a thorough understanding of its infection biology. Here, we sequenced nine R. necatrix strains with Oxford Nanopore sequencing technology, and with DNA proximity ligation we generated a gapless assembly of one of the genomes into ten chromosomes. Whereas many filamentous pathogens display a so-called two-speed genome with more dynamic and more conserved compartments, the R. necatrix genome does not display such genome compartmentalization. It has recently been proposed that fungal plant pathogens may employ effectors with antimicrobial activity to manipulate the host microbiota to promote infection. In the predicted secretome of R. necatrix, 26 putative antimicrobial effector proteins were identified, nine of which are expressed during plant colonization. Two of the candidates were tested, both of which were found to possess selective antimicrobial activity. Intriguingly, some of the inhibited bacteria are antagonists of R. necatrix growth in vitro and can alleviate R. necatrix infection on cotton plants. Collectively, our data show that R. necatrix encodes antimicrobials that are expressed during host colonization and that may contribute to modulation of host-associated microbiota to stimulate disease development.
Collapse
Affiliation(s)
- Edgar A. Chavarro-Carrero
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Nick C. Snelders
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - David E. Torres
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Anton Kraege
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Ana López-Moral
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Gabriella C. Petti
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Wilko Punt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Jan Wieneke
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Rómulo García-Velasco
- Laboratory of Phytopathology, Tenancingo University Center, Autonomous University of the State of Mexico, Tenancingo, State of Mexico, Mexico
| | - Carlos J. López-Herrera
- CSIC, Instituto de Agricultura Sostenible, Dept. Protección de Cultivos, C/Alameda del Obispo s/n, Córdoba, Spain
| | - Michael F. Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Muthego D, Moloi SJ, Brown AP, Goche T, Chivasa S, Ngara R. Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures. PLANT SIGNALING & BEHAVIOR 2023; 18:2291618. [PMID: 38100609 PMCID: PMC10730228 DOI: 10.1080/15592324.2023.2291618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Drought stress adversely affects plant growth, often leading to total crop failure. Upon sensing soil water deficits, plants switch on biosynthesis of abscisic acid (ABA), a stress hormone for drought adaptation. Here, we used exogenous ABA application to dark-grown sorghum cell suspension cultures as an experimental system to understand how a drought-tolerant crop responds to ABA. We evaluated intracellular and secreted proteins using isobaric tags for relative and absolute quantification. While the abundance of only ~ 7% (46 proteins) intracellular proteins changed in response to ABA, ~32% (82 proteins) of secreted proteins identified in this study were ABA responsive. This shows that the extracellular matrix is disproportionately targeted and suggests it plays a vital role in sorghum adaptation to drought. Extracellular proteins responsive to ABA were predominantly defense/detoxification and cell wall-modifying enzymes. We confirmed that sorghum plants exposed to drought stress activate genes encoding the same proteins identified in the in vitro cell culture system with ABA. Our results suggest that ABA activates defense and cell wall remodeling systems during stress response. This could underpin the success of sorghum adaptation to drought stress.
Collapse
Affiliation(s)
- Dakalo Muthego
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| | - Sellwane J. Moloi
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| | | | - Tatenda Goche
- Department of Biosciences, Durham University, Durham, UK
- Department of Crop Science, Bindura University of Science Education, Bindura, Zimbabwe
| | | | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| |
Collapse
|
29
|
Wanke A, van Boerdonk S, Mahdi LK, Wawra S, Neidert M, Chandrasekar B, Saake P, Saur IML, Derbyshire P, Holton N, Menke FLH, Brands M, Pauly M, Acosta IF, Zipfel C, Zuccaro A. A GH81-type β-glucan-binding protein enhances colonization by mutualistic fungi in barley. Curr Biol 2023; 33:5071-5084.e7. [PMID: 37977140 DOI: 10.1016/j.cub.2023.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of β-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated β-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a β-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.
