1
|
Zhang L, Wang Z, Ji S, Zhu G, Dong Y, Li J, Jing Y, Jin S. Ferric reduction oxidase in Lilium pumilum affects plant saline-alkaline tolerance by regulating ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108305. [PMID: 38241829 DOI: 10.1016/j.plaphy.2023.108305] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Ferric reduction oxidase (FRO) plays important roles in biotic and abiotic stress. However, the function of ferric reduction oxidase from Lilium pumilum in response to NaHCO3 is unknown. Here we report the functional characterization of ferric reduction oxidase 7 in Lilium pumilum (LpFRO7) in stresses. Under NaHCO3 stress, the LpFRO7 overexpression lines exhibited lower accumulation of reactive oxygen species (ROS), higher activities in antioxidant enzyme (CAT, SOD and POD) and ferrite reductase, resulting in improved tolerance compared to the wild type (WT). In order to determine the functional network of LpFRO7, it was confirmed by EMSA assays, Yeast one-hybrid assays and Dual luciferase reporter assays that LpbHLH115 transcription factor can bind to the promoter of LpFRO7. Yeast two-hybrid assays, BiFC, and LCI assays were performed to prove that LpFRO7 can interact with LpTrx. Combining these findings, we concluded that LpFRO7 affects plant saline-alkaline tolerance by regulating ROS homeostasis.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Zongying Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Shangwei Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Guoqing Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Yi Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China; Aulin College, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Ji Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| | - Yibo Jing
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China; Aulin College, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Shumei Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
2
|
Murgia I, Midali A, Cimini S, De Gara L, Manasherova E, Cohen H, Paucelle A, Morandini P. The Arabidopsis thaliana Gulono-1,4 γ-lactone oxidase 2 (GULLO2) facilitates iron transport from endosperm into developing embryos and affects seed coat suberization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:712-723. [PMID: 36809732 DOI: 10.1016/j.plaphy.2023.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plants synthesize ascorbate (ASC) via the D-mannose/L-galactose pathway whereas animals produce ASC and H2O2via the UDP-glucose pathway, with Gulono-1,4 γ-lactone oxidases (GULLO) as the last step. A. thaliana has seven isoforms, GULLO1-7; previous in silico analysis suggested that GULLO2, mostly expressed in developing seeds, might be involved in iron (Fe) nutrition. We isolated atgullo2-1 and atgullo2-2 mutants, quantified ASC and H2O2 in developing siliques, Fe(III) reduction in immature embryos and seed coats. Surfaces of mature seed coats were analysed via atomic force and electron microscopies; suberin monomer and elemental compositions of mature seeds, including Fe, were profiled via chromatography and inductively coupled plasma-mass spectrometry. Lower levels of ASC and H2O2 in atgullo2 immature siliques are accompanied by an impaired Fe(III) reduction in seed coats and lower Fe content in embryos and seeds; atgullo2 seeds displayed reduced permeability and higher levels of C18:2 and C18:3 ω-hydroxyacids, the two predominant suberin monomers in A. thaliana seeds. We propose that GULLO2 contributes to ASC synthesis, for Fe(III) reduction into Fe(II). This step is critical for Fe transport from endosperm into developing embryos. We also show that alterations in GULLO2 activity affect suberin biosynthesis and accumulation in the seed coat.
Collapse
Affiliation(s)
- Irene Murgia
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy.
| | - Alessia Midali
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences ARO, Volcani Center, 68 HaMaccabim Rd., Rishon LeZion, 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences ARO, Volcani Center, 68 HaMaccabim Rd., Rishon LeZion, 7505101, Israel
| | - Alexis Paucelle
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, 78026, Versailles, Route de Saint-Cyr Cedex, France
| | - Piero Morandini
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
3
|
Iron Supplement-Enhanced Growth and Development of Hydrangea macrophylla In Vitro under Normal and High pH. Cells 2021; 10:cells10113151. [PMID: 34831377 PMCID: PMC8622367 DOI: 10.3390/cells10113151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrangea macrophylla is a popular perennial ornamental shrub commercially grown as potted plants, landscape plants, and cut flowers. In the process of reproduction and production of ornamental plants, the absorption of nutrients directly determines the value of the ornamental plants. Hydrangea macrophylla is very sensitive to the content and absorption of the micronutrient iron (Fe) that affects growth of its shoots. However, the physiological activity of Fe as affected by deficiency or supplementation is unknown. This work aimed at preliminary exploring the relationship between Fe and photosynthesis, and also to find the most favorable iron source and level of pH for the growth of H. macrophylla. Two Fe sources, non-chelated iron sulfate (FeSO4) and iron ethylenediaminetetraacetic acid (Fe-EDTA), were supplemented to the multipurpose medium with a final Fe concentration of 2.78 mg·L-1. The medium without any Fe supplementation was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70, before autoclaving. The experiment was conducted in a culture room for 60 days with 25/18 °C day and night temperatures, and a 16-hour photoperiod provided at a light intensity of 50 mmol·m-2·s-1 photosynthetic photon flux density (PPFD) from white light-emitting diodes. Supplementary Fe increased the tissue Fe content, and leaves were greener with the medium pH of 4.70, regardless of the Fe source. Compared to the control, the number of leaves for plantlets treated with FeSO4 and Fe-EDTA were 2.0 and 1.5 times greater, respectively. The chlorophyll, macronutrient, and micronutrient contents were the greatest with Fe-EDTA at pH 4.70. Furthermore, the Fe in the leaf affected the photosynthesis by regulating stomata development, pigment content, and antioxidant system, and also by adjusting the expression of genes related to Fe absorption, transport, and redistribution. Supplementation of Fe in a form chelated with EDTA along with a medium pH of 4.70 was found to be the best for the growth and development of H. macrophylla plantlets cultured in vitro.
Collapse
|
4
|
Short Term Elevated CO2 Interacts with Iron Deficiency, Further Repressing Growth, Photosynthesis and Mineral Accumulation in Soybean (Glycine max L.) and Common Bean (Phaseolus vulgaris L.). ENVIRONMENTS 2021. [DOI: 10.3390/environments8110122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elevated CO2 (eCO2) has been reported to cause mineral losses in several important food crops such as soybean (Glycine max L.) and common bean (Phaseolus vulgaris L.). In addition, more than 30% of the world’s arable land is calcareous, leading to iron (Fe) deficiency chlorosis and lower Fe levels in plant tissues. We hypothesize that there will be combinatorial effects of eCO2 and Fe deficiency on the mineral dynamics of these crops at a morphological, biochemical and physiological level. To test this hypothesis, plants were grown hydroponically under Fe sufficiency (20 μM Fe-EDDHA) or deficiency (0 μM Fe-EDDHA) at ambient CO2 (aCO2, 400 ppm) or eCO2 (800 ppm). Plants of both species exposed to eCO2 and Fe deficiency showed the lowest biomass accumulation and the lowest root: shoot ratio. Soybean at eCO2 had significantly higher chlorophyll levels (81%, p < 0.0001) and common bean had significantly higher photosynthetic rates (60%, p < 0.05) but only under Fe sufficiency. In addition, eCO2 increased ferric chelate reductase acivity (FCR) in Fe-sufficient soybean by 4-fold (p < 0.1) and in Fe-deficient common bean plants by 10-fold (p < 0.0001). In common bean, an interactive effect of both environmental factors was observed, resulting in the lowest root Fe levels. The lowering of Fe accumulation in both crops under eCO2 may be linked to the low root citrate accumulation in these plants when grown with unrestricted Fe supply. No changes were observed for malate in soybean, but in common bean, shoot levels were significantly lower under Fe deficiency (77%, p < 0.05) and Fe sufficiency (98%, p < 0.001). These results suggest that the mechanisms involved in reduced Fe accumulation caused by eCO2 and Fe deficiency may not be independent, and an interaction of these factors may lead to further reduced Fe levels.
Collapse
|
5
|
Szostak B, Głowacka A, Klebaniuk R, Kiełtyka-Dadasiewicz A. Mineral Composition of Traditional Non-GMO Soybean Cultivars in relation to Nitrogen Fertilization. ScientificWorldJournal 2020; 2020:9374564. [PMID: 32655331 PMCID: PMC7327613 DOI: 10.1155/2020/9374564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
Soybean is widely used as food. Genetic factors, as well as agrotechnical procedures, affect the yield and quality of soybeans. The subject of our research was the synchronization between soil N supply (from both mineralization and fertilization) and crop N demand. The aim of the research was to determine the effect of the cultivar and nitrogen application on the seed yield and mineral content in soybeans. Two non-GMO soybean cultivars (Amandine and Merlin) and four mineral nitrogen fertilizers ((A) N 0, control; (B) N 30:0, 30 kg N ha-1 before sowing; (C) N 0:30, 30 kg N ha-1 at BBCH 73-75; (D) N 30:30, 30 kg N ha-1 before sowing and 30 kg N ha-1 at BBCH 73-75) were tested. The highest soybean yield was obtained following nitrogen application at a rate of 60 kg ha-1. The genetic factor was found to significantly influence the content of some macronutrients (P, K, and Mg) and micronutrients (Cu, Mn, and Fe). In general, the Merlin cultivar had better macronutrient parameters except nitrogen, while Amandine had a higher content of Cu and Fe. Nitrogen fertilization decreased the content of P, K, and Zn in the soybeans but significantly increased the content of Ca, Mg, Cu, and Mn.
Collapse
Affiliation(s)
- Bogdan Szostak
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950 Lublin, Poland
| | - Aleksandra Głowacka
- Department of Plant Cultivation Technology and Commodity, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950 Lublin, Poland
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Cultivation Technology and Commodity, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| |
Collapse
|
6
|
Izquierdo P, Astudillo C, Blair MW, Iqbal AM, Raatz B, Cichy KA. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1645-1658. [PMID: 29752522 DOI: 10.1007/s00122-018-3104-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/02/2018] [Indexed: 05/03/2023]
Abstract
Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.
Collapse
Affiliation(s)
- Paulo Izquierdo
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Carolina Astudillo
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Matthew W Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, USA
| | - Asif M Iqbal
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Bodo Raatz
- International Center for Tropical Agriculture, Cali, Colombia
| | - Karen A Cichy
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
- Sugarbeet and Bean Research Unit, USDA-ARS East Lansing, East Lansing, MI, USA.
| |
Collapse
|
7
|
Blancquaert D, De Steur H, Gellynck X, Van Der Straeten D. Metabolic engineering of micronutrients in crop plants. Ann N Y Acad Sci 2016; 1390:59-73. [DOI: 10.1111/nyas.13274] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Dieter Blancquaert
- Laboratory of Functional Plant Biology, Department of Physiology; Ghent University; Ghent Belgium
| | - Hans De Steur
- Division Agri-Food Marketing & Chain Management, Department of Agricultural Economics; Ghent University; Ghent Belgium
| | - Xavier Gellynck
- Division Agri-Food Marketing & Chain Management, Department of Agricultural Economics; Ghent University; Ghent Belgium
| | | |
Collapse
|
8
|
Vasconcelos MW, Gruissem W, Bhullar NK. Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr Opin Biotechnol 2016; 44:8-15. [PMID: 27780080 DOI: 10.1016/j.copbio.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
Plant-based foods offer a wide range of nutrients that are essential for human and animal health. Among these nutrients, iron stands out as one of the most important micronutrients. Increasing the iron content in many staple and non-staple plant foods continues to be a goal of many scientists around the world. However, the success of such initiatives has sometimes fallen short of their expected targets. In this review we highlight the most recent and promising results that have contributed to increasing the iron content in different crops. We also discuss methods that to date have been used to reach iron biofortification goals and new strategies that we believe are most promising for crop biofortification in the future. Plant anatomical, physiological and metabolic hurdles still need to be tackled for making progress on further increasing currently reached levels of micronutrient improvements. New strategies need to take into account growing environmental challenges that may constrain biofortification efforts.
Collapse
Affiliation(s)
- Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Navreet K Bhullar
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
9
|
Huber SC, Li K, Nelson R, Ulanov A, DeMuro CM, Baxter I. Canopy position has a profound effect on soybean seed composition. PeerJ 2016; 4:e2452. [PMID: 27672507 PMCID: PMC5028787 DOI: 10.7717/peerj.2452] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022] Open
Abstract
Although soybean seeds appear homogeneous, their composition (protein, oil and mineral concentrations) can vary significantly with the canopy position where they were produced. In studies with 10 cultivars grown over a 3-yr period, we found that seeds produced at the top of the canopy have higher concentrations of protein but less oil and lower concentrations of minerals such as Mg, Fe, and Cu compared to seeds produced at the bottom of the canopy. Among cultivars, mean protein concentration (average of different positions) correlated positively with mean concentrations of S, Zn and Fe, but not other minerals. Therefore, on a whole plant basis, the uptake and allocation of S, Zn and Fe to seeds correlated with the production and allocation of reduced N to seed protein; however, the reduced N and correlated minerals (S, Zn and Fe) showed different patterns of allocation among node positions. For example, while mean concentrations of protein and Fe correlated positively, the two parameters correlated negatively in terms of variation with canopy position. Altering the microenvironment within the soybean canopy by removing neighboring plants at flowering increased protein concentration in particular at lower node positions and thus altered the node-position gradient in protein (and oil) without altering the distribution of Mg, Fe and Cu, suggesting different underlying control mechanisms. Metabolomic analysis of developing seeds at different positions in the canopy suggests that availability of free asparagine may be a positive determinant of storage protein accumulation in seeds and may explain the increased protein accumulation in seeds produced at the top of the canopy. Our results establish node-position variation in seed constituents and provide a new experimental system to identify genes controlling key aspects of seed composition. In addition, our results provide an unexpected and simple approach to link agronomic practices to improve human nutrition and health in developing countries because food products produced from seeds at the bottom of the canopy contained higher Fe concentrations than products from the top of the canopy. Therefore, using seeds produced in the lower canopy for production of iron-rich soy foods for human consumption could be important when plants are the major source of protein and human diets can be chronically deficient in Fe and other minerals.
Collapse
Affiliation(s)
- Steven C Huber
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, United States.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kunzhi Li
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, United States.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Lab of Plant Nutrition Genetic Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Randall Nelson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, United States
| | - Alexander Ulanov
- Metabolomics Facility, Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Catherine M DeMuro
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, United States
| | - Ivan Baxter
- Plant Genetics Research Unit, United States Department of Agriculture Agricultural Research Service, St. Louis, MO, United States.,Donald Danforth Plant Science Center, Creve Coeur, MO, United States
| |
Collapse
|
10
|
Santos CS, Carvalho SMP, Leite A, Moniz T, Roriz M, Rangel AOSS, Rangel M, Vasconcelos MW. Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:91-100. [PMID: 27156133 DOI: 10.1016/j.plaphy.2016.04.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 05/25/2023]
Abstract
Iron deficiency chlorosis (IDC) is a serious environmental problem affecting the growth of several crops in the world. The application of synthetic Fe(III) chelates is still one of the most common measures to correct IDC and the search for more effective Fe chelates remains an important issue. Herein, we propose a tris(3-hydroxy-4-pyridinonate) iron(III) complex, Fe(mpp)3, as an IDC corrector. Different morphological, biochemical and molecular parameters were assessed as a first step towards understanding its mode of action, compared with that of the commercial fertilizer FeEDDHA. Plants treated with the pyridinone iron(III) complexes were significantly greener and had increased biomass. The total Fe content was measured using ICP-OES and plants treated with pyridinone complexes accumulated about 50% more Fe than those treated with the commercial chelate. In particular, plants supplied with compound Fe(mpp)3 were able to translocate iron from the roots to the shoots and did not elicit the expression of the Fe-stress related genes FRO2 and IRT1. These results suggest that 3,4-HPO iron(III) chelates could be a potential new class of plant fertilizing agents.
Collapse
Affiliation(s)
- Carla S Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Susana M P Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; GreenUP/CITAB-UP & DGAOT, Faculty of Sciences, University of Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7, 4485-661 Vairão, Portugal
| | - Andreia Leite
- REQUIMTE-UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Tânia Moniz
- REQUIMTE-UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Mariana Roriz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - António O S S Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Maria Rangel
- REQUIMTE-UCIBIO, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
11
|
Stability of the Inherent Target Metallome in Seed Crops and a Mushroom Grown on Soils of Extreme Mineral Spans. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6010014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
13
|
Sperotto RA, Ricachenevsky FK, Williams LE, Vasconcelos MW, Menguer PK. From soil to seed: micronutrient movement into and within the plant. FRONTIERS IN PLANT SCIENCE 2014; 5:438. [PMID: 25250035 PMCID: PMC4155779 DOI: 10.3389/fpls.2014.00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 05/18/2023]
Affiliation(s)
- Raul A. Sperotto
- Programa de Pós-Graduação em Biotecnologia, Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATESLajeado, Brazil
- *Correspondence: ; ; ; ;
| | - Felipe K. Ricachenevsky
- Departamento de Botânica e Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
- *Correspondence: ; ; ; ;
| | - Lorraine E. Williams
- Centre for Biological Sciences, University of SouthamptonSouthampton, UK
- *Correspondence: ; ; ; ;
| | - Marta W. Vasconcelos
- Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- *Correspondence: ; ; ; ;
| | | |
Collapse
|