1
|
Malwattage NR, Wone B, Wone BWM. A CAM-Related NF-YB Transcription Factor Enhances Multiple Abiotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2024; 25:7107. [PMID: 39000218 PMCID: PMC11241642 DOI: 10.3390/ijms25137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Abiotic stresses often occur simultaneously, and the tolerance mechanisms of plants to combined multiple abiotic stresses remain poorly studied. Extremophytes, adapted to abiotic stressors, might possess stress-adaptive or -responsive regulators that could enhance multiple abiotic stress resistance in crop plants. We identified an NF-YB transcription factor (TF) from the heat-tolerant obligate Crassulacean acid metabolism (CAM) plant, Kalanchoe fedtschenkoi, as a potential regulator of multiple abiotic stresses. The KfNF-YB3 gene was overexpressed in Arabidopsis to determine its role in multiple abiotic stress responses. Transgenic lines exhibited accelerated flowering time, increased biomass, larger rosette size, higher seed yield, and more leaves. Transgenic lines had higher germination rates under combined NaCl, osmotic, and water-deficit stress treatments compared to control plants. They also showed enhanced root growth and survival under simultaneous NaCl, osmotic, water-deficit, and heat stress conditions in vitro. Interestingly, potted transgenic lines had higher survival rates, yield, and biomass under simultaneous heat, water-deficit, and light stresses compared to control plants. Altogether, these results provide initial insights into the functions of a CAM-related TF and its potential roles in regulating multiple abiotic stress responses. The CAM abiotic stress-responsive TF-based approach appears to be an ideal strategy to enhance multi-stress resilience in crop plants.
Collapse
Affiliation(s)
| | | | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
2
|
Bhoite R, Han Y, Chaitanya AK, Varshney RK, Sharma DL. Genomic approaches to enhance adaptive plasticity to cope with soil constraints amidst climate change in wheat. THE PLANT GENOME 2024; 17:e20358. [PMID: 37265088 DOI: 10.1002/tpg2.20358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Climate change is varying the availability of resources, soil physicochemical properties, and rainfall events, which collectively determines soil physical and chemical properties. Soil constraints-acidity (pH < 6), salinity (pH ≤ 8.5), sodicity, and dispersion (pH > 8.5)-are major causes of wheat yield loss in arid and semiarid cropping systems. To cope with changing environments, plants employ adaptive strategies such as phenotypic plasticity, a key multifaceted trait, to promote shifts in phenotypes. Adaptive strategies for constrained soils are complex, determined by key functional traits and genotype × environment × management interactions. The understanding of the molecular basis of stress tolerance is particularly challenging for plasticity traits. Advances in sequencing and high-throughput genomics technologies have identified functional alleles in gene-rich regions, haplotypes, candidate genes, mechanisms, and in silico gene expression profiles at various growth developmental stages. Our review focuses on favorable alleles for enhanced gene expression, quantitative trait loci, and epigenetic regulation of plant responses to soil constraints, including heavy metal stress and nutrient limitations. A strategy is then described for quantitative traits in wheat by investigating significant alleles and functional characterization of variants, followed by gene validation using advanced genomic tools, and marker development for molecular breeding and genome editing. Moreover, the review highlights the progress of gene editing in wheat, multiplex gene editing, and novel alleles for smart control of gene expression. Application of these advanced genomic technologies to enhance plasticity traits along with soil management practices will be an effective tool to build yield, stability, and sustainability on constrained soils in the face of climate change.
Collapse
Affiliation(s)
- Roopali Bhoite
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Yong Han
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Alamuru Krishna Chaitanya
- Grains Genetics Portfolio, University of Southern Queensland, Centre for Crop Health, Toowoomba, Queensland, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Darshan Lal Sharma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Ait Bessai S, Cruz J, Carril P, Melo J, Santana MM, Mouazen AM, Cruz C, Yadav AN, Dias T, Nabti EH. The Plant Growth-Promoting Potential of Halotolerant Bacteria Is Not Phylogenetically Determined: Evidence from Two Bacillus megaterium Strains Isolated from Saline Soils Used to Grow Wheat. Microorganisms 2023; 11:1687. [PMID: 37512860 PMCID: PMC10384442 DOI: 10.3390/microorganisms11071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Increasing salinity, further potentiated by climate change and soil degradation, will jeopardize food security even more. Therefore, there is an urgent need for sustainable agricultural practices capable of maintaining high crop yields despite adverse conditions. Here, we tested if wheat, a salt-sensitive crop, could be a good reservoir for halotolerant bacteria with plant growth-promoting (PGP) capabilities. (2) Methods: We used two agricultural soils from Algeria, which differ in salinity but are both used to grow wheat. Soil halotolerant bacterial strains were isolated and screened for 12 PGP traits related to phytohormone production, improved nitrogen and phosphorus availability, nutrient cycling, and plant defence. The four 'most promising' halotolerant PGPB strains were tested hydroponically on wheat by measuring their effect on germination, survival, and biomass along a salinity gradient. (3) Results: Two halotolerant bacterial strains with PGP traits were isolated from the non-saline soil and were identified as Bacillus subtilis and Pseudomonas fluorescens, and another two halotolerant bacterial strains with PGP traits were isolated from the saline soil and identified as B. megaterium. When grown under 250 mM of NaCl, only the inoculated wheat seedlings survived. The halotolerant bacterial strain that displayed all 12 PGP traits and promoted seed germination and plant growth the most was one of the B. megaterium strains isolated from the saline soil. Although they both belonged to the B. megaterium clade and displayed a remarkable halotolerance, the two bacterial strains isolated from the saline soil differed in two PGP traits and had different effects on plant performance, which clearly shows that PGP potential is not phylogenetically determined. (4) Conclusions: Our data highlight that salt-sensitive plants and non-saline soils can be reservoirs for halotolerant microbes with the potential to become effective and sustainable strategies to improve plant tolerance to salinity. However, these strains need to be tested under field conditions and with more crops before being considered biofertilizer candidates.