Collapse
Affiliation(s)
- Alan Wanke
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah van Boerdonk
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lisa Katharina Mahdi
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Miriam Neidert
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Balakumaran Chandrasekar
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Nicholas Holton
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Mathias Brands
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK; Institute of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
30
|
Kim SJ, Bhandari DD, Sokoloski R, Brandizzi F. Immune activation during Pseudomonas infection causes local cell wall remodeling and alters AGP accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:541-557. [PMID: 37496362 DOI: 10.1111/tpj.16393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
The plant cell boundary generally comprises constituents of the primary and secondary cell wall (CW) that are deposited sequentially during development. Although it is known that the CW acts as a barrier against phytopathogens and undergoes modifications to limit their invasion, the extent, sequence, and requirements of the pathogen-induced modifications of the CW components are still largely unknown, especially at the level of the polysaccharide fraction. To address this significant knowledge gap, we adopted the compatible Pseudomonas syringae-Arabidopsis thaliana system. We found that, despite systemic signaling actuation, Pseudomonas infection leads only to local CW modifications. Furthermore, by utilizing a combination of CW and immune signaling-deficient mutants infected with virulent or non-virulent bacteria, we demonstrated that the pathogen-induced changes in CW polysaccharides depend on the combination of pathogen virulence and the host's ability to mount an immune response. This results in a pathogen-driven accumulation of CW hexoses, such as galactose, and an immune signaling-dependent increase in CW pentoses, mainly arabinose, and xylose. Our analyses of CW changes during disease progression also revealed a distinct spatiotemporal pattern of arabinogalactan protein (AGP) deposition and significant modifications of rhamnogalacturonan sidechains. Furthermore, genetic analyses demonstrated a critical role of AGPs, specifically of the Arabinoxylan Pectin Arabinogalactan Protein1, in limiting pathogen growth. Collectively, our results provide evidence for the actuation of significant remodeling of CW polysaccharides in a compatible host-pathogen interaction, and, by identifying AGPs as critical elements of the CW in plant defense, they pinpoint opportunities to improve plants against diverse pathogens.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deepak D Bhandari
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Rylee Sokoloski
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
31
|
Chen Y, Qi H, Yang L, Xu L, Wang J, Guo J, Zhang L, Tan Y, Pan R, Shu Q, Qian Q, Song S. The OsbHLH002/OsICE1-OSH1 module orchestrates secondary cell wall formation in rice. Cell Rep 2023; 42:112702. [PMID: 37384532 DOI: 10.1016/j.celrep.2023.112702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
Transcriptional regulation of secondary cell wall (SCW) formation is strictly controlled by a complex network of transcription factors in vascular plants and has been shown to be mediated by a group of NAC master switches. In this study, we show that in a bHLH transcription factor, OsbHLH002/OsICE1, its loss-of-function mutant displays a lodging phenotype. Further results show that OsbHLH002 and Oryza sativa homeobox1 (OSH1) interact and share a set of common targets. In addition, the DELLA protein SLENDER RICE1, rice ortholog of KNOTTED ARABIDOPSIS THALIANA7, and OsNAC31 interact with OsbHLH002 and OSH1 and regulate their binding capacity on OsMYB61, a key regulatory factor in SCW development. Collectively, our results indicate OsbHLH002 and OSH1 as key regulators in SCW formation and shed light on molecular mechanisms of how active and repressive factors precisely orchestrate SCW synthesis in rice, which may provide a strategy for manipulating plant biomass production.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Haoyue Qi
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lijia Yang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Xu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiaxuan Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiazhuo Guo
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Chen L, Ma Y, He T, Chen T, Pan Y, Zhou D, Li X, Lu Y, Wu Q, Wang L. Integrated transcriptome and metabolome analysis unveil the response mechanism in wild rice ( Zizania latifolia griseb.) against sheath rot infection. Front Genet 2023; 14:1163464. [PMID: 37359383 PMCID: PMC10289006 DOI: 10.3389/fgene.2023.1163464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Sheath rot disease (SRD) is one of the most devastating diseases of Manchurian wild rice (MWR) (Zizania latifolia Griseb). Pilot experiments in our laboratory have shown that an MWR cultivar "Zhejiao NO.7"exhibits signs of SRD tolerance. To explore the responses of Zhejiao No. 7 to SRD infection, we used a combined transcriptome and metabolome analysis approach. A total of 136 differentially accumulated metabolites (DAMs, 114 up- and 22 down-accumulated in FA compared to CK) were detected. These up-accumulated metabolites were enriched in tryptophan metabolism, amino acid biosynthesis, flavonoids, and phytohormone signaling. Transcriptome sequencing results showed the differential expression of 11,280 genes (DEGs, 5,933 up-, and 5,347 downregulated in FA compared to CK). The genes expressed in tryptophan metabolism, amino acid biosynthesis, phytohormone biosynthesis and signaling, and reactive oxygen species homeostasis confirmed the metabolite results. In addition, genes related to the cell wall, carbohydrate metabolism, and plant-pathogen interaction (especially hypersensitive response) showed changes in expression in response to SRD infection. These results provide a basis for understanding the response mechanisms in MWR to FA attack that can be used for breeding SRD-tolerant MWR.
