1
|
Marchant DB, Walbot V. The establishment of the anther somatic niche with single-cell sequencing. Dev Biol 2024; 518:37-47. [PMID: 39547468 DOI: 10.1016/j.ydbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The anther is the developmental housing of pollen and therefore the male gametes of flowering plants. The meiotic cells from which pollen are derived must differentiate de novo from somatic anther cells and synchronously develop with the rest of the anther. Anthropogenic control over another development has become crucial for global agriculture so as to maintain inbred lines and generate hybrid seeds of many crops. Understanding the genes that underlie the proper differentiation, developmental landmarks, and functions of each anther cell type is thus fundamental to both basic and applied plant sciences. We investigated the development of the somatic niche of the maize (Zea mays) anther using single-cell RNA-seq (scRNA-seq). Extensive background knowledge on the birth then pace and pattern of cell division of the maize anther cell types and published examples of cell-type gene expression from in situ hybridization allowed us to identify the primary cell types within the anther lobe, as well as the connective cells between the four lobes. We established the developmental trajectories of somatic cell types from pre-meiosis to post-meiosis, identified putative marker genes for the somatic cell types that previously lacked any known specific functions, and addressed the possibility that tapetal cells sequentially differentiate. This comprehensive scRNA-seq dataset of the somatic niche of the maize anther will serve as a baseline for future analyses investigating male-sterile genotypes and the impact of environmental conditions on male fertility in flowering plants.
Collapse
Affiliation(s)
- D Blaine Marchant
- Department of Biology, University of Missouri - St. Louis, St. Louis, MO, 63121, USA; Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Lintilhac PM. Mechanics of reproductive differentiation in the land plants: a paradigm shift? FRONTIERS IN PLANT SCIENCE 2024; 15:1445582. [PMID: 39469058 PMCID: PMC11513301 DOI: 10.3389/fpls.2024.1445582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
This article addresses the physical mechanics of gametogenesis in vascular plants. The earliest events that initiate reproductive differentiation in the land plants are not well understood. How are the few cells that initiate reproductive differentiation specified and how is that information translated into action at the cellular level? In this article I propose a physical mechanism that resolves the problem of spatial targeting without invoking dependence on diffusible morphogens or other external signals. I suggest that the initiation of archesporial differentiation can instead be attributed to the confluence of organ geometry, surficial topography, and the physical mechanics of sporangial growth, resulting in the spontaneous emergence of an isotropic singularity that locates and precipitates archesporial differentiation. In discussing the logic of single-cell target selection and the limits of stochastic molecular signaling I propose that the sporangium would be better understood as a pressurized stress-mechanical lens that focuses turgor-generated growth forces on a central location, generating a physical singularity that locates and specifies the cell or cells that become the archesporium and initiates their transition from somatic proliferation to reproductive differentiation.
Collapse
Affiliation(s)
- Philip M. Lintilhac
- Department of Plant Biology, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
3
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
4
|
Jiang L, Guo T, Song X, Jiang H, Lu M, Luo J, Rossi V, He Y. MSH7 confers quantitative variation in pollen fertility and boosts grain yield in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1372-1386. [PMID: 38263872 PMCID: PMC11022798 DOI: 10.1111/pbi.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
Fertile pollen is critical for the survival, fitness, and dispersal of flowering plants, and directly contributes to crop productivity. Extensive mutational screening studies have been carried out to dissect the genetic regulatory network determining pollen fertility, but we still lack fundamental knowledge about whether and how pollen fertility is controlled in natural populations. We used a genome-wide association study (GWAS) to show that ZmGEN1A and ZmMSH7, two DNA repair-related genes, confer natural variation in maize pollen fertility. Mutants defective in these genes exhibited abnormalities in meiotic or post-meiotic DNA repair, leading to reduced pollen fertility. More importantly, ZmMSH7 showed evidence of selection during maize domestication, and its disruption resulted in a substantial increase in grain yield for both inbred and hybrid. Overall, our study describes the first systematic examination of natural genetic effects on pollen fertility in plants, providing valuable genetic resources for optimizing male fertility. In addition, we find that ZmMSH7 represents a candidate for improvement of grain yield.