Collapse
Affiliation(s)
- Sylia Ait Bessai
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Joana Cruz
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Competence Centre for Molecular Biology, SGS Molecular, Polo Tecnológico de Lisboa, Rua Cesina Adães Bermudes, Lt 11, 1600-604 Lisboa, Portugal
| | - Pablo Carril
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Juliana Melo
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Margarida M Santana
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Abdul M Mouazen
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Cristina Cruz
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Teresa Dias
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - El-Hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| |
Collapse
|
4
|
Shelden MC, Munns R. Crop root system plasticity for improved yields in saline soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1120583. [PMID: 36909408 PMCID: PMC9999379 DOI: 10.3389/fpls.2023.1120583] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Crop yields must increase to meet the demands of a growing world population. Soil salinization is increasing due to the impacts of climate change, reducing the area of arable land for crop production. Plant root systems are plastic, and their architecture can be modulated to (1) acquire nutrients and water for growth, and (2) respond to hostile soil environments. Saline soils inhibit primary root growth and alter root system architecture (RSA) of crop plants. In this review, we explore how crop root systems respond and adapt to salinity, focusing predominately on the staple cereal crops wheat, maize, rice, and barley, that all play a major role in global food security. Cereal crops are classified as glycophytes (salt-sensitive) however salt-tolerance can differ both between species and within a species. In the past, due to the inherent difficulties associated with visualising and measuring root traits, crop breeding strategies have tended to focus on optimising shoot traits. High-resolution phenotyping techniques now make it possible to visualise and measure root traits in soil systems. A steep, deep and cheap root ideotype has been proposed for water and nitrogen capture. Changes in RSA can be an adaptive strategy to avoid saline soils whilst optimising nutrient and water acquisition. In this review we propose a new model for designing crops with a salt-tolerant root ideotype. The proposed root ideotype would exhibit root plasticity to adapt to saline soils, root anatomical changes to conserve energy and restrict sodium (Na+) uptake, and transport mechanisms to reduce the amount of Na+ transported to leaves. In the future, combining high-resolution root phenotyping with advances in crop genetics will allow us to uncover root traits in complex crop species such as wheat, that can be incorporated into crop breeding programs for yield stability in saline soils.
Collapse
Affiliation(s)
- Megan C. Shelden
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
5
|
Yu Z, Ren Y, Liu J, Zhu JK, Zhao C. A novel mitochondrial protein is required for cell wall integrity, auxin accumulation and root elongation in Arabidopsis under salt stress. STRESS BIOLOGY 2022; 2:13. [PMID: 37676421 PMCID: PMC10441957 DOI: 10.1007/s44154-022-00036-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 09/08/2023]
Abstract
Maintenance of root elongation is beneficial for the growth and survival of plants under salt stress, but currently the cellular components involved in the regulation of root growth under high salinity are not fully understood. In this study, we identified an Arabidopsis mutant, rres1, which exhibited reduced root elongation under treatment of a variety of salts, including NaCl, NaNO3, KCl, and KNO3. RRES1 encodes a novel mitochondrial protein and its molecular function is still unknown. Under salt stress, the root meristem length was shorter in the rres1 mutant compared to the wild type, which was correlated with a reduced auxin accumulation in the mutant. Reactive oxygen species (ROS), as important signals that regulate root elongation, were accumulated to higher levels in the rres1 mutant than the wild type after salt treatment. Measurement of monosaccharides in the cell wall showed that arabinose and xylose contents were decreased in the rres1 mutant under salt stress, and application of boric acid, which is required for the crosslinking of pectic polysaccharide rhamnogalacturonan-II (RG-II), largely rescued the root growth arrest of the rres1 mutant, suggesting that RRES1 participates in the maintenance of cell wall integrity under salt stress. GUS staining assay indicated that the RRES1 gene was expressed in leaves and weakly in root tip under normal conditions, but its expression was dramatically increased in leaves and roots after salt treatment. Together, our study reveals a novel mitochondrial protein that regulates root elongation under salt stress via the modulation of cell wall integrity, auxin accumulation, and ROS homeostasis.