Collapse
Affiliation(s)
- Limin Chen
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yamin Ma
- Agricultural and Rural Bureau of Jinyun County, Jinyun, Zhejiang, China
| | - Tianjun He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - TingTing Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yiming Pan
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Dayun Zhou
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Quancong Wu
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Lailiang Wang
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| |
Collapse
|
33
|
Advances in molecular interactions on the Rhizoctonia solani-sugar beet pathosystem. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Ashrafi S, Wennrich JP, Becker Y, Maciá-Vicente JG, Brißke-Rode A, Daub M, Thünen T, Dababat AA, Finckh MR, Stadler M, Maier W. Polydomus karssenii gen. nov. sp. nov. is a dark septate endophyte with a bifunctional lifestyle parasitising eggs of plant parasitic cyst nematodes (Heterodera spp.). IMA Fungus 2023; 14:6. [PMID: 36998098 PMCID: PMC10064538 DOI: 10.1186/s43008-023-00113-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
In this study fungal strains were investigated, which had been isolated from eggs of the cereal cyst nematode Heterodera filipjevi, and roots of Microthlaspi perfoliatum (Brassicaceae). The morphology, the interaction with nematodes and plants and the phylogenetic relationships of these strains originating from a broad geographic range covering Western Europe to Asia Minor were studied. Phylogenetic analyses using five genomic loci including ITSrDNA, LSUrDNA, SSUrDNA, rpb2 and tef1-α were carried out. The strains were found to represent a distinct phylogenetic lineage most closely related to Equiseticola and Ophiosphaerella, and Polydomus karssenii (Phaeosphaeriaceae, Pleosporales) is introduced here as a new species representing a monotypic genus. The pathogenicity tests against nematode eggs fulfilled Koch's postulates using in vitro nematode bioassays and showed that the fungus could parasitise its original nematode host H. filipjevi as well as the sugar beet cyst nematode H. schachtii, and colonise cysts and eggs of its hosts by forming highly melanised moniliform hyphae. Light microscopic observations on fungus-root interactions in an axenic system revealed the capacity of the same fungal strain to colonise the roots of wheat and produce melanised hyphae and microsclerotia-like structure typical for dark septate endophytes. Confocal laser scanning microscopy further demonstrated that the fungus colonised the root cells by predominant intercellular growth of hyphae, and frequent formation of appressorium-like as well as penetration peg-like structures through internal cell walls surrounded by callosic papilla-like structures. Different strains of the new fungus produced a nearly identical set of secondary metabolites with various biological activities including nematicidal effects irrespective of their origin from plants or nematodes.
Collapse
Affiliation(s)
- Samad Ashrafi
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany.
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Brunswick, Germany.
| | - Jan-Peer Wennrich
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Brunswick, Germany
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| | - Jose G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Anke Brißke-Rode
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthias Daub
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Dürener Str. 71, 50189, Elsdorf, Germany
| | - Torsten Thünen
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Brunswick, Germany
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Centre (CIMMYT), Emek, P.O. Box 39, 06511, Ankara, Turkey
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Brunswick, Germany
| | - Wolfgang Maier
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| |
Collapse
|
35
|
Zhang Y, Cao G, Li X, Piao Z. Effects of Exogenous Ergothioneine on Brassica rapa Clubroot Development Revealed by Transcriptomic Analysis. Int J Mol Sci 2023; 24:ijms24076380. [PMID: 37047350 PMCID: PMC10094275 DOI: 10.3390/ijms24076380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae that leads to a serious yield reduction in cruciferous plants. In this study, ergothioneine (EGT) was used to culture P. brassicae resting spores, the germination of which was significantly inhibited. Further exogenous application of EGT and P. brassicae inoculation in Chinese cabbage showed that EGT promoted root growth and significantly reduced the incidence rate and disease index. To further explore the mechanism by which EGT improves the resistance of Chinese cabbage to clubroot, a Chinese cabbage inbred line BJN3-2 susceptible to clubroot treated with EGT was inoculated, and a transcriptome analysis was conducted. The transcriptome sequencing analysis showed that the differentially expressed genes induced by EGT were significantly enriched in the phenylpropanoid biosynthetic pathway, and the genes encoding related enzymes involved in lignin synthesis were upregulated. qRT-PCR, peroxidase activity, lignin and flavonoid content determination showed that EGT promoted the lignin and flavonoid synthesis of Chinese cabbage and improved its resistance to clubroot. This study provides a new insight for the comprehensive prevention and control of cruciferous clubroot and for further study of the effects of EGT on clubroot disease.