Collapse
Affiliation(s)
- Luguang Jiang
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Ting Guo
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| | - Xinyuan Song
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro‐Biotechnology Research InstituteJilin Academy of Agricultural SciencesChangchunChina
| | - Huan Jiang
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jinhong Luo
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| | - Vincenzo Rossi
- Council for Agricultural Research and EconomicsResearch Centre for Cereal and Industrial CropsBergamoItaly
| | - Yan He
- National Maize Improvement Center of China, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Genetics and Developmental Biology, Key Laboratory of Seed InnovationChinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Han Y, Hu M, Ma X, Yan G, Wang C, Jiang S, Lai J, Zhang M. Exploring key developmental phases and phase-specific genes across the entirety of anther development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1394-1410. [PMID: 35607822 PMCID: PMC10360140 DOI: 10.1111/jipb.13276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Anther development from stamen primordium to pollen dispersal is complex and essential to sexual reproduction. How this highly dynamic and complex developmental process is controlled genetically is not well understood, especially for genes involved in specific key developmental phases. Here we generated RNA sequencing libraries spanning 10 key stages across the entirety of anther development in maize (Zea mays). Global transcriptome analyses revealed distinct phases of cell division and expansion, meiosis, pollen maturation, and mature pollen, for which we detected 50, 245, 42, and 414 phase-specific marker genes, respectively. Phase-specific transcription factor genes were significantly enriched in the phase of meiosis. The phase-specific expression of these marker genes was highly conserved among the maize lines Chang7-2 and W23, indicating they might have important roles in anther development. We explored a desiccation-related protein gene, ZmDRP1, which was exclusively expressed in the tapetum from the tetrad to the uninucleate microspore stage, by generating knockout mutants. Notably, mutants in ZmDRP1 were completely male-sterile, with abnormal Ubisch bodies and defective pollen exine. Our work provides a glimpse into the gene expression dynamics and a valuable resource for exploring the roles of key phase-specific genes that regulate anther development.
Collapse
Affiliation(s)
- Yingjia Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center of China Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuxu Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Ge Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyu Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center of China Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
6
|
Lewandowska D, Orr J, Schreiber M, Colas I, Ramsay L, Zhang R, Waugh R. The proteome of developing barley anthers during meiotic prophase I. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1464-1482. [PMID: 34758083 PMCID: PMC8890616 DOI: 10.1093/jxb/erab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Flowering plants reproduce sexually by combining a haploid male and female gametophyte during fertilization. Male gametophytes are localized in the anthers, each containing reproductive (meiocyte) and non-reproductive tissue necessary for anther development and maturation. Meiosis, where chromosomes pair and exchange their genetic material during a process called recombination, is one of the most important and sensitive stages in breeding, ensuring genetic diversity. Most anther development studies have focused on transcript variation, but very few have been correlated with protein abundance. Taking advantage of a recently published barley anther transcriptomic (BAnTr) dataset and a newly developed sensitive mass spectrometry-based approach to analyse the barley anther proteome, we conducted high-resolution mass spectrometry analysis of barley anthers, collected at six time points and representing their development from pre-meiosis to metaphase. Each time point was carefully staged using immunocytology, providing a robust and accurate staging mirroring our previous BAnTr dataset. We identified >6100 non-redundant proteins including 82 known and putative meiotic proteins. Although the protein abundance was relatively stable throughout prophase I, we were able to quantify the dynamic variation of 336 proteins. We present the first quantitative comparative proteomics study of barley anther development during meiotic prophase I when the important process of homologous recombination is taking place.