Collapse
Affiliation(s)
- Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yuying Ren
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
6
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
7
|
Jeyasri R, Muthuramalingam P, Satish L, Pandian SK, Chen JT, Ahmar S, Wang X, Mora-Poblete F, Ramesh M. An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071472. [PMID: 34371676 PMCID: PMC8309266 DOI: 10.3390/plants10071472] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 05/06/2023]
Abstract
Abiotic stresses (AbS), such as drought, salinity, and thermal stresses, could highly affect the growth and development of plants. For decades, researchers have attempted to unravel the mechanisms of AbS for enhancing the corresponding tolerance of plants, especially for crop production in agriculture. In the present communication, we summarized the significant factors (atmosphere, soil and water) of AbS, their regulations, and integrated omics in the most important cereal crops in the world, especially rice, wheat, sorghum, and maize. It has been suggested that using systems biology and advanced sequencing approaches in genomics could help solve the AbS response in cereals. An emphasis was given to holistic approaches such as, bioinformatics and functional omics, gene mining and agronomic traits, genome-wide association studies (GWAS), and transcription factors (TFs) family with respect to AbS. In addition, the development of omics studies has improved to address the identification of AbS responsive genes and it enables the interaction between signaling pathways, molecular insights, novel traits and their significance in cereal crops. This review compares AbS mechanisms to omics and bioinformatics resources to provide a comprehensive view of the mechanisms. Moreover, further studies are needed to obtain the information from the integrated omics databases to understand the AbS mechanisms for the development of large spectrum AbS-tolerant crop production.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
| | - Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Lakkakula Satish
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile;
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile;
- Correspondence: (F.M.-P.); (M.R.)
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Correspondence: (F.M.-P.); (M.R.)
| |
Collapse
|
8
|
Imran. The bioavailability of phosphorus in composite vs. hybrid maize differ with phosphorus and boron fertilization. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1920588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Imran
- Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
9
|
Siddiqui MN, Léon J, Naz AA, Ballvora A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1007-1019. [PMID: 33096558 PMCID: PMC7904151 DOI: 10.1093/jxb/eraa487] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Cereals are important crops worldwide that help meet food demands and nutritional needs. In recent years, cereal production has been challenged globally by frequent droughts and hot spells. A plant's root is the most relevant organ for the plant adaptation to stress conditions, playing pivotal roles in anchorage and the acquisition of soil-based resources. Thus, dissecting root system variations and trait selection for enhancing yield and sustainability under drought stress conditions should aid in future global food security. This review highlights the variations in root system attributes and their interplay with shoot architecture features to face water scarcity and maintain thus yield of major cereal crops. Further, we compile the root-related drought responsive quantitative trait loci/genes in cereal crops including their interspecies relationships using microsynteny to facilitate comparative genomic analyses. We then discuss the potential of an integrated strategy combining genomics and phenomics at genetic and epigenetic levels to explore natural genetic diversity as a basis for knowledge-based genome editing. Finally, we present an outline to establish innovative breeding leads for the rapid and optimized selection of root traits necessary to develop resilient crop varieties.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
López-Serrano L, Canet-Sanchis G, Selak GV, Penella C, San Bautista A, López-Galarza S, Calatayud Á. Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:207-219. [PMID: 31972389 DOI: 10.1016/j.plaphy.2020.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 05/08/2023]
Abstract
In pepper crops, rootstocks that tolerate salt stress are not used because available commercial rootstocks offer limited profits. In this context, we obtained the hybrid NIBER®, a new salinity-tolerant rootstock that has been tested under real salinity field conditions for 3 years with 32%-80% higher yields than ungrafted pepper plants. This study aimed to set up the initial mechanisms involved in the salinity tolerance of grafted pepper plants using NIBER® as a rootstock to study root-shoot behavior, a basic requirement to develop efficient rootstocks. Gas exchange, Na+/K+, antioxidant capacity, nitrate reductase activity, ABA, proline, H2O2, phenols, MDA concentration and biomass were measured in ungrafted plants of cultivar Adige (A), self-grafted (A/A), grafted onto NIBER® (A/N) and reciprocal grafted plants (N/A), all exposed to 0 mM and 70 mM NaCl over a 10-day period. Salinity significantly and quickly decreased photosynthesis, stomatal conductance and nitrate reductase activity, but to lower extent in A/N plants compared to A, A/A and N/A. A/N plants showed decreases in the Na+/K+ ratio, ABA content and lipid peroxidation activity. This oxidative damage alleviation in A/N was probably due to an enhanced H2O2 level that activates antioxidant capacity to cope salinity stress, and acts as a signal molecule rather than a damaging one by contributing a major increase in phenols and, to a lesser extent, in proline concentration. These traits led to a minor impact on biomass in A/N plants under salinity conditions. Only the plants with the NIBER® rootstock controlled the scion by modulating responses to salinity.
Collapse
Affiliation(s)
- Lidia López-Serrano
- Centro de Citricultura y Producción Vegetal, Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Guillermo Canet-Sanchis
- Centro de Citricultura y Producción Vegetal, Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Gabriela Vuletin Selak
- Department of Plant Science, Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Consuelo Penella
- Centro de Citricultura y Producción Vegetal, Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Alberto San Bautista
- Departamento de Producción Vegetal, Universitat Politècnica de València, Valencia, Spain
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, Universitat Politècnica de València, Valencia, Spain
| | - Ángeles Calatayud
- Centro de Citricultura y Producción Vegetal, Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain.
| |
Collapse
|
11
|
Shelden MC, Gilbert SE, Tyerman SD. A laser ablation technique maps differences in elemental composition in roots of two barley cultivars subjected to salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1462-1473. [PMID: 31686423 DOI: 10.1111/tpj.14599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/29/2019] [Indexed: 05/06/2023]
Abstract
In saline soils, high levels of sodium (Na+ ) and chloride (Cl- ) ions reduce root growth by inhibiting cell division and elongation, thereby impacting on crop yield. Soil salinity can lead to Na+ toxicity of plant cells, influencing the uptake and retention of other important ions [i.e. potassium (K+ )] required for growth. However, measuring and quantifying soluble ions in their native, cellular environment is inherently difficult. Technologies that allow in situ profiling of plant tissues are fundamental for our understanding of abiotic stress responses and the development of tolerant crops. Here, we employ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to quantify Na, K and other elements [calcium (Ca), magnesium (Mg), sulphur (S), phosphorus (P), iron (Fe)] at high spatial resolution in the root growth zone of two genotypes of barley (Hordeum vulgare) that differ in salt-tolerance, cv. Clipper (tolerant) and Sahara (sensitive). The data show that Na+ was excluded from the meristem and cell division zone, indicating that Na+ toxicity is not directly reducing cell division in the salt-sensitive genotype, Sahara. Interestingly, in both genotypes, K+ was strongly correlated with Na+ concentration, in response to salt stress. In addition, we also show important genetic differences and salt-specific changes in elemental composition in the root growth zone. These results show that LA-ICP-MS can be used for fine mapping of soluble ions (i.e. Na+ and K+ ) in plant tissues, providing insight into the link between Na+ toxicity and root growth responses to salt stress.
Collapse
Affiliation(s)
- Megan C Shelden
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Sarah E Gilbert
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
12
|
Arsova B, Foster KJ, Shelden MC, Bramley H, Watt M. Dynamics in plant roots and shoots minimize stress, save energy and maintain water and nutrient uptake. THE NEW PHYTOLOGIST 2020; 225:1111-1119. [PMID: 31127613 DOI: 10.1111/nph.15955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/19/2019] [Indexed: 05/12/2023]
Abstract
Plants are inherently dynamic. Dynamics minimize stress while enabling plants to flexibly acquire resources. Three examples are presented for plants tolerating saline soil: transport of sodium chloride (NaCl), water and macronutrients is nonuniform along a branched root; water and NaCl redistribute between shoot and soil at night-time; and ATP for salt exclusion is much lower in thinner branch roots than main roots, quantified using a biophysical model and geometry from anatomy. Noninvasive phenotyping and precision agriculture technologies can be used together to harness plant dynamics, but analytical methods are needed. A plant advancing in time through a soil and atmosphere space is proposed as a framework for dynamic data and their relationship to crop improvement.
Collapse
Affiliation(s)
- Borjana Arsova
- Root Dynamics Group, Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, Juelich, 52428, Germany
| | - Kylie J Foster
- Phenomics and Bioinformatics Research Centre, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Megan C Shelden
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Helen Bramley
- School of Life and Environmental Sciences, Plant Breeding Institute and Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, 2390, Australia
| | - Michelle Watt
- Root Dynamics Group, Institute for Bio and Geosciences-2, Plant Sciences, Forschungszentrum Juelich GmbH, Juelich, 52428, Germany
| |
Collapse
|
13
|
Gupta S, Rupasinghe T, Callahan DL, Natera SHA, Smith PMC, Hill CB, Roessner U, Boughton BA. Spatio-Temporal Metabolite and Elemental Profiling of Salt Stressed Barley Seeds During Initial Stages of Germination by MALDI-MSI and µ-XRF Spectrometry. FRONTIERS IN PLANT SCIENCE 2019; 10:1139. [PMID: 31608088 PMCID: PMC6774343 DOI: 10.3389/fpls.2019.01139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/21/2019] [Indexed: 05/05/2023]
Abstract
Seed germination is the essential first step in crop establishment, and can be severely affected by salinity stress which can inhibit essential metabolic processes during the germination process. Salt stress during seed germination can trigger lipid-dependent signalling cascades that activate plant adaptation processes, lead to changes in membrane fluidity to help resist the stress, and cause secondary metabolite responses due to increased oxidative stress. In germinating barley (Hordeum vulgare), knowledge of the changes in spatial distribution of lipids and other small molecules at a cellular level in response to salt stress is limited. In this study, mass spectrometry imaging (MSI), liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence (XRF) were used to determine the spatial distribution of metabolites, lipids and a range of elements, such as K+ and Na+, in seeds of two barley genotypes with contrasting germination phenology (Australian barley varieties Mundah and Keel). We detected and tentatively identified more than 200 lipid species belonging to seven major lipid classes (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, prenol lipids, sterol lipids, and polyketides) that differed in their spatial distribution based on genotype (Mundah or Keel), time post-imbibition (0 to 72 h), or treatment (control or salt). We found a tentative flavonoid was discriminant in post-imbibed Mundah embryos under saline conditions, and a delayed flavonoid response in Keel relative to Mundah. We further employed MSI-MS/MS and LC-QToF-MS/MS to explore the identity of the discriminant flavonoid and study the temporal pattern in five additional barley genotypes. ICP-MS was used to quantify the elemental composition of both Mundah and Keel seeds, showing a significant increase in Na+ in salt treated samples. Spatial mapping of elements using µ-XRF localized the elements within the seeds. This study integrates data obtained from three mass spectrometry platforms together with µ-XRF to yield information on the localization of lipids, metabolites and elements improving our understanding of the germination process under salt stress at a molecular level.
Collapse
Affiliation(s)
- Sneha Gupta
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Damien L. Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Siria H. A. Natera
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Penelope M. C. Smith
- AgriBio, Centre for AgriBiosciences, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Camilla B. Hill
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Berin A. Boughton
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Jha UC, Bohra A, Jha R, Parida SK. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes. PLANT CELL REPORTS 2019; 38:255-277. [PMID: 30637478 DOI: 10.1007/s00299-019-02374-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Sustaining yield gains of grain legume crops under growing salt-stressed conditions demands a thorough understanding of plant salinity response and more efficient breeding techniques that effectively integrate modern omics knowledge. Grain legume crops are important to global food security being an affordable source of dietary protein and essential mineral nutrients to human population, especially in the developing countries. The global productivity of grain legume crops is severely challenged by the salinity stress particularly in the face of changing climates coupled with injudicious use of irrigation water and improper agricultural land management. Plants adapt to sustain under salinity-challenged conditions through evoking complex molecular mechanisms. Elucidating the underlying complex mechanisms remains pivotal to our knowledge about plant salinity response. Improving salinity tolerance of plants demand enriching cultivated gene pool of grain legume crops through capitalizing on 'adaptive traits' that contribute to salinity stress tolerance. Here, we review the current progress in understanding the genetic makeup of salinity tolerance and highlight the role of germplasm resources and omics advances in improving salt tolerance of grain legumes. In parallel, scope of next generation phenotyping platforms that efficiently bridge the phenotyping-genotyping gap and latest research advances including epigenetics is also discussed in context to salt stress tolerance. Breeding salt-tolerant cultivars of grain legumes will require an integrated "omics-assisted" approach enabling accelerated improvement of salt-tolerance traits in crop breeding programs.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067, India
| |
Collapse
|
15
|
Shah T, Xu J, Zou X, Cheng Y, Nasir M, Zhang X. Omics Approaches for Engineering Wheat Production under Abiotic Stresses. Int J Mol Sci 2018; 19:E2390. [PMID: 30110906 PMCID: PMC6121627 DOI: 10.3390/ijms19082390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence and heavy metals. The effective management at the molecular level is mandatory for a thorough understanding of plant response to abiotic stress. Understanding the molecular mechanism of stress tolerance is complex and requires information at the omic level. In the areas of genomics, transcriptomics and proteomics enormous progress has been made in the omics field. The rising field of ionomics is also being utilized for examining abiotic stress resilience in wheat. Omic approaches produce a huge amount of data and sufficient developments in computational tools have been accomplished for efficient analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. Though, the incorporation of omic-scale data to address complex genetic qualities and physiological inquiries is as yet a challenge. In this review, we have reported advances in omic tools in the perspective of conventional and present day approaches being utilized to dismember abiotic stress tolerance in wheat. Attention was given to methodologies, for example, quantitative trait loci (QTL), genome-wide association studies (GWAS) and genomic selection (GS). Comparative genomics and candidate genes methodologies are additionally talked about considering the identification of potential genomic loci, genes and biochemical pathways engaged with stress resilience in wheat. This review additionally gives an extensive list of accessible online omic assets for wheat and its effective use. We have additionally addressed the significance of genomics in the integrated approach and perceived high-throughput multi-dimensional phenotyping as a significant restricting component for the enhancement of abiotic stress resistance in wheat.
Collapse
Affiliation(s)
- Tariq Shah
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
16
|
Debnath M, Ashwath N, Hill CB, Callahan DL, Dias DA, Jayasinghe NS, Midmore DJ, Roessner U. Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert. (Bertoni) grown under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:56-70. [PMID: 29800808 DOI: 10.1016/j.plaphy.2018.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/01/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
This study provides a comprehensive investigation on the impact of increasing NaCl concentrations on hydroponically grown Stevia rebaudiana cultivars (Shoutian-2 and Fengtian). Growth parameters including plant height, biomass and physiological responses including osmotic potential were measured. In addition, the levels of steviol glycosides, elements and primary metabolites were measured and statistically evaluated. The cultivar Fengtian grew faster, accumulated less Na+ and compatible organic solutes, and more K+ in the leaves, as compared to the cv. Shoutian-2. Metabolite analysis identified 81 differentially accumulated metabolites, indicating an alteration in the metabolite phenotype of both cultivars upon exposure to salinity A general increase in many amino acids, amines, sugars and sugar phosphates with a concurrent decrease in most organic acids; including tricarboxylic acid (TCA) cycle intermediates, was observed. In the more salt tolerant cv. Fengtian, the levels of hexose phosphates and metabolites involved in cellular protection increased in response to salinity. These metabolites remained unchanged in the sensitive cv. Shoutian-2. Interestingly, salt treatment notably increased the rebaudioside A concentration by 53% while at the same time stevioside decreased by 38% in Fengtian which has important implications for controlling the relative amounts of reboudioside A and stevioside. The findings of this study leads to the conclusion that mild salinity stress can increase the yield of sweetener compounds, which is dependent on the cultivar and the level of salinity stress.
Collapse
Affiliation(s)
- Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; Central Queensland University, Institute for Future Farming Systems, Rockhampton, Queensland 4702, Australia
| | - Nanjappa Ashwath
- Central Queensland University, Institute for Future Farming Systems, Rockhampton, Queensland 4702, Australia
| | - Camilla Beate Hill
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Damien L Callahan
- Deakin University, Geelong, Australia, School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology (Burwood Campus), 221 Burwood Highway, Burwood VIC 3125, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia
| | | | - David James Midmore
- Central Queensland University, Institute for Future Farming Systems, Rockhampton, Queensland 4702, Australia
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia; Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
17
|
Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R. CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:156-162. [PMID: 29655033 DOI: 10.1016/j.jplph.2018.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 05/20/2023]
Abstract
It is not the most grounded of the species that survive, nor the most shrewd, however one most receptive to change. Crop plants being sessile are subjected to various abiotic stresses resulting significant yield losses about an average of more than 50 percent, thus greatly threatening the global crop production. In this regard, plant breeding innovations and genetic engineering approaches have been used in the past for generating stress tolerant crop genotypes, but due to complex inheritance of abiotic stress tolerance these approaches are not enough to bring significant trait improvement and to guarantee world's future sustenance security. Although, RNA interference (RNAi) technology has been utilized amid the most recent decades to produce plants tolerant to environmental stress. But this technique ordinarily prompts to down-regulate as opposed to complete inhibition of target genes. Therefore, scientist/researchers were looking for techniques that should be efficient, precise and reliable as well as have potential to solve the issues experienced by previous approaches, and hence the CRISPR/Cas system came into spotlight. Although, only few studies using CRISPR/Cas approach for targeting abiotic stress tolerance related genes have been reported, but suggested its effective role for future applications in molecular breeding to improve abiotic stress tolerance. Hence, genome engineering via CRISPR-Cas system for targeted mutagenesis promise its immense potential in generating elite cultivars of crop plants with enhanced and durable climate resilience. Lastly, CRISPR-Cas will be future of crop breeding as well as to target minor gene variation of complex quantitative traits, and thus will be the key approach to release global hunger and maintain food security.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India.
| | - Javaid Akhter Bhat
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| | - Zahoor A Mir
- National Research Centre for Plant Biotechnology, New Delhi, India
| | - Afreen Sakina
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Ali
- Centre of Research for Develoment, University of Kashmir, Srinagar, India
| | - Anil Kumar Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| | - Anshika Tyagi
- National Research Centre for Plant Biotechnology, New Delhi, India
| | - Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| | - Ajaz Ahmad Dar
- Division of Mirobiology, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| | - Rohini Bhat
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, India
| |
Collapse
|
18
|
Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. Methods Mol Biol 2017; 1679:83-95. [PMID: 28913795 DOI: 10.1007/978-1-4939-7337-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salinity and drought are interconnected, causing phenotypic, physiological, biochemical, and molecular changes in a cell. These stresses are the major factors adversely affecting growth and productivity in cereals. Genetic engineering methods have advanced to enable development of genotypes with improved salinity and drought tolerance. The resulting transgenic plant produces a group of progenies which includes moderate to high-stress tolerant transgenic lines. Development of reproducible screening methods to identify high-stress tolerant germplasm under laboratory, greenhouse, or field conditions is must. Further, field level demonstration of improved phenotypes and yield under salinity and drought stress conditions is both challenging and expensive. Fast and efficient screening techniques that could be used to screen transgenic lines under greenhouse conditions, for salt and drought stress tolerance, may contribute toward the identification of promising lines for field conditions. This chapter provides information on various approaches which can be developed during different stages of plant development for selecting salinity and drought tolerant plants in cereals, especially wheat.
Collapse
|
19
|
Ben-Amar A, Daldoul S, Reustle GM, Krczal G, Mliki A. Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics. Curr Genomics 2016; 17:460-475. [PMID: 28217003 PMCID: PMC5282599 DOI: 10.2174/1389202917666160520102827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/12/2015] [Accepted: 01/05/2016] [Indexed: 11/22/2022] Open
Abstract
In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants.
Collapse
Affiliation(s)
- Anis Ben-Amar
- Department of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Tunisia
- AgroScience.GmbH, AlPlanta-Institute for Plant Research, Neustadt an der Weinstraße, Germany
| | - Samia Daldoul
- Department of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Tunisia
| | - Götz M. Reustle
- AgroScience.GmbH, AlPlanta-Institute for Plant Research, Neustadt an der Weinstraße, Germany
| | - Gabriele Krczal
- AgroScience.GmbH, AlPlanta-Institute for Plant Research, Neustadt an der Weinstraße, Germany
| | - Ahmed Mliki
- Department of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, Tunisia
| |
Collapse
|
20
|
Shelden MC, Dias DA, Jayasinghe NS, Bacic A, Roessner U. Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3731-45. [PMID: 26946124 PMCID: PMC4896359 DOI: 10.1093/jxb/erw059] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Barley (Hordeum vulgare L.) is the most salt-tolerant cereal crop and has excellent genetic and genomic resources. It is therefore a good model to study salt-tolerance mechanisms in cereals. We aimed to determine metabolic differences between a cultivated barley, Clipper (tolerant), and a North African landrace, Sahara (susceptible), previously shown to have contrasting root growth phenotypes in response to the early phase of salinity stress. GC-MS was used to determine spatial changes in primary metabolites in barley roots in response to salt stress, by profiling three different regions of the root: root cap/cell division zone (R1), elongation zone (R2), and maturation zone (R3). We identified 76 known metabolites, including 29 amino acids and amines, 20 organic acids and fatty acids, and 19 sugars and sugar phosphates. The maintenance of cell division and root elongation in Clipper in response to short-term salt stress was associated with the synthesis and accumulation of amino acids (i.e. proline), sugars (maltose, sucrose, xylose), and organic acids (gluconate, shikimate), indicating a potential role for these metabolic pathways in salt tolerance and the maintenance of root elongation. The processes involved in root growth adaptation and the underlying coordination of metabolic pathways appear to be controlled in a region-specific manner. This study highlights the importance of utilizing spatial profiling and will provide us with a better understanding of abiotic stress response(s) in plants at the tissue and cellular level.
Collapse
Affiliation(s)
- Megan C Shelden
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Daniel A Dias
- Metabolomics Australia, The University of Melbourne, Parkville VIC 3010, Australia
| | | | - Antony Bacic
- Metabolomics Australia, The University of Melbourne, Parkville VIC 3010, Australia ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Ute Roessner
- Metabolomics Australia, The University of Melbourne, Parkville VIC 3010, Australia School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|
21
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
22
|
Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:101-10. [PMID: 26748373 DOI: 10.1016/j.jplph.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/23/2023]
Abstract
The treatment of 4-days-old wheat seedlings with methyl jasmonate (MeJA) in concentration optimal for their growth (0.1 μM) resulted in a rapid transient almost two-fold increase in the level of cytokinins (CKs). MeJA-induced accumulation of CKs was due to inhibition of both cytokinin oxidase (CKX) (cytokinin oxidase/dehydrogenase, EC 1.5.99.12) gene expression and activity of this enzyme. Pretreatment of wheat seedlings with MeJA decreased the growth-retarding effect of sodium chloride salinity and accelerated growth recovery after withdrawal of NaCl from the incubation medium. We speculate that this protective effect of the hormone might be due to MeJA's ability to prevent the salinity-induced decline in CK concentration that was caused by inhibition of gene expression and activity of CKX in wheat seedlings. The data might indicate an important role for endogenous cytokinins in the implementation of growth-promoting and protective effects of exogenous MeJA application on wheat plants.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kirill Somov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450054, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Farida Shakirova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia.
| |
Collapse
|
23
|
Hossain MR, Bassel GW, Pritchard J, Sharma GP, Ford-Lloyd BV. Trait Specific Expression Profiling of Salt Stress Responsive Genes in Diverse Rice Genotypes as Determined by Modified Significance Analysis of Microarrays. FRONTIERS IN PLANT SCIENCE 2016; 7:567. [PMID: 27200040 PMCID: PMC4853522 DOI: 10.3389/fpls.2016.00567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/12/2016] [Indexed: 05/08/2023]
Abstract
Stress responsive gene expression is commonly profiled in a comparative manner involving different stress conditions or genotypes with contrasting reputation of tolerance/resistance. In contrast, this research exploited a wide natural variation in terms of taxonomy, origin and salt sensitivity in eight genotypes of rice to identify the trait specific patterns of gene expression under salt stress. Genome wide transcptomic responses were interrogated by the weighted continuous morpho-physiological trait responses using modified Significance Analysis of Microarrays. More number of genes was found to be differentially expressed under salt stressed compared to that of under unstressed conditions. Higher numbers of genes were observed to be differentially expressed for the traits shoot Na(+)/K(+), shoot Na(+), root K(+), biomass and shoot Cl(-), respectively. The results identified around 60 genes to be involved in Na(+), K(+), and anion homeostasis, transport, and transmembrane activity under stressed conditions. Gene Ontology (GO) enrichment analysis identified 1.36% (578 genes) of the entire transcriptome to be involved in the major molecular functions such as signal transduction (>150 genes), transcription factor (81 genes), and translation factor activity (62 genes) etc., under salt stress. Chromosomal mapping of the genes suggests that majority of the genes are located on chromosomes 1, 2, 3, 6, and 7. The gene network analysis showed that the transcription factors and translation initiation factors formed the major gene networks and are mostly active in nucleus, cytoplasm and mitochondria whereas the membrane and vesicle bound proteins formed a secondary network active in plasma membrane and vacuoles. The novel genes and the genes with unknown functions thus identified provide picture of a synergistic salinity response representing the potentially fundamental mechanisms that are active in the wide natural genetic background of rice and will be of greater use once their roles are functionally verified.
Collapse
Affiliation(s)
- Mohammad R. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
- School of Biosciences, University of BirminghamBirmingham, UK
- *Correspondence: Mohammad R. Hossain
| | | | | | | | | |
Collapse
|
24
|
AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings. SUSTAINABILITY 2015. [DOI: 10.3390/su71215799] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Gong F, Yang L, Tai F, Hu X, Wang W. "Omics" of maize stress response for sustainable food production: opportunities and challenges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:714-32. [PMID: 25401749 DOI: 10.1089/omi.2014.0125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.
Collapse
Affiliation(s)
- Fangping Gong
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University , Zhengzhou, China
| | | | | | | | | |
Collapse
|
26
|
Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N. From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2015; 6:1012. [PMID: 26635838 PMCID: PMC4652017 DOI: 10.3389/fpls.2015.01012] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Drought being a yield limiting factor has become a major threat to international food security. It is a complex trait and drought tolerance response is carried out by various genes, transcription factors (TFs), microRNAs (miRNAs), hormones, proteins, co-factors, ions, and metabolites. This complexity has limited the development of wheat cultivars for drought tolerance by classical breeding. However, attempts have been made to fill the lost genetic diversity by crossing wheat with wild wheat relatives. In recent years, several molecular markers including single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs) associated with genes for drought signaling pathways have been reported. Screening of large wheat collections by marker assisted selection (MAS) and transformation of wheat with different genes/TFs has improved drought signaling pathways and tolerance. Several miRNAs also provide drought tolerance to wheat by regulating various TFs/genes. Emergence of OMICS techniques including transcriptomics, proteomics, metabolomics, and ionomics has helped to identify and characterize the genes, proteins, metabolites, and ions involved in drought signaling pathways. Together, all these efforts helped in understanding the complex drought tolerance mechanism. Here, we have reviewed the advances in wide hybridization, MAS, QTL mapping, miRNAs, transgenic technique, genome editing system, and above mentioned functional genomics tools for identification and utility of signaling molecules for improvement in wheat drought tolerance.
Collapse
Affiliation(s)
- Hikmet Budak
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
- *Correspondence: Hikmet Budak,
| | - Babar Hussain
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Zaeema Khan
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Neslihan Z. Ozturk
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niǧde UniversityNiǧde, Turkey
| | - Naimat Ullah
- Plant Genomics Group, Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| |
Collapse
|
27
|
Gong F, Wu X, Zhang H, Chen Y, Wang W. Making better maize plants for sustainable grain production in a changing climate. FRONTIERS IN PLANT SCIENCE 2015; 6:835. [PMID: 26500671 PMCID: PMC4593952 DOI: 10.3389/fpls.2015.00835] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/23/2015] [Indexed: 05/20/2023]
Abstract
Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China,
| |
Collapse
|
28
|
Regression Modeling and Meta-Analysis of Diagnostic Accuracy of SNP-Based Pathogenicity Detection Tools for UGT1A1 Gene Mutation. GENETICS RESEARCH INTERNATIONAL 2013; 2013:546909. [PMID: 23997956 PMCID: PMC3753762 DOI: 10.1155/2013/546909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/30/2013] [Accepted: 07/12/2013] [Indexed: 11/17/2022]
Abstract
Aims. This review summarized all available evidence on the accuracy of SNP-based pathogenicity detection tools and introduced regression model based on functional scores, mutation score, and genomic variation degree. Materials and Methods. A comprehensive search was performed to find all mutations related to Crigler-Najjar syndrome. The pathogenicity prediction was done using SNP-based pathogenicity detection tools including SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Results. Comparing the diagnostic OR, our model showed high detection potential (diagnostic OR: 16.71, 95% CI: 3.38-82.69). The highest MCC and ACC belonged to our suggested model (46.8% and 73.3%), followed by SIFT (34.19% and 62.71%). The AUC analysis showed a significance overall performance of our suggested model compared to the selected SNP-based pathogenicity detection tool (P = 0.046). Conclusion. Our suggested model is comparable to the well-established SNP-based pathogenicity detection tools that can appropriately reflect the role of a disease-associated SNP in both local and global structures. Although the accuracy of our suggested model is not relatively high, the functional impact of the pathogenic mutations is highlighted at the protein level, which improves the understanding of the molecular basis of mutation pathogenesis.
Collapse
|