Collapse
|
36
|
Sangi S, Olimpio GV, Coelho FS, Alexandrino CR, Da Cunha M, Grativol C. Flagellin and mannitol modulate callose biosynthesis and deposition in soybean seedlings. PHYSIOLOGIA PLANTARUM 2023; 175:e13877. [PMID: 36811487 DOI: 10.1111/ppl.13877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Callose is a polymer deposited on the cell wall and is necessary for plant growth and development. Callose is synthesized by genes from the glucan synthase-like family (GSL) and dynamically responds to various types of stress. Callose can inhibit pathogenic infection, in the case of biotic stresses, and maintain cell turgor and stiffen the plant cell wall in abiotic stresses. Here, we report the identification of 23 GSL genes (GmGSL) in the soybean genome. We performed phylogenetic analyses, gene structure prediction, duplication patterns, and expression profiles on several RNA-Seq libraries. Our analyses show that WGD/Segmental duplication contributed to expanding this gene family in soybean. Next, we analyzed the callose responses in soybean under abiotic and biotic stresses. The data show that callose is induced by both osmotic stress and flagellin 22 (flg22) and is related to the activity of β-1,3-glucanases. By using RT-qPCR, we evaluated the expression of GSL genes during the treatment of soybean roots with mannitol and flg22. The GmGSL23 gene was upregulated in seedlings treated with osmotic stress or flg22, showing the essential role of this gene in the soybean defense response to pathogenic organisms and osmotic stress. Our results provide an important understanding of the role of callose deposition and regulation of GSL genes in response to osmotic stress and flg22 infection in soybean seedlings.
Collapse
Affiliation(s)
- Sara Sangi
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Geovanna Vitória Olimpio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fernanda Silva Coelho
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Camilla R Alexandrino
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
37
|
Lim GH. Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance. THE PLANT PATHOLOGY JOURNAL 2023; 39:21-27. [PMID: 36760046 PMCID: PMC9929166 DOI: 10.5423/ppj.rw.10.2022.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
38
|
Zhang T, Wen G, Song B, Chen Z, Jiang S. Transcriptome profiling reveals the underlying mechanism of grape post-harvest pathogen Penicillium olsonii against the metabolites of Bacillus velezensis. Front Microbiol 2023; 13:1019800. [PMID: 36741881 PMCID: PMC9889648 DOI: 10.3389/fmicb.2022.1019800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Pathogen infection influences the post-harvest shelf life of grape berries. In a preliminary study, metabolites produced by Bacillus velezensis significantly inhibited the growth of the grape postharvest pathogen Penicillium olsonii. Methods To investigate the mechanism of interaction between B. velezensis and P. olsonii, a draft genome was generated for P. olsonii WHG5 using the Illumina NovaSeq platform, and the transcriptomic changes in WHG5 were analyzed in response to the exposure to B. velezensis metabolites (10% v/v). Results The expression levels of genes associated with sporulation, including GCY1, brlA, and abaA, were down-regulated compared with those of the control. In addition, spore deformation and abnormal swelling of the conidiophore were observed. The expression of crucial enzymes, including fructose 2,6-bisphosphate and mannitol-2-dehydrogenase, was down-regulated, indicating that the glycolytic pathway of WHG5 was adversely affected by B. velezensis metabolites. The KEGG pathway enrichment analysis revealed that glutathione metabolism and the antioxidant enzyme system were involved in the response to B. velezensis metabolites. The down-regulation of the pathogenesis-related genes, PG1 and POT1, suggested that B. velezensis metabolites decreased the pathogenicity of P. olsonii. B. velezensis metabolites disrupted the homeostasis of reactive oxygen species in P. olsonii by affecting glucose metabolism, resulting in spore deformation and disruption of growth. In addition, the expression of key pathogenesis-related genes was down-regulated, thereby reducing the pathogenicity of P. olsonii. Disscusion This study provides insights into the responses of P. olsonii to B. velezensis metabolites and identifies potential target genes that may be useful in biocontrol strategies for the suppression of post-harvest spoilage in grapes.
Collapse
Affiliation(s)
| | | | | | | | - Shijiao Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation, School of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
39
|
Fusarium Yellows of Ginger ( Zingiber officinale Roscoe) Caused by Fusarium oxysporum f. sp. zingiberi Is Associated with Cultivar-Specific Expression of Defense-Responsive Genes. Pathogens 2023; 12:pathogens12010141. [PMID: 36678490 PMCID: PMC9863783 DOI: 10.3390/pathogens12010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is an important horticultural crop, valued for its culinary and medicinal properties. Fusarium yellows of ginger, caused by Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating disease that has significantly reduced the quality and crop yield of ginger worldwide. The compatible interaction between ginger and Foz leading to susceptibility is dissected here. The pathogenicity of two Foz isolates on ginger was confirmed by their ability to colonise ginger and in turn induce both internal and external plant symptoms typical of Fusarium yellows. To shed light on Foz susceptibility at the molecular level, a set of defense-responsive genes was analysed for expression in the roots of ginger cultivars challenged with Foz. These include nucleotide-binding site (NBS) type of resistant (R) genes with a functional role in pathogen recognition, transcription factors associated with systemic acquired resistance, and enzymes involved in terpenoid biosynthesis and cell wall modifications. Among three R genes, the transcripts of ZoNBS1 and ZoNBS3 were rapidly induced by Foz at the onset of infection, and the expression magnitude was cultivar-dependent. These expression characteristics extend to the other genes. This study is the first step in understanding the mechanisms of compatible host-pathogen interactions in ginger.
Collapse
|
40
|
Host plant physiological transformation and microbial population heterogeneity as important determinants of the Soft Rot Pectobacteriaceae-plant interactions. Semin Cell Dev Biol 2023; 148-149:33-41. [PMID: 36621443 DOI: 10.1016/j.semcdb.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Pectobacterium and Dickeya species belonging to the Soft Rot Pectobacteriaceae (SRP) are one of the most devastating phytopathogens. They degrade plant tissues by producing an arsenal of plant cell wall degrading enzymes. However, SRP-plant interactions are not restricted to the production of these "brute force" weapons. Additionally, these bacteria apply stealth behavior related to (1) manipulation of the host plant via induction of susceptible responses and (2) formation of heterogeneous populations with functionally specialized cells. Our review aims to summarize current knowledge on SRP-induced plant susceptible responses and on the heterogeneity of SRP populations. The review shows that SRP are capable of adjusting the host's hormonal balance, inducing host-mediated plant cell wall modification, promoting iron assimilation by the host, stimulating the accumulation of reactive oxygen species and host cell death, and activating the synthesis of secondary metabolites that are ineffective in limiting disease progression. By this means, SRP facilitate host plant susceptibility. During host colonization, SRP populations produce various functionally specialized cells adapted for enhanced virulence, increased resistance, motility, vegetative growth, or colonization of the vascular system. This enables SRP to perform self-contradictory tasks, which benefits a population's overall fitness in various environments, including host plants. Such stealthy tactical actions facilitate plant-SRP interactions and disease progression.
Collapse
|
41
|
Lau KJX, Gusareva ES, Luhung I, Premkrishnan BNV, Wong A, Poh TY, Uchida A, Oliveira EL, Drautz-Moses DI, Junqueira ACM, Schuster SC. Structure vs. chemistry: Alternate mechanisms for controlling leaf microbiomes. PLoS One 2023; 18:e0275734. [PMID: 36943839 PMCID: PMC10030040 DOI: 10.1371/journal.pone.0275734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 09/22/2022] [Indexed: 03/23/2023] Open
Abstract
The analysis of phyllosphere microbiomes traditionally relied on DNA extracted from whole leaves. To investigate the microbial communities on the adaxial (upper) and abaxial (lower) leaf surfaces, swabs were collected from both surfaces of two garden plants, Rhapis excelsa and Cordyline fruticosa. Samples were collected at noon and midnight and at five different locations to investigate if the phyllosphere microbial communities change with time and location. The abaxial surface of Rhapis excelsa and Cordyline fruticosa had fewer bacteria in contrast to its adaxial counterpart. This observation was consistent between noon and midnight and across five different locations. Our co-occurrence network analysis further showed that bacteria were found almost exclusively on the adaxial surface while only a small group of leaf blotch fungi thrived on the abaxial surface. There are higher densities of stomata on the abaxial surface and these openings are vulnerable ports of entry into the plant host. While one might argue about the settling of dust particles and microorganisms on the adaxial surface, we detected differences in reactive chemical activities and microstructures between the adaxial and abaxial surfaces. Our results further suggest that both plant species deploy different defence strategies to deter invading pathogens on the abaxial surface. We hypothesize that chemical and mechanical defence strategies evolved independently for harnessing and controlling phyllosphere microbiomes. Our findings have also advanced our understanding that the abaxial leaf surface is distinct from the adaxial surface and that the reduced microbial diversity is likely a consequence of plant-microbe interactions.
Collapse
Affiliation(s)
- Kenny J X Lau
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Elena S Gusareva
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Irvan Luhung
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Balakrishnan N V Premkrishnan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anthony Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tuang Yeow Poh
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Akira Uchida
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Elaine L Oliveira
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ana Carolina M Junqueira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
42
|
Van Den Wyngaert S, Kainz MJ, Ptacnik R. Mucilage protects the planktonic desmid Staurodesmus sp. against parasite attack by a chytrid fungus. JOURNAL OF PLANKTON RESEARCH 2023; 45:3-14. [PMID: 36751484 PMCID: PMC9896892 DOI: 10.1093/plankt/fbac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
Zoosporic fungi of the phylum Chytridiomycota are ubiquitous parasites of phytoplankton in aquatic ecosystems, but little is known about phytoplankton defense strategies against parasitic chytrid attacks. Using a model chytrid-phytoplankton pathosystem, we experimentally tested the hypothesis that the mucilage envelope of a mucilage-forming desmid species provides protection against the parasitic chytrid Staurastromyces oculus. Mucilage-forming Staurodesmus cells were not accessible to the chytrid, whereas physical removal of the mucilage envelope rendered the same Staurodesmus sp. strain equally susceptible to chytrid infections as the original non-mucilage-forming host Staurastrum sp. Epidemic spread of the parasite only occurred in Staurastrum sp., whereas non-mucilage-bearing Staurodesmus sp. allowed for co-existence of host and parasite, and mucilage-bearing Staurodesmus sp. caused parasite extinction. In addition to the mucilage defense barrier, we also demonstrate the ability of both Staurastrum sp. and Staurodesmus sp. to resist infection by preventing chytrid development while still remaining viable and being able to reproduce and thus recover from an infection. This study extends our knowledge on phytoplankton defense traits and the functional role of mucilage in phytoplankton as a physical barrier against fungal parasites.
Collapse
Affiliation(s)
| | - Martin J Kainz
- Wassercluster – Biologische Station Lunz, Dr Carl Kupelwieser Promenade 5, 3293 Lunz Am See, Austria
- Department of Biomedical Research, Danube University, Dr Karl Dorrek Strasse 20, 3500 Krems, Austria
| | - Robert Ptacnik
- Wassercluster – Biologische Station Lunz, Dr Carl Kupelwieser Promenade 5, 3293 Lunz Am See, Austria
| |
Collapse
|
43
|
Lin N, Wang M, Jiang J, Zhou Q, Yin J, Li J, Lian J, Xue Y, Chai Y. Downregulation of Brassica napus MYB69 ( BnMYB69) increases biomass growth and disease susceptibility via remodeling phytohormone, chlorophyll, shikimate and lignin levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1157836. [PMID: 37077631 PMCID: PMC10108680 DOI: 10.3389/fpls.2023.1157836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
MYB transcription factors are major actors regulating plant development and adaptability. Brassica napus is a staple oil crop and is hampered by lodging and diseases. Here, four B. napus MYB69 (BnMYB69s) genes were cloned and functionally characterized. They were dominantly expressed in stems during lignification. BnMYB69 RNA interference (BnMYB69i) plants showed considerable changes in morphology, anatomy, metabolism and gene expression. Stem diameter, leaves, roots and total biomass were distinctly larger, but plant height was significantly reduced. Contents of lignin, cellulose and protopectin in stems were significantly reduced, accompanied with decrease in bending resistance and Sclerotinia sclerotiorum resistance. Anatomical detection observed perturbation in vascular and fiber differentiation in stems, but promotion in parenchyma growth, accompanied with changes in cell size and cell number. In shoots, contents of IAA, shikimates and proanthocyanidin were reduced, while contents of ABA, BL and leaf chlorophyll were increased. qRT-PCR revealed changes in multiple pathways of primary and secondary metabolisms. IAA treatment could recover many phenotypes and metabolisms of BnMYB69i plants. However, roots showed trends opposite to shoots in most cases, and BnMYB69i phenotypes were light-sensitive. Conclusively, BnMYB69s might be light-regulated positive regulators of shikimates-related metabolisms, and exert profound influences on various internal and external plant traits.
Collapse
Affiliation(s)
- Na Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Mu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiayi Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qinyuan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiaming Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jianping Lian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yufei Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yourong Chai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
- *Correspondence: Yourong Chai,
| |
Collapse
|
44
|
Saji S, Saji H, Sage-Ono K, Ono M, Nakajima N, Aono M. Phytocyanin-encoding genes confer enhanced ozone tolerance in Arabidopsis thaliana. Sci Rep 2022; 12:21204. [PMID: 36550187 PMCID: PMC9780206 DOI: 10.1038/s41598-022-25706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Ozone is a phytotoxic air pollutant that has various damaging effects on plants, including chlorosis and growth inhibition. Although various physiological and genetic studies have elucidated some of the mechanisms underlying plant ozone sensitivity and lesion development, our understanding of plant response to this gas remains incomplete. Here, we show evidence for the involvement of certain apoplastic proteins called phytocyanins, such as AtUC5, that protect against ozone damage. Two representative ozone-inducible responses, chlorosis and stomatal closure, were suppressed in AtUC5-overexpressing plants. Analysis of transgenic plants expressing a chimeric protein composed of AtUC5 fused to green fluorescent protein indicated that this fusion protein localises to the apoplast of plant cells where it appears to suppress early responses to ozone damage such as generation or signalling of reactive oxygen species. Moreover, yeast two-hybrid analyses suggest that AtUC5 may physically interact with stress-related proteins such as copper amine oxidase and late embryogenesis abundant protein-like protein. In addition to AtUC5, other examined phytocyanins such as AtUC6 and AtSC3 could confer ozone tolerance to plants when overexpressed in A. thaliana, suggesting that these proteins act together to protect plants against oxidative stress factors.
Collapse
Affiliation(s)
- Shoko Saji
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Hikaru Saji
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Kimiyo Sage-Ono
- grid.20515.330000 0001 2369 4728Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Japan
| | - Michiyuki Ono
- grid.20515.330000 0001 2369 4728Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Japan
| | - Nobuyoshi Nakajima
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| | - Mitsuko Aono
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan
| |
Collapse
|
45
|
Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. FRONTIERS IN PLANT SCIENCE 2022; 13:1044896. [PMID: 36578344 PMCID: PMC9790997 DOI: 10.3389/fpls.2022.1044896] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global environment is dominated by various small exotic substances, known as secondary metabolites, produced by plants and microorganisms. Plants and fungi are particularly plentiful sources of these molecules, whose physiological functions, in many cases, remain a mystery. Fungal secondary metabolites (SM) are a diverse group of substances that exhibit a wide range of chemical properties and generally fall into one of four main family groups: Terpenoids, polyketides, non-ribosomal peptides, or a combination of the latter two. They are incredibly varied in their functions and are often related to the increased fitness of the respective fungus in its environment, often competing with other microbes or interacting with plant species. Several of these metabolites have essential roles in the biological control of plant diseases by various beneficial microorganisms used for crop protection and biofertilization worldwide. Besides direct toxic effects against phytopathogens, natural metabolites can promote root and shoot development and/or disease resistance by activating host systemic defenses. The ability of these microorganisms to synthesize and store biologically active metabolites that are a potent source of novel natural compounds beneficial for agriculture is becoming a top priority for SM fungi research. In this review, we will discuss fungal-plant secondary metabolites with antifungal properties and the role of signaling molecules in induced and acquired systemic resistance activities. Additionally, fungal secondary metabolites mimic plant promotion molecules such as auxins, gibberellins, and abscisic acid, which modulate plant growth under biotic stress. Moreover, we will present a new trend regarding phytoremediation applications using fungal secondary metabolites to achieve sustainable food production and microbial diversity in an eco-friendly environment.
Collapse
Affiliation(s)
- Neveen Atta Elhamouly
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Botany, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Angelica Miraples
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Omnia T. Elshorbagy
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzan Hussien
- Botany Department Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
47
|
Transcriptome Analysis of Persian Oak (Quercus brantii L.) Decline Using RNA-seq Technology. Biochem Genet 2022; 61:879-900. [PMID: 36214954 DOI: 10.1007/s10528-022-10283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Since the late 1980s, the oak decline has affected the Zagros oak forests in western Iran. Persian oak (Quercus brantii L.) the most important tree species of these forests has been damaged more than any other plant species. In the present study, the RNA sequencing technique was used for the first time to identify key genes and molecular mechanisms involved in Persian oak decline. The RNA was extracted from the leaves of healthy and declined oak trees, and sequenced using the Illumina HiSeq 2500 platform (2 × 150 bp paired-end reads). De novo transcriptome assembly of Persian oak revealed 56,743 unigenes and 6049 differentially expressed genes (DEGs) between declined and control samples. The results of gene ontology analysis showed that most of the DEGs involved in oak decline belong to the group of stress-responsive genes. In general, oak decline samples showed significant reductions in gene expression associated with "photosynthesis and storage of sugar" and "protein synthesis and related processes." Additionally, DEGs related to the starch degradation pathway were up-regulated, whereas DEGs associated with acetate-mevalonate (MVA), biosynthesis of lignin, and lignases pathways were down-regulated. The present study's findings can be an effective step in identifying the genes involved in oak decline and deciphering the relationship between this phenomenon and biotic and abiotic stresses.
Collapse
|
48
|
Liu X, Yin Z, Wang Y, Cao S, Yao W, Liu J, Lu X, Wang F, Zhang G, Xiao Y, Tang W, Deng H. Rice cellulose synthase-like protein OsCSLD4 coordinates the trade-off between plant growth and defense. FRONTIERS IN PLANT SCIENCE 2022; 13:980424. [PMID: 36226281 PMCID: PMC9548992 DOI: 10.3389/fpls.2022.980424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Plant cell wall is a complex and changeable structure, which is very important for plant growth and development. It is clear that cell wall polysaccharide synthases have critical functions in rice growth and abiotic stress, yet their role in plant response to pathogen invasion is poorly understood. Here, we describe a dwarf and narrowed leaf in Hejiang 19 (dnl19) mutant in rice, which shows multiple growth defects such as reduced plant height, enlarged lamina joint angle, curled leaf morphology, and a decrease in panicle length and seed setting. MutMap analysis, genetic complementation and gene knockout mutant show that cellulose synthase-like D4 (OsCSLD4) is the causal gene for DNL19. Loss function of OsCSLD4 leads to a constitutive activation of defense response in rice. After inoculation with rice blast and bacterial blight, dnl19 displays an enhanced disease resistance. Widely targeted metabolomics analysis reveals that disruption of OsCSLD4 in dnl19 resulted in significant increase of L-valine, L-asparagine, L-histidine, L-alanine, gentisic acid, but significant decrease of L-aspartic acid, malic acid, 6-phosphogluconic acid, glucose 6-phosphate, galactose 1-phosphate, gluconic acid, D-aspartic acid. Collectively, our data reveals the importance of OsCSLD4 in balancing the trade-off between rice growth and defense.
Collapse
Affiliation(s)
- Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Zhongliang Yin
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Yubo Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Sai Cao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Wei Yao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jinling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| |
Collapse
|
49
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
50
|
Poloni A, Garde R, Dittiger LD, Heidrich T, Müller C, Drechsler F, Zhao Y, Mazumdar T, Schirawski J. Transcriptome Analysis Reveals Contrasting Plant Responses of Sorghum bicolor upon Colonization by Two Formae Speciales of Sporisorium reilianum. Int J Mol Sci 2022; 23:ijms23168864. [PMID: 36012130 PMCID: PMC9407964 DOI: 10.3390/ijms23168864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
The biotrophic fungus Sporisorium reilianum exists in two host-adapted formae speciales that cause head smut in maize (S. reilianum f. sp. zeae; SRZ) and sorghum (S. reilianum f. sp. reilianum; SRS). In sorghum, the spread of SRZ is limited to the leaves. To understand the plant responses to each forma specialis, we determined the transcriptome of sorghum leaves inoculated either with SRS or SRZ. Fungal inoculation led to gene expression rather than suppression in sorghum. SRZ induced a much greater number of genes than SRS. Each forma specialis induced a distinct set of plant genes. The SRZ-induced genes were involved in plant defense mainly at the plasma membrane and were associated with the Molecular Function Gene Ontology terms chitin binding, abscisic acid binding, protein phosphatase inhibitor activity, terpene synthase activity, chitinase activity, transmembrane transporter activity and signaling receptor activity. Specifically, we found an upregulation of the genes involved in phospholipid degradation and sphingolipid biosynthesis, suggesting that the lipid content of the plant plasma membrane may contribute to preventing the systemic spread of SRZ. In contrast, the colonization of sorghum with SRS increased the expression of the genes involved in the detoxification of cellular oxidants and in the unfolded protein response at the endoplasmic reticulum, as well as of the genes modifying the cuticle wax and lipid composition through the generation of alkanes and phytosterols. These results identified plant compartments that may have a function in resistance against SRZ (plasma membrane) and susceptibility towards SRS (endoplasmic reticulum) that need more attention in the future.
Collapse
Affiliation(s)
- Alana Poloni
- Department for Molecular Biology of Plant-Microbe Interaction, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Department of Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ravindra Garde
- Department of Genetics, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Lukas Dorian Dittiger
- Department of Genetics, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Theresa Heidrich
- Department for Molecular Biology of Plant-Microbe Interaction, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Department of Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Christian Müller
- Department of Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Department of Genetics, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Frank Drechsler
- Department of Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Yulei Zhao
- Department for Molecular Biology of Plant-Microbe Interaction, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Department of Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Tilottama Mazumdar
- Department of Genetics, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Jan Schirawski
- Department for Molecular Biology of Plant-Microbe Interaction, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- Department of Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Department of Genetics, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-949555
| |
Collapse
|