Collapse
Affiliation(s)
- Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jamie Orr
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, SA 5064, Australia
- Correspondence:
| |
Collapse
|
7
|
Åstrand J, Knight C, Robson J, Talle B, Wilson ZA. Evolution and diversity of the angiosperm anther: trends in function and development. PLANT REPRODUCTION 2021; 34:307-319. [PMID: 34173886 PMCID: PMC8566645 DOI: 10.1007/s00497-021-00416-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 05/21/2023]
Abstract
Anther development and dehiscence is considered from an evolutionary perspective to identify drivers for differentiation, functional conservation and to identify key questions for future male reproduction research. Development of viable pollen and its timely release from the anther are essential for fertilisation of angiosperm flowers. The formation and subsequent dehiscence of the anther are under tight regulatory control, and these processes are remarkably conserved throughout the diverse families of the angiosperm clade. Anther development is a complex process, which requires timely formation and communication between the multiple somatic anther cell layers (the epidermis, endothecium, middle layer and tapetum) and the developing pollen. These layers go through regulated development and selective degeneration to facilitate the formation and ultimate release of the pollen grains. Insight into the evolution and divergence of anther development and dehiscence, especially between monocots and dicots, is driving greater understanding of the male reproductive process and increased, resilient crop yields. This review focuses on anther structure from an evolutionary perspective by highlighting their diversity across plant species. We summarise new findings that illustrate the complexities of anther development and evaluate how they challenge established models of anther form and function, and how they may help to deliver future sustainable crop yields.
Collapse
Affiliation(s)
- Johanna Åstrand
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Christopher Knight
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Jordan Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Behzad Talle
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| |
Collapse
|
8
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Liu Y, Teng C, Xia R, Meyers BC. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. THE PLANT CELL 2020; 32:3059-3080. [PMID: 32817252 PMCID: PMC7534485 DOI: 10.1105/tpc.20.00335] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 05/08/2023]
Abstract
Phased secondary small interfering RNAs (phasiRNAs) constitute a major category of small RNAs in plants, but most of their functions are still poorly defined. Some phasiRNAs, known as trans-acting siRNAs, are known to target complementary mRNAs for degradation and to function in development. However, the targets or biological roles of other phasiRNAs remain speculative. New insights into phasiRNA biogenesis, their conservation, and their variation across the flowering plants continue to emerge due to the increased availability of plant genomic sequences, deeper and more sophisticated sequencing approaches, and improvements in computational biology and biochemical/molecular/genetic analyses. In this review, we survey recent progress in phasiRNA biology, with a particular focus on two classes associated with male reproduction: 21-nucleotide (accumulate early in anther ontogeny) and 24-nucloetide (produced in somatic cells during meiosis) phasiRNAs. We describe phasiRNA biogenesis, function, and evolution and define the unanswered questions that represent topics for future research.
Collapse
Affiliation(s)
- Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| |
Collapse
|
10
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Chang CL, Serapion JC, Hung HH, Lin YC, Tsai YC, Jane WN, Chang MC, Lai MH, Hsing YIC. Studies of a rice sterile mutant sstl from the TRIM collection. BOTANICAL STUDIES 2019; 60:12. [PMID: 31292815 PMCID: PMC6620220 DOI: 10.1186/s40529-019-0260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is one of the main crops in the world, and more than 3.9 billion people will consume rice by 2025. Sterility significantly affects rice production and leads to yield defects. The undeveloped anthers or abnormal pollen represent serious defects in rice male sterility. Therefore, understanding the mechanism of male sterility is an important task. Here, we investigated a rice sterile mutant according to its developmental morphology and transcriptional profiles. RESULTS An untagged T-DNA insertional mutant showed defective pollen and abnormal anthers as compared with its semi-sterile mutant (sstl) progeny segregates. Transcriptomic analysis of sterile sstl-s revealed several biosynthesis pathways, such as downregulated cell wall, lipids, secondary metabolism, and starch synthesis. This downregulation is consistent with the morphological characterization of sstl-s anthers with irregular exine, absence of intine, no starch accumulation in pollen grains and no accumulated flavonoids in anthers. Moreover, defective microsporangia development led to abnormal anther locule and aborted microspores. The downregulated lipids, starch, and cell wall synthesis-related genes resulted in loss of fertility. CONCLUSIONS We illustrate the importance of microsporangia in the development of anthers and functional microspores. Abnormal development of pollen grains, pollen wall, anther locule, etc. result in severe yield reduction.
Collapse
Affiliation(s)
- Chia-Ling Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Jerry C. Serapion
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Han-Hui Hung
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yan-Cheng Lin
- Department of Life Science, National Taiwan University, Taipei, 106 Taiwan
| | - Yuan-Ching Tsai
- Department of Agronomy, National Chiayi University, Chiayi, 600 Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yue-ie C. Hsing
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| |
Collapse
|
12
|
Nelms B, Walbot V. Defining the developmental program leading to meiosis in maize. Science 2019; 364:52-56. [DOI: 10.1126/science.aav6428] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/01/2019] [Indexed: 01/22/2023]
Abstract
In multicellular organisms, the entry into meiosis is a complex process characterized by increasing meiotic specialization. Using single-cell RNA sequencing, we reconstructed the developmental program into maize male meiosis. A smooth continuum of expression stages before meiosis was followed by a two-step transcriptome reorganization in leptotene, during which 26.7% of transcripts changed in abundance by twofold or more. Analysis of cell-cycle gene expression indicated that nearly all pregerminal cells proliferate, eliminating a stem-cell model to generate meiotic cells. Mutants defective in somatic differentiation or meiotic commitment expressed transcripts normally present in early meiosis after a delay; thus, the germinal transcriptional program is cell autonomous and can proceed despite meiotic failure.
Collapse
|
13
|
Huang K, Baldrich P, Meyers BC, Caplan JL. sRNA-FISH: versatile fluorescent in situ detection of small RNAs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:359-369. [PMID: 30577085 PMCID: PMC6465150 DOI: 10.1111/tpj.14210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 05/20/2023]
Abstract
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA-FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co-localization of miR2275 and a 24-nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi-photon fluorescence excitation microscopy can be used to separate the target sRNA-FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA-FISH signals can be imaged using super-resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super-resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step-by-step sRNA-FISH protocol for studying sRNAs at the cellular and even subcellular level.
Collapse
Affiliation(s)
- Kun Huang
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Patricia Baldrich
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA
| | - Blake C. Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA
- University of Missouri – Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211
- To whom correspondence should be addressed: Jeffrey L. Caplan; Tel: (302) 831-3403; Fax: (302) 831-4841;
| | - Jeffrey L. Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
- To whom correspondence should be addressed: Jeffrey L. Caplan; Tel: (302) 831-3403; Fax: (302) 831-4841;
| |
Collapse
|
14
|
van der Linde K, Egger RL, Timofejeva L, Walbot V. Application of the pathogen Trojan horse approach in maize (Zea mays). PLANT SIGNALING & BEHAVIOR 2018; 13:e1547575. [PMID: 30444162 PMCID: PMC6296385 DOI: 10.1080/15592324.2018.1547575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 05/04/2023]
Abstract
Maize, Zea mays, the second-most-widely-grown crop, yields 20 % of all consumed calories worldwide.1 Despite its agronomic importance, research progress is limited by costly transformation. We recently described the Trojan horse method as a useful tool to study maize proteins in situ that circumvents time- and space-consuming whole plant transformation. The Trojan horse approach uses the protein-folding and secretory properties of the corn smut fungus Ustilago maydis to secrete maize proteins from fungal cells into the maize apoplast. Here, we discuss the timing and location of U. maydis during infection and the protein secretion site in relation to anther anatomy. This spatiotemporal analysis enables the study of apoplastic anther proteins in various premeiotic anther developmental stages, and could be adapted for larger screens.
Collapse
Affiliation(s)
- Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Rachel L. Egger
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ljudmilla Timofejeva
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Abstract
In this introductory chapter, we describe male germline development in plants taking Arabidopsis thaliana as a reference species. We first describe the transition from sporophytic to germline development, then microsporogenesis including meiosis, followed by male gametophyte development prior to pollination, and finally the progamic phase culminating in double fertilization, which leads to the formation of the embryo and the endosperm. For detailed information on some of these processes or on the molecular underpinning of certain fate transitions, we refer the reader to recent reviews. An important but often neglected aspect of male gametophyte development is the formation of the unique pollen cell wall. In contrast to that of other plant cells, the pollen cell wall is composed of two principal layers, the intine and exine. While the intine, the inner pecto-cellulosic cell wall layer, is biochemically and structurally similar to a "classical" plant cell wall, the exine is a unique composite with sporopollenin as its main component. Biosynthesis of the cell wall is remarkably similar between the spores of mosses and ferns, and pollen of seed plants, although slight differences exist, even between closely related species (reviewed in Wallace et al., AoB Plants 2011:plr027, 2011). In the latter sections of this chapter, we will present a brief overview of cell wall development in Arabidopsis pollen, where this aspect has been intensively studied.
Collapse
|
16
|
Chen ZS, Liu XF, Wang DH, Chen R, Zhang XL, Xu ZH, Bai SN. Transcription Factor OsTGA10 Is a Target of the MADS Protein OsMADS8 and Is Required for Tapetum Development. PLANT PHYSIOLOGY 2018; 176:819-835. [PMID: 29158333 PMCID: PMC5761795 DOI: 10.1104/pp.17.01419] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 05/10/2023]
Abstract
This study aimed at elucidating regulatory components behind floral organ identity determination and tissue development. It remains unclear how organ identity proteins facilitate development of organ primordia into tissues with a determined identity, even though it has long been accepted that floral organ identity is genetically determined by interaction of identity genes according to the ABC model. Using the chromatin immunoprecipitation sequencing technique, we identified OsTGA10, encoding a bZIP transcription factor, as a target of the MADS box protein OsMADS8, which is annotated as an E-class organ identity protein. We characterized the function of OsTGA10 using genetic and molecular analyses. OsTGA10 was preferentially expressed during stamen development, and mutation of OsTGA10 resulted in male sterility. OsTGA10 was required for tapetum development and functioned by interacting with known tapetum genes. In addition, in ostga10 stamens, the hallmark cell wall thickening of the endothecium was defective. Our findings suggest that OsTGA10 plays a mediator role between organ identity determination and tapetum development in rice stamen development, between tapetum development and microspore development, and between various regulatory components required for tapetum development. Furthermore, the defective endothecium in ostga10 implies that cell wall thickening of endothecium is dependent on tapetum development.
Collapse
Affiliation(s)
- Zhi-Shan Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao-Feng Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rui Chen
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee 37212
| | - Xiao-Lan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Nong Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Estornell LH, Landberg K, Cierlik I, Sundberg E. SHI/ STY Genes Affect Pre- and Post-meiotic Anther Processes in Auxin Sensing Domains in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:150. [PMID: 29491878 PMCID: PMC5817092 DOI: 10.3389/fpls.2018.00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/29/2018] [Indexed: 05/13/2023]
Abstract
In flowering plants, mature sperm cells are enclosed in pollen grains formed in structures called anthers. Several cell layers surrounding the central sporogenous cells of the anther are essential for directing the developmental processes that lead to meiosis, pollen formation, and the subsequent pollen release. The specification and function of these tissues are regulated by a large number of genetic factors. Additionally, the plant hormone auxin has previously been shown to play important roles in the later phases of anther development. Using the R2D2 auxin sensor system we here show that auxin is sensed also in the early phases of anther cell layer development, suggesting that spatiotemporal regulation of auxin levels is important for early anther morphogenesis. Members of the SHI/STY transcription factor family acting as direct regulators of YUC auxin biosynthesis genes have previously been demonstrated to affect early anther patterning. Using reporter constructs we show that SHI/STY genes are dynamically active throughout anther development and their expression overlaps with those of three additional downstream targets, PAO5, EOD3 and PGL1. Characterization of anthers carrying mutations in five SHI/STY genes clearly suggests that SHI/STY transcription factors affect anther organ identity. In addition, their activity is important to repress periclinal cell divisions as well as premature entrance into programmed cell death and cell wall lignification, which directly influences the timing of anther dehiscence and the pollen viability. The SHI/STY proteins also prevent premature pollen germination suggesting that they may play a role in the induction or maintenance of pollen dormancy.
Collapse
|
18
|
Nan GL, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers BC, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 2016; 144:163-172. [PMID: 27913638 DOI: 10.1242/dev.140673] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
Successful male gametogenesis involves orchestration of sequential gene regulation for somatic differentiation in pre-meiotic anthers. We report