1
|
Ilan Y. The Constrained Disorder Principle Overcomes the Challenges of Methods for Assessing Uncertainty in Biological Systems. J Pers Med 2024; 15:10. [PMID: 39852203 PMCID: PMC11767140 DOI: 10.3390/jpm15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Different disciplines are developing various methods for determining and dealing with uncertainties in complex systems. The constrained disorder principle (CDP) accounts for the randomness, variability, and uncertainty that characterize biological systems and are essential for their proper function. Per the CDP, intrinsic unpredictability is mandatory for the dynamicity of biological systems under continuously changing internal and external perturbations. The present paper describes some of the parameters and challenges associated with uncertainty and randomness in biological systems and presents methods for quantifying them. Modeling biological systems necessitates accounting for the randomness, variability, and underlying uncertainty of systems in health and disease. The CDP provides a scheme for dealing with uncertainty in biological systems and sets the basis for using them. This paper presents the CDP-based second-generation artificial intelligence system that incorporates variability to improve the effectiveness of medical interventions. It describes the use of the digital pill that comprises algorithm-based personalized treatment regimens regulated by closed-loop systems based on personalized signatures of variability. The CDP provides a method for using uncertainties in complex systems in an outcome-based manner.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel
| |
Collapse
|
2
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
3
|
Kumar V, Wegener M, Knieper M, Kaya A, Viehhauser A, Dietz KJ. Strategies of Molecular Signal Integration for Optimized Plant Acclimation to Stress Combinations. Methods Mol Biol 2024; 2832:3-29. [PMID: 38869784 DOI: 10.1007/978-1-0716-3973-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Plant growth and survival in their natural environment require versatile mitigation of diverse threats. The task is especially challenging due to the largely unpredictable interaction of countless abiotic and biotic factors. To resist an unfavorable environment, plants have evolved diverse sensing, signaling, and adaptive molecular mechanisms. Recent stress studies have identified molecular elements like secondary messengers (ROS, Ca2+, etc.), hormones (ABA, JA, etc.), and signaling proteins (SnRK, MAPK, etc.). However, major gaps remain in understanding the interaction between these pathways, and in particular under conditions of stress combinations. Here, we highlight the challenge of defining "stress" in such complex natural scenarios. Therefore, defining stress hallmarks for different combinations is crucial. We discuss three examples of robust and dynamic plant acclimation systems, outlining specific plant responses to complex stress overlaps. (a) The high plasticity of root system architecture is a decisive feature in sustainable crop development in times of global climate change. (b) Similarly, broad sensory abilities and apparent control of cellular metabolism under adverse conditions through retrograde signaling make chloroplasts an ideal hub. Functional specificity of the chloroplast-associated molecular patterns (ChAMPs) under combined stresses needs further focus. (c) The molecular integration of several hormonal signaling pathways, which bring together all cellular information to initiate the adaptive changes, needs resolving.
Collapse
Affiliation(s)
- Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Melanie Wegener
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Armağan Kaya
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Andrea Viehhauser
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
4
|
Cowling CL, Dash L, Kelley DR. Roles of auxin pathways in maize biology. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6989-6999. [PMID: 37493143 PMCID: PMC10690729 DOI: 10.1093/jxb/erad297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Phytohormones play a central role in plant development and environmental responses. Auxin is a classical hormone that is required for organ formation, tissue patterning, and defense responses. Auxin pathways have been extensively studied across numerous land plant lineages, including bryophytes and eudicots. In contrast, our understanding of the roles of auxin in maize morphogenesis and immune responses is limited. Here, we review evidence for auxin-mediated processes in maize and describe promising areas for future research in the auxin field. Several recent transcriptomic and genetic studies have demonstrated that auxin is a key influencer of both vegetative and reproductive development in maize (namely roots, leaves, and kernels). Auxin signaling has been implicated in both maize shoot architecture and immune responses through genetic and molecular analyses of the conserved co-repressor RAMOSA ENHANCER LOCUS2. Polar auxin transport is linked to maize drought responses, root growth, shoot formation, and leaf morphogenesis. Notably, maize has been a key system for delineating auxin biosynthetic pathways and offers many opportunities for future investigations on auxin metabolism. In addition, crosstalk between auxin and other phytohormones has been uncovered through gene expression studies and is important for leaf and root development in maize. Collectively these studies point to auxin as a cornerstone for maize biology that could be leveraged for improved crop resilience and yield.
Collapse
Affiliation(s)
- Craig L Cowling
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Linkan Dash
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Mandal D, Datta S, Raveendar G, Mondal PK, Nag Chaudhuri R. RAV1 mediates cytokinin signaling for regulating primary root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:106-126. [PMID: 36423224 DOI: 10.1111/tpj.16039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Root growth dynamics is an outcome of complex hormonal crosstalk. The primary root meristem size, for example, is determined by antagonizing actions of cytokinin and auxin. Here we show that RAV1, a member of the AP2/ERF family of transcription factors, mediates cytokinin signaling in roots to regulate meristem size. The rav1 mutants have prominently longer primary roots, with a meristem that is significantly enlarged and contains higher cell numbers, compared with wild-type. The mutant phenotype could be restored on exogenous cytokinin application or by inhibiting auxin transport. At the transcript level, primary cytokinin-responsive genes like ARR1, ARR12 were significantly downregulated in the mutant root, indicating impaired cytokinin signaling. In concurrence, cytokinin induced regulation of SHY2, an Aux/IAA gene, and auxin efflux carrier PIN1 was hindered in rav1, leading to altered auxin transport and distribution. This effectively altered root meristem size in the mutant. Notably, CRF1, another member of the AP2/ERF family implicated in cytokinin signaling, is transcriptionally repressed by RAV1 to promote cytokinin response in roots. Further associating RAV1 with cytokinin signaling, our results demonstrate that cytokinin upregulates RAV1 expression through ARR1, during post-embryonic root development. Regulation of RAV1 expression is a part of secondary cytokinin response that eventually represses CRF1 to augment cytokinin signaling. To conclude, RAV1 functions in a branch pathway downstream to ARR1 that regulates CRF1 expression to enhance cytokinin action during primary root development in Arabidopsis.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Giridhar Raveendar
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Pranab Kumar Mondal
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| |
Collapse
|
6
|
Manna M, Rengasamy B, Ambasht NK, Sinha AK. Characterization and expression profiling of PIN auxin efflux transporters reveal their role in developmental and abiotic stress conditions in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1059559. [PMID: 36531415 PMCID: PMC9751476 DOI: 10.3389/fpls.2022.1059559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux transporter proteins called PINs ferry auxin from its source to sinks in particular directions depending on their polar localizations in the plasma membrane, thus facilitating the development of the entire plant architecture. The rice genome has 12 PIN genes distributed over eight chromosomes. To study their roles in plant development, abiotic stress responsiveness, and shaping an auxin-dependent root architecture, a genome-wide analysis was carried out. Based on phylogeny, cellular localization, and hydrophilic loop domain size, the PINs were categorized into canonical and noncanonical PINs. PINs were found expressed in all of the organs of plants that emphasized their indispensable role throughout the plant's life cycle. We discovered that PIN5C and PIN9 were upregulated during salt and drought stress. We also found that regardless of its cellular level, auxin functioned as a molecular switch to turn on auxin biosynthesis genes. On the contrary, although PIN expression was upregulated upon initial treatment with auxin, prolonged auxin treatment not only led to their downregulation but also led to the development of auxin-dependent altered root formation in rice. Our study paves the way for developing stress-tolerant rice and plants with a desirable root architecture by genetic engineering.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
7
|
Yang Y, Wassie M, Liu NF, Deng H, Zeng YB, Xu Q, Hu LX. Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass ( Cynodon dactylon). FRONTIERS IN PLANT SCIENCE 2022; 13:956410. [PMID: 35991415 PMCID: PMC9386360 DOI: 10.3389/fpls.2022.956410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major abiotic factors limiting the productivity of bermudagrass (Cynodon dactylon). However, the role of hormonal reprogramming and crosstalk in regulating root growth and salt tolerance in bermudagrass was not reported. Here, we examined the physiological and hormonal responses of two contrasting bermudagrass genotypes; 'C43,' salt-tolerant 'C198' salt-sensitive. Under salt stress, 'C43' had better membrane stability and higher photosynthetic activity than the 'C198.' Salt stress promoted root growth and improved root/shoot ratio and root activity in 'C43,' but the root growth of 'C198' was inhibited by salt stress, leading to diminished root activity. The two bermudagrass genotypes also showed critical differences in hormonal responses, especially in the roots. The root contents of indole-3-acetic acid (IAA), cytokinin derivatives, such as trans-zeatin riboside (tZR) and dihydrozeatin riboside (DHZR) were increased in 'C43,' but decreased in 'C198' when exposed to salt stress. The root growth rate was positively correlated with the root IAA, tZR and DHZR, indicating their crucial role in root growth under salt stress. The expressions of TAA/YUCCA and CYP735A involved in IAA and tZR biosynthesis were induced by salt stress in 'C43,' but inhibited in 'C198,' leading to reduced hormone accumulations. Salt stress decreased the iP, tZ, and DHZ content in the roots of both genotypes, and no significant difference was observed between the two genotypes. Salt stress reduced the content of GA3 in both genotypes by inhibiting GA20ox and GA2ox genes, which could be attributed to the reduced shoot growth in both genotypes. The increased ABA level by salt stress was significantly higher in 'C198' than 'C43.' Furthermore, there were positive and negative correlations between different hormones and root growth, suggesting that root growth could be regulated by complex hormonal reprogramming and crosstalk. This study provides a foundation for understanding the underlying mechanisms of hormonal-mediated root growth and salt tolerance in bermudagrass.
Collapse
Affiliation(s)
- Yong Yang
- College of Physical Education, Changsha University, Changsha, China
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ning-fang Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hui Deng
- College of Physical Education, Changsha University, Changsha, China
| | - Yi-bing Zeng
- College of Physical Education, Changsha University, Changsha, China
| | - Qian Xu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| | - Long-xing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| |
Collapse
|
8
|
Li H, Chen H, Chen L, Wang C. The Role of Hydrogen Sulfide in Plant Roots during Development and in Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23031024. [PMID: 35162947 PMCID: PMC8835357 DOI: 10.3390/ijms23031024] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2S) is regarded as a “New Warrior” for managing plant stress. It also plays an important role in plant growth and development. The regulation of root system architecture (RSA) by H2S has been widely recognized. Plants are dependent on the RSA to meet their water and nutritional requirements. They are also partially dependent on the RSA for adapting to environment change. Therefore, a good understanding of how H2S affects the RSA could lead to improvements in both crop function and resistance to environmental change. In this review, we summarized the regulating effects of H2S on the RSA in terms of primary root growth, lateral and adventitious root formation, root hair development, and the formation of nodules. We also discussed the genes involved in the regulation of the RSA by H2S, and the relationships with other signal pathways. In addition, we discussed how H2S regulates root growth in response to abiotic stress. This review could provide a comprehensive understanding of the role of H2S in roots during development and under abiotic stress.
Collapse
Affiliation(s)
- Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
- Correspondence: (H.L.); (C.W.)
| | - Hongyu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Lulu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Chenyang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University,
Zhengzhou 450002, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
9
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
10
|
Jaiswal AK, Alkan N, Elad Y, Sela N, Philosoph AM, Graber ER, Frenkel O. Molecular insights into biochar-mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Sci Rep 2020; 10:13934. [PMID: 32811849 PMCID: PMC7434890 DOI: 10.1038/s41598-020-70882-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
Molecular mechanisms associated with biochar-elicited suppression of soilborne plant diseases and improved plant performance are not well understood. A stem base inoculation approach was used to explore the ability of biochar to induce systemic resistance in tomato plants against crown rot caused by a soilborne pathogen, Fusarium oxysporum f. sp. radicis lycopersici. RNA-seq transcriptome profiling of tomato, and experiments with jasmonic and salycilic acid deficient tomato mutants, were performed to elucidate the in planta molecular mechanisms involved in induced resistance. Biochar (produced from greenhouse plant wastes) was found to mediate systemic resistance against Fusarium crown rot and to simultaneously improve tomato plant growth and physiological parameters by up to 63%. Transcriptomic analysis (RNA-seq) of tomato demonstrated that biochar had a priming effect on gene expression and upregulated the pathways and genes associated with plant defense and growth such as jasmonic acid, brassinosteroids, cytokinins, auxin and synthesis of flavonoid, phenylpropanoids and cell wall. In contrast, biosynthesis and signaling of the salicylic acid pathway was downregulated. Upregulation of genes and pathways involved in plant defense and plant growth may partially explain the significant disease suppression and improvement in plant performance observed in the presence of biochar.
Collapse
Affiliation(s)
- Amit K Jaiswal
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Institute of Plant Harvest and Food Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Amit M Philosoph
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.,Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 761001, Rehovot, Israel
| | - Ellen R Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, The Volcani Center (ARO), 7505101, Rishon Lezion, Israel.
| |
Collapse
|
11
|
Jackson SE, Vernon I, Liu J, Lindsey K. Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching. Stat Appl Genet Mol Biol 2020; 19:sagmb-2018-0053. [PMID: 32649296 DOI: 10.1515/sagmb-2018-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/12/2020] [Indexed: 11/15/2022]
Abstract
A major challenge in plant developmental biology is to understand how plant growth is coordinated by interacting hormones and genes. To meet this challenge, it is important to not only use experimental data, but also formulate a mathematical model. For the mathematical model to best describe the true biological system, it is necessary to understand the parameter space of the model, along with the links between the model, the parameter space and experimental observations. We develop sequential history matching methodology, using Bayesian emulation, to gain substantial insight into biological model parameter spaces. This is achieved by finding sets of acceptable parameters in accordance with successive sets of physical observations. These methods are then applied to a complex hormonal crosstalk model for Arabidopsis root growth. In this application, we demonstrate how an initial set of 22 observed trends reduce the volume of the set of acceptable inputs to a proportion of 6.1 × 10-7 of the original space. Additional sets of biologically relevant experimental data, each of size 5, reduce the size of this space by a further three and two orders of magnitude respectively. Hence, we provide insight into the constraints placed upon the model structure by, and the biological consequences of, measuring subsets of observations.
Collapse
Affiliation(s)
- Samuel E Jackson
- Southampton Statistical Sciences Research Institute, University of Southampton, Southampton, UK
| | - Ian Vernon
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Junli Liu
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - Keith Lindsey
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|
12
|
Zhang P, Liu Y, Li M, Ma J, Wang C, Su J, Yang D. Abscisic acid associated with key enzymes and genes involving in dynamic flux of water soluble carbohydrates in wheat peduncle under terminal drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:719-728. [PMID: 32353677 DOI: 10.1016/j.plaphy.2020.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Remobilization of stem water soluble carbohydrates (WSC) can supply crucial carbon resources for grain filling under drought stress, while the regulatory metabolism associated with abscisic acid (ABA) is still limited. Two cultivars, LJ196 (drought-tolerant) and XD18 (drought-prone), were pot-grown under well-watered (WW) and drought-stressed (DS) conditions. Concentrations of WSC components and ABA, and fructan metabolizing enzymes and genes were investigated in peduncle after anthesis. When compared with those under the WW, LJ196 remained higher grain yield and grain-filling rate than XD18 under the DS. During the early period of grain filling (0-14 DAA), DS increased concentrations of total WSC and its components, but thereafter substantially reduced them. The gene expression levels and enzymatic activities of fructan 1-exohydrolases (1-FEH) and fructan 6-exohydrolases (6-FEH) showed similar trends, whereas those of fructan: fructan 1-fructosyltransferase (1-FFT), and sucrose: fructan 6-fructosyltransferase (6-SFT) were depressed and declined over the period of examination. LJ196 still showed higher levels of ABA and fructan metabolizing. The ABA concentration under the DS was positively and significantly correlated with total WSC and fructan concentration, and expression levels of these enzymes and genes as well, with more prominently with those of 6-FEH. Presumably, ABA could enhance fructan hydrolysis by strongly up-regulating the gene expression and enzymatic activity of 6-FEH to accelerate WSC remobilization. However, stem WSC induced by DS could be not fully remobilized to grains, due to its weaker correlation with grain-filling rate and finally indicating lower grain yield. The findings would provide useful information for wheat production under water-deficit environments.
Collapse
Affiliation(s)
- Peipei Zhang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China
| | - Yuan Liu
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Mengfei Li
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Jingfu Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Delong Yang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, 730070, Gansu, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
13
|
Kumari S, Yadav S, Patra D, Singh S, Sarkar AK, Panigrahi KCS. Uncovering the molecular signature underlying the light intensity-dependent root development in Arabidopsis thaliana. BMC Genomics 2019; 20:596. [PMID: 31325959 PMCID: PMC6642530 DOI: 10.1186/s12864-019-5933-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Root morphology is known to be affected by light quality, quantity and direction. Light signal is perceived at the shoot, translocated to roots through vasculature and further modulates the root development. Photoreceptors are differentially expressed in both shoot and root cells. The light irradiation to the root affects shoot morphology as well as whole plant development. The current work aims to understand the white light intensity dependent changes in root patterning and correlate that with the global gene expression profile. RESULTS Different fluence of white light (WL) regulate overall root development via modulating the expression of a specific set of genes. Phytochrome A deficient Arabidopsis thaliana (phyA-211) showed shorter primary root compared to phytochrome B deficient (phyB-9) and wild type (WT) seedlings at a lower light intensity. However, at higher intensity, both mutants showed shorter primary root in comparison to WT. The lateral root number was observed to be lowest in phyA-211 at intensities of 38 and 75 μmol m - 2 s - 1. The number of adventitious roots was significantly lower in phyA-211 as compared to WT and phyB-9 under all light intensities tested. With the root phenotypic data, microarray was performed for four different intensities of WL light in WT. Here, we identified ~ 5243 differentially expressed genes (DEGs) under all light intensities. Gene ontology-based analysis indicated that different intensities of WL predominantly affect a subset of genes having catalytic activity and localized to the cytoplasm and membrane. Furthermore, when root is irradiated with different intensities of WL, several key genes involved in hormone, light signaling and clock-regulated pathways are differentially expressed. CONCLUSION Using genome wide microarray-based approach, we have identified candidate genes in Arabidopsis root that responded to the changes in light intensities. Alteration in expression of genes such as PIF4, COL9, EPR1, CIP1, ARF18, ARR6, SAUR9, TOC1 etc. which are involved in light, hormone and clock pathway was validated by qRT-PCR. This indicates their potential role in light intensity mediated root development.
Collapse
Affiliation(s)
- Sony Kumari
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), P.O. Bhimpur- Padanpur, Via Jatni, Dist. Khurda, Odisha, 752050, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research (NIPGR), Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Debadutta Patra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), P.O. Bhimpur- Padanpur, Via Jatni, Dist. Khurda, Odisha, 752050, India
| | - Sharmila Singh
- National Institute of Plant Genome Research (NIPGR), Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research (NIPGR), Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), P.O. Bhimpur- Padanpur, Via Jatni, Dist. Khurda, Odisha, 752050, India.
| |
Collapse
|
14
|
Vaičiukynė M, Žiauka J, Žūkienė R, Vertelkaitė L, Kuusienė S. Abscisic acid promotes root system development in birch tissue culture: a comparison to aspen culture and conventional rooting-related growth regulators. PHYSIOLOGIA PLANTARUM 2019; 165:114-122. [PMID: 30367696 DOI: 10.1111/ppl.12860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 05/16/2023]
Abstract
The research aim was to assess the effects of the plant hormone abscisic acid (ABA) and the growth regulator paclobutrazol (PBZ) on root system development during the in vitro culture of different birch and aspen genotypes. The studied genotypes involved two aspen (Populus tremula and Populus tremuloides × P. tremula) and two silver birch (Betula pendula) trees, with one of the birches characterized by its inability to root in vitro. For experiments, apical shoot segments were cultured on nutrient medium enriched with either ABA or PBZ. Additionally, the analysis of the endogenous hormones in shoots developed on hormone-free medium was conducted by high-performance liquid chromatography. The endogenous concentration of auxin indole-3-acetic acid was much higher in the aspens than that in the birches, while the highest concentration of ABA was found in the root-forming birch. The culturing of this birch genotype on medium enriched with ABA resulted in an increased root length and a higher number of lateral roots without any negative effect on either shoot growth or adventitious root (AR) formation, although these two processes were largely inhibited by ABA in the aspens. Meanwhile, PBZ promoted AR formation in both aspen and birch cultures but impaired secondary root formation and shoot growth in birches. These results suggest the use of ABA for the in vitro rooting of birches and PBZ for the rooting of aspens.
Collapse
Affiliation(s)
- Miglė Vaičiukynė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Jonas Žiauka
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Rasa Žūkienė
- Department of Biochemistry, Vytautas Magnus University, Vileikos str. 8, Kaunas, LT-44404, Lithuania
| | - Lidija Vertelkaitė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Sigutė Kuusienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| |
Collapse
|
15
|
Wang L, Yang Z, Zhang B, Yu D, Liu J, Gong Q, Qanmber G, Li Y, Lu L, Lin Y, Yang Z, Li F. Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress. BMC PLANT BIOLOGY 2018; 18:330. [PMID: 30514299 PMCID: PMC6280398 DOI: 10.1186/s12870-018-1526-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30 years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. RESULT In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub-networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. CONCLUSION In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Bin Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Daoqian Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Qian Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
16
|
Scheunemann M, Brady SM, Nikoloski Z. Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Sci Rep 2018; 8:7919. [PMID: 29784955 PMCID: PMC5962614 DOI: 10.1038/s41598-018-26232-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Plant organs consist of multiple cell types that do not operate in isolation, but communicate with each other to maintain proper functions. Here, we extract models specific to three developmental stages of eight root cell types or tissue layers in Arabidopsis thaliana based on a state-of-the-art constraint-based modeling approach with all publicly available transcriptomics and metabolomics data from this system to date. We integrate these models into a multi-cell root model which we investigate with respect to network structure, distribution of fluxes, and concordance to transcriptomics and proteomics data. From a methodological point, we show that the coupling of tissue-specific models in a multi-tissue model yields a higher specificity of the interconnected models with respect to network structure and flux distributions. We use the extracted models to predict and investigate the flux of the growth hormone indole-3-actetate and its antagonist, trans-Zeatin, through the root. While some of predictions are in line with experimental evidence, constraints other than those coming from the metabolic level may be necessary to replicate the flow of indole-3-actetate from other simulation studies. Therefore, our work provides the means for data-driven multi-tissue metabolic model extraction of other Arabidopsis organs in the constraint-based modeling framework.
Collapse
Affiliation(s)
- Michael Scheunemann
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany. .,Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
| |
Collapse
|
17
|
Yang YH, Li MJ, Yi YJ, Li RF, Dong C, Zhang ZY. The root transcriptome of Achyranthes bidentata and the identification of the genes involved in the replanting benefit. PLANT CELL REPORTS 2018; 37:611-625. [PMID: 29344683 DOI: 10.1007/s00299-018-2255-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/27/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The transcriptome profiling in replanting roots revealed that expression pattern changes of key genes promoted important metabolism pathways, antioxidant and pathogen defense systems, adjusted phytohormone signaling and inhibited lignin biosynthesis. The yield of the medicinal plant Achyranthes bidentata could be significantly increased when replanted into a field cultivated previously for the same crop, but the biological basis of this so-called "replanting benefit" is unknown. Here, the RNA-seq technique was used to identify candidate genes responsible for the benefit. The analysis of RNA-seq libraries prepared from mRNA extracted from the roots of first year planting (normal growth, NG) and second year replanting (consecutive monoculture, CM) yielded about 40.22 GB sequencing data. After de novo assembly, 87,256 unigenes were generated with an average length of 1060 bp. Among these unigenes, 55,604 were annotated with public databases, and 52,346 encoding sequences and 2881 transcription factors were identified. A contrast between the NG and CM libraries resulted in a set of 3899 differentially transcribed genes (DTGs). The DTGs related to the replanting benefit and their expression profiles were further analyzed by bioinformatics and qRT-PCR approaches. The major differences between the NG and CM transcriptomes included genes encoding products involved in glycolysis/gluconeogenesis, glutathione metabolism and antioxidant defense, in aspects of the plant/pathogen interaction, phytohormone signaling and phenylpropanoid biosynthesis. The indication was that replanting material enjoyed a stronger level of defense systems, a balance regulation of hormone signals and a suppression of lignin formation, thereby promoting root growth and development. The study provides considerable significant insights for a better understanding of the molecular mechanism of the replanting benefit and suggests their possible application in developing methods to reinforce the effects in medicinal plants.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Zhengzhou, 450001, Henan, China.
| | - Ming Jie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002, China
| | - Yan Jie Yi
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Zhengzhou, 450001, Henan, China
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Zhengzhou, 450001, Henan, China
| | - Cheng Dong
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Zhengzhou, 450001, Henan, China
| | - Zhong Yi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002, China.
| |
Collapse
|
18
|
Pavelescu I, Vilarrasa-Blasi J, Planas-Riverola A, González-García MP, Caño-Delgado AI, Ibañes M. A Sizer model for cell differentiation in Arabidopsis thaliana root growth. Mol Syst Biol 2018; 14:e7687. [PMID: 29321184 PMCID: PMC5787709 DOI: 10.15252/msb.20177687] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant roots grow due to cell division in the meristem and subsequent cell elongation and differentiation, a tightly coordinated process that ensures growth and adaptation to the changing environment. How the newly formed cells decide to stop elongating becoming fully differentiated is not yet understood. To address this question, we established a novel approach that combines the quantitative phenotypic variability of wild‐type Arabidopsis roots with computational data from mathematical models. Our analyses reveal that primary root growth is consistent with a Sizer mechanism, in which cells sense their length and stop elongating when reaching a threshold value. The local expression of brassinosteroid receptors only in the meristem is sufficient to set this value. Analysis of roots insensitive to BR signaling and of roots with gibberellin biosynthesis inhibited suggests distinct roles of these hormones on cell expansion termination. Overall, our study underscores the value of using computational modeling together with quantitative data to understand root growth.
Collapse
Affiliation(s)
- Irina Pavelescu
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.,Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
| | - Josep Vilarrasa-Blasi
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Ainoa Planas-Riverola
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Mary-Paz González-García
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain .,Universitat de Barcelona Institute of Complex Systems (UBICS) Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
20
|
Vernon I, Liu J, Goldstein M, Rowe J, Topping J, Lindsey K. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions. BMC SYSTEMS BIOLOGY 2018; 12:1. [PMID: 29291750 PMCID: PMC5748965 DOI: 10.1186/s12918-017-0484-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/09/2017] [Indexed: 11/26/2022]
Abstract
Background Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Methods Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. Results The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model’s structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Conclusions Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0484-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian Vernon
- Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Michael Goldstein
- Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - James Rowe
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.,Current address: Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Jen Topping
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
21
|
Liu J, Moore S, Chen C, Lindsey K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. MOLECULAR PLANT 2017; 10:1480-1496. [PMID: 29162416 DOI: 10.1016/j.molp.2017.11.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 05/23/2023]
Abstract
Understanding how hormones and genes interact to coordinate plant growth in a changing environment is a major challenge in plant developmental biology. Auxin, cytokinin, and ethylene are three important hormones that regulate many aspects of plant development. This review critically evaluates the crosstalk between the three hormones in Arabidopsis root development. We integrate a variety of experimental data into a crosstalk network, which reveals multiple layers of complexity in auxin, cytokinin, and ethylene crosstalk. In particular, data integration reveals an additional, largely overlooked link between the ethylene and cytokinin pathways, which acts through a phosphorelay mechanism. This proposed link addresses outstanding questions on whether ethylene application promotes or inhibits receptor kinase activity of the ethylene receptors. Elucidating the complexity in auxin, cytokinin, and ethylene crosstalk requires a combined experimental and systems modeling approach. We evaluate important modeling efforts for establishing how crosstalk between auxin, cytokinin, and ethylene regulates patterning in root development. We discuss how a novel methodology that iteratively combines experiments with systems modeling analysis is essential for elucidating the complexity in crosstalk of auxin, cytokinin, and ethylene in root development. Finally, we discuss the future challenges from a combined experimental and modeling perspective.
Collapse
Affiliation(s)
- Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
22
|
Cheng H, Hao M, Wang W, Mei D, Wells R, Liu J, Wang H, Sang S, Tang M, Zhou R, Chu W, Fu L, Hu Q. Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Int J Mol Sci 2017; 18:ijms18050887. [PMID: 28481299 PMCID: PMC5454811 DOI: 10.3390/ijms18050887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Oilseed rape (Brassica napus L.) is the second largest oilseed crop worldwide and one of the most important oil crops in China. As a component of plant architecture, branch angle plays an important role in yield performance, especially under high-density planting conditions. However, the mechanisms underlying the regulation of branch angle are still largely not understood. Two oilseed rape lines with significantly different branch angles were used to conduct RNA- and miRNA-profiling at two developmental stages, identifying differential expression of a large number of genes involved in auxin- and brassinosteroid (BR)-related pathways. Many auxin response genes, including AUX1, IAA, GH3, and ARF, were enriched in the compact line. However, a number of genes involved in BR signaling transduction and biosynthesis were down-regulated. Differentially expressed miRNAs included those involved in auxin signaling transduction. Expression patterns of most target genes were fine-tuned by related miRNAs, such as miR156, miR172, and miR319. Some miRNAs were found to be differentially expressed at both developmental stages, including three miR827 members. Our results provide insight that auxin- and BR-signaling may play a pivotal role in branch angle regulation.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Wenxiang Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Shifei Sang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Min Tang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Rijin Zhou
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Wen Chu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Li Fu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
23
|
Wang GL, Que F, Xu ZS, Wang F, Xiong AS. Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. PROTOPLASMA 2017; 254:839-848. [PMID: 27335006 DOI: 10.1007/s00709-016-0995-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/08/2016] [Indexed: 05/10/2023]
Abstract
Gibberellins (GAs) are important growth regulators involved in plant development processes. However, limited information is known about the relationship between GA and xylogenesis in carrots. In this study, carrot roots were treated with GA3. The effects of applied GA3 on root growth, xylem development, and lignin accumulation were then investigated. Results indicated that GA treatment dose-dependently inhibited carrot root growth. The cell wall significantly thickened in the xylem parenchyma. Autofluorescence analysis with ultraviolet (UV) excitation indicated that these cells became lignified because of long-term GA3 treatment. Moreover, lignin content increased in the roots, and the transcripts of lignin biosynthesis genes were altered in response to applied GA3. Our data indicate that GA may play important roles in xylem growth and lignification in carrot roots. Further studies shall focus on regulating plant lignification, which may be achieved by modifying GA levels within plant tissues.
Collapse
Affiliation(s)
- Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Yue X, Li XG, Gao XQ, Zhao XY, Dong YX, Zhou C. The Arabidopsis phytohormone crosstalk network involves a consecutive metabolic route and circular control units of transcription factors that regulate enzyme-encoding genes. BMC SYSTEMS BIOLOGY 2016; 10:87. [PMID: 27590055 PMCID: PMC5009710 DOI: 10.1186/s12918-016-0333-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/25/2016] [Indexed: 01/26/2023]
Abstract
Background Phytohormone synergies and signaling interdependency are important topics in plant developmental biology. Physiological and genetic experimental evidence for phytohormone crosstalk has been accumulating and a genome-scale enzyme correlation model representing the Arabidopsis metabolic pathway has been published. However, an integrated molecular characterization of phytohormone crosstalk is still not available. Results A novel modeling methodology and advanced computational approaches were used to construct an enzyme-based Arabidopsis phytohormone crosstalk network (EAPCN) at the biosynthesis level. The EAPCN provided the structural connectivity architecture of phytohormone biosynthesis pathways and revealed a surprising result; that enzymes localized at the highly connected nodes formed a consecutive metabolic route. Furthermore, our analysis revealed that the transcription factors (TFs) that regulate enzyme-encoding genes in the consecutive metabolic route formed structures, which we describe as circular control units operating at the transcriptional level. Furthermore, the downstream TFs in phytohormone signal transduction pathways were found to be involved in the circular control units that included the TFs regulating enzyme-encoding genes. In addition, multiple functional enzymes in the EAPCN were found to be involved in ion and pH homeostasis, environmental signal perception, cellular redox homeostasis, and circadian clocks. Last, publicly available transcriptional profiles and a protein expression map of the Arabidopsis root apical meristem were used as a case study to validate the proposed framework. Conclusions Our results revealed multiple scales of coupled mechanisms in that hormonal crosstalk networks that play a central role in coordinating internal developmental processes with environmental signals, and give a broader view of Arabidopsis phytohormone crosstalk. We also uncovered potential key regulators that can be further analyzed in future studies. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0333-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xun Yue
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China. .,State Key Laboratory of Crop Biology, College of Information Sciences and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xing Guo Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu Xiu Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
25
|
Rowe JH, Topping JF, Liu J, Lindsey K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. THE NEW PHYTOLOGIST 2016; 211:225-39. [PMID: 26889752 PMCID: PMC4982081 DOI: 10.1111/nph.13882] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/06/2016] [Indexed: 05/17/2023]
Abstract
Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.
Collapse
Affiliation(s)
- James H. Rowe
- The Integrative Cell Biology LaboratorySchool of Biological and Biomedical SciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Jennifer F. Topping
- The Integrative Cell Biology LaboratorySchool of Biological and Biomedical SciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Junli Liu
- The Integrative Cell Biology LaboratorySchool of Biological and Biomedical SciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Keith Lindsey
- The Integrative Cell Biology LaboratorySchool of Biological and Biomedical SciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
26
|
Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 2016; 6:24978. [PMID: 27113714 PMCID: PMC4844984 DOI: 10.1038/srep24978] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors.
Collapse
Affiliation(s)
- Samatha Gunapati
- Plant Gene Expression Lab, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Ram Naresh
- Plant Gene Expression Lab, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Sanjay Ranjan
- Dept. of Plant Physiology, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Deepti Nigam
- Dept. of Bioinformatics, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Aradhana Hans
- Plant tissue culture, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Praveen C Verma
- Plant tissue culture, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Rekha Gadre
- Dept of Biochemistry, DeviAhilyaBai University, Indore-452001, India
| | - Uday V Pathre
- Dept. of Plant Physiology, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR- National Botanical Research Institute, Lucknow-226001, India
| | - Vidhu A Sane
- Plant Gene Expression Lab, CSIR- National Botanical Research Institute, Lucknow-226001, India
| |
Collapse
|
27
|
Wang GL, Que F, Xu ZS, Wang F, Xiong AS. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC PLANT BIOLOGY 2015; 15:290. [PMID: 26667233 PMCID: PMC4678581 DOI: 10.1186/s12870-015-0679-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/07/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Gibberellins stimulate cell elongation and expansion during plant growth and development. Carrot is a root plant with great value and undergoes obvious alteration in organ size over the period of plant growth. However, the roles of gibberellins in carrot remain unclear. RESULTS To investigate the effects of gibberelliins on the growth of carrot, we treated carrot plants with gibberellic acid 3 (GA3) or paclobutrazol (a gibberellin inhibitor). The results found that GA3 dramatically reduced the root growth but stimulated the shoot growth of carrot. It also significantly promoted xylem development in the tuberous root of carrot. In addition, transcript levels of genes related to gibberellins, auxin, cytokinins, abscisic acid and brassinolides were altered in response to increased or reduced gibberellins. CONCLUSIONS The inhibited tuberous root growth but enhanced shoot growth in plants treated with GA3 can be principally attributed to the changes in the xylem development of carrot roots. Negative feedback regulation mechanism of gibberellin biosynthesis also occurred in response to altered gibberellin accumulation. Gibberellins may interact with other hormones to regulate carrot plant growth through crosstalk mechanisms. This study provided novel insights into the functions of gibberellins in the growth and development of carrot.
Collapse
Affiliation(s)
- Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Avramova V, Sprangers K, Beemster GTS. The Maize Leaf: Another Perspective on Growth Regulation. TRENDS IN PLANT SCIENCE 2015; 20:787-797. [PMID: 26490722 DOI: 10.1016/j.tplants.2015.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 05/12/2023]
Abstract
The Arabidopsis thaliana root tip has been a key experimental system to study organ growth regulation. It has clear advantages for genetic, transcriptomic, and cell biological studies that focus on the control of cell division and expansion along its longitudinal axis. However, the system shows some limitations for methods that currently require too much tissue to perform them at subzonal resolution, including quantification of proteins, enzyme activity, hormone, and metabolite levels and cell wall extensibility. By contrast, the larger size of the maize leaf does allow such analyses. Here we highlight exciting new possibilities to advance mechanistic understanding of plant growth regulation by using the maize leaf as a complimentary system to the Arabidopsis root tip.
Collapse
Affiliation(s)
- Viktoriya Avramova
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Katrien Sprangers
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gerrit T S Beemster
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
29
|
Saithong T, Saerue S, Kalapanulak S, Sojikul P, Narangajavana J, Bhumiratana S. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons. PLoS One 2015; 10:e0137602. [PMID: 26366737 PMCID: PMC4569563 DOI: 10.1371/journal.pone.0137602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change.
Collapse
Affiliation(s)
- Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Samorn Saerue
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Punchapat Sojikul
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
| | - Jarunya Narangajavana
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
| | - Sakarindr Bhumiratana
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thungkhru, Bangmod, Bangkok, Thailand
| |
Collapse
|
30
|
Moore S, Zhang X, Mudge A, Rowe JH, Topping JF, Liu J, Lindsey K. Spatiotemporal modelling of hormonal crosstalk explains the level and patterning of hormones and gene expression in Arabidopsis thaliana wild-type and mutant roots. THE NEW PHYTOLOGIST 2015; 207:1110-22. [PMID: 25906686 PMCID: PMC4539600 DOI: 10.1111/nph.13421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/20/2015] [Indexed: 05/08/2023]
Abstract
Patterning in Arabidopsis root development is coordinated via a localized auxin concentration maximum in the root tip, requiring the regulated expression of specific genes. However, little is known about how hormone and gene expression patterning is generated. Using a variety of experimental data, we develop a spatiotemporal hormonal crosstalk model that describes the integrated action of auxin, ethylene and cytokinin signalling, the POLARIS protein, and the functions of PIN and AUX1 auxin transporters. We also conduct novel experiments to confirm our modelling predictions. The model reproduces auxin patterning and trends in wild-type and mutants; reveals that coordinated PIN and AUX1 activities are required to generate correct auxin patterning; correctly predicts shoot to root auxin flux, auxin patterning in the aux1 mutant, the amounts of cytokinin, ethylene and PIN protein, and PIN protein patterning in wild-type and mutant roots. Modelling analysis further reveals how PIN protein patterning is related to the POLARIS protein through ethylene signalling. Modelling prediction of the patterning of POLARIS expression is confirmed experimentally. Our combined modelling and experimental analysis reveals that a hormonal crosstalk network regulates the emergence of patterns and levels of hormones and gene expression in wild-type and mutants.
Collapse
Affiliation(s)
- Simon Moore
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham UniversitySouth Road, Durham, DH1 3LE, UK
| | - Xiaoxian Zhang
- School of Engineering, The University of LiverpoolBrownlow Street, Liverpool, L69 3GQ, UK
| | - Anna Mudge
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham UniversitySouth Road, Durham, DH1 3LE, UK
| | - James H Rowe
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham UniversitySouth Road, Durham, DH1 3LE, UK
| | - Jennifer F Topping
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham UniversitySouth Road, Durham, DH1 3LE, UK
| | - Junli Liu
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham UniversitySouth Road, Durham, DH1 3LE, UK
| | - Keith Lindsey
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham UniversitySouth Road, Durham, DH1 3LE, UK
| |
Collapse
|
31
|
Moore S, Zhang X, Liu J, Lindsey K. Some fundamental aspects of modeling auxin patterning in the context of auxin-ethylene-cytokinin crosstalk. PLANT SIGNALING & BEHAVIOR 2015; 10:e1056424. [PMID: 26237293 PMCID: PMC4883870 DOI: 10.1080/15592324.2015.1056424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 05/30/2023]
Abstract
The activities of hormones in the Arabidopsis root depend on cellular context and exhibit either synergistic or antagonistic interactions. Patterning in Arabidopsis root development is coordinated via a localized auxin concentration maximum in the root tip, mediating transcription of key regulatory genes. Auxin concentration and response are each regulated by diverse interacting hormones and gene expression and therefore cannot change independently of those hormones and genes. For example, experimental data accumulated over many years have shown that both ethylene and cytokinin regulate auxin concentration and response. Using the crosstalk of auxin-ethylene-cytokinin as a paradigm, we discuss the links between experimental data, reaction kinetics and spatiotemporal modeling to dissect hormonal crosstalk. In particular, we discuss how kinetic equations for modeling auxin concentration are formulated based on experimental data and also the underlying assumptions for deriving those kinetic equations. Furthermore, we show that, by integrating kinetic equations with spatial root structure, modeling of spatiotemporal hormonal crosstalk is a powerful tool for analyzing and predicting the roles of multiple hormone interactions in auxin patterning. Finally, we summarize important considerations in developing a spatiotemporal hormonal crosstalk model for plant root development.
Collapse
Affiliation(s)
- Simon Moore
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University; Durham, UK
| | - Xiaoxian Zhang
- School of Engineering, The University of Liverpool; Liverpool, UK
| | - Junli Liu
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University; Durham, UK
- Joint corresponding authors
| | - Keith Lindsey
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, Durham University; Durham, UK
- Joint corresponding authors
| |
Collapse
|
32
|
Sequencing, assembly, annotation, and gene expression: novel insights into the hormonal control of carrot root development revealed by a high-throughput transcriptome. Mol Genet Genomics 2015; 290:1379-91. [PMID: 25666462 DOI: 10.1007/s00438-015-0999-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/22/2015] [Indexed: 01/24/2023]
Abstract
Previous studies have indicated that hormonal control is essential for plant root growth. The root of the carrot is an edible vegetable with a high nutritional value. However, molecular mechanisms underlying hormone-mediated root growth of carrot have not been illustrated. Therefore, the present study collected carrot root samples from four developmental stages, and performed transcriptome sequencing to understand the molecular functions of plant hormones in carrot root growth. A total of 160,227 transcripts were generated from our transcriptome, which were assembled into 32,716 unigenes with an average length of 1,453 bp. A total of 4,818 unigenes were found to be differentially expressed between the four developmental stages. In total, 87 hormone-related differentially expressed genes were identified, and the roles of the hormones are extensively discussed. Our results suggest that plant hormones may regulate carrot root growth in a phase-dependent manner, and these findings will provide valuable resources for future research on carrot root development.
Collapse
|
33
|
Zhang J, Xu Y, Chen W, Dell B, Vergauwen R, Biddulph B, Khan N, Luo H, Appels R, Van den Ende W. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. THE NEW PHYTOLOGIST 2015; 205:293-305. [PMID: 25250511 DOI: 10.1111/nph.13030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/27/2014] [Indexed: 05/18/2023]
Abstract
In wheat stems, the levels of fructan-dominated water-soluble carbohydrates (WSC) do not always correlate well with grain yield. Field drought experiments were carried out to further explain this lack of correlation. Wheat (Triticum aestivum) varieties, Westonia, Kauz and c. 20 genetically diverse double haploid (DH) lines derived from them were investigated. Substantial genotypic differences in fructan remobilization were found and the 1-FEH w3 gene was shown to be the major contributor in the stem fructan remobilization process based on enzyme activity and gene expression results. A single nucleotide polymorphism (SNP) was detected in an auxin response element in the 1-FEH w3 promoter region, therefore we speculated that the mutated Westonia allele might affect gene expression and enzyme activity levels. A cleaved amplified polymorphic (CAP) marker was generated from the SNP. The harvested results showed that the mutated Westonia 1-FEH w3 allele was associated with a higher thousand grain weight (TGW) under drought conditions in 2011 and 2012. These results indicated that higher gene expression of 1-FEH w3 and 1-FEH w3 mediated enzyme activities that favoured stem WSC remobilization to the grains. The CAP marker residing in the 1-FEH w3 promoter region may facilitate wheat breeding by selecting lines with high stem fructan remobilization capacity under terminal drought.
Collapse
Affiliation(s)
- Jingjuan Zhang
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saini S, Sharma I, Pati PK. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. FRONTIERS IN PLANT SCIENCE 2015; 6:950. [PMID: 26583025 PMCID: PMC4631823 DOI: 10.3389/fpls.2015.00950] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/18/2015] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a class of steroidal plant hormones that play diverse roles in plant growth and developmental processes. Recently, the easy availability of biological resources, and development of new molecular tools and approaches have provided the required impetus for deeper understanding of the processes involved in BRs biosynthesis, transport, signaling and degradation pathways. From recent studies it is also evident that BRs interact with other phytohormones such as auxin, cytokinin, ethylene, gibberellin, jasmonic acid, abscisic acid, salicylic acid and polyamine in regulating wide range of physiological and developmental processes in plants. The inputs from these studies are now being linked to the versatile roles of BRs. The present review highlights the conceptual development with regard to BR homeostasis, signaling and its crosstalk with other phytohormones. This information will assist in developing predictive models to modulate various useful traits in plants and address current challenges in agriculture.
Collapse
|
35
|
Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. FRONTIERS IN PLANT SCIENCE 2014; 5:495. [PMID: 25324849 PMCID: PMC4179338 DOI: 10.3389/fpls.2014.00495] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/06/2014] [Indexed: 05/02/2023]
Abstract
Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR induction.
Collapse
Affiliation(s)
| | | | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
36
|
Yokawa K, Fasano R, Kagenishi T, Baluška F. Light as stress factor to plant roots - case of root halotropism. FRONTIERS IN PLANT SCIENCE 2014; 5:718. [PMID: 25566292 PMCID: PMC4264407 DOI: 10.3389/fpls.2014.00718] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/28/2014] [Indexed: 05/04/2023]
Abstract
Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.
Collapse
Affiliation(s)
- Ken Yokawa
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
- Department of Biological Sciences, Tokyo Metropolitan UniversityTokyo, Japan
| | - Rossella Fasano
- Department of Pharmacy, University of SalernoFisciano, Italy
| | - Tomoko Kagenishi
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - František Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
- *Correspondence: František Baluška, Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany e-mail:
| |
Collapse
|
37
|
Ji H, Li X. ABA mediates PEG-mediated premature differentiation of root apical meristem in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e977720. [PMID: 25517011 PMCID: PMC4622860 DOI: 10.4161/15592324.2014.977720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Root apical meristem (RAM) is central for indeterminate growth of plant roots and in sensing environmental stimuli, such as water status. Recently, we reported that PEG8000-simulated mild and moderate osmotic stress induces premature differentiation of RAM, which is a conserved adaptive mechanism in higher plants to cope with water stress. Microarray data analysis revealed that the ABA signaling pathway may be involved in water stress-induced RAM premature differentiation. Here we showed that in wheat, ABA contents increased under water stress with the highest level of ABA in the RAM. Exogenous ABA also induces RAM premature differentiation in both wheat and Arabidopsis plants. Further genetic analysis revealed that loss of function mutations in ABA2 and ABA receptors significantly reduced the level of root tip swelling and RAM premature differentiation in response to PEG-simulated water stress. Together, the results suggest that ABA participates in regulation of PEG-mediated premature differentiation of RAM.
Collapse
Affiliation(s)
- Hongtao Ji
- The State Key Laboratory of Plant Cell & Chromosome Engineering; Center for Agricultural Research Resources; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Shijiazhuang, Hebei, China
| | - Xia Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering; Center for Agricultural Research Resources; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Shijiazhuang, Hebei, China
- Correspondence to: Xia Li;
| |
Collapse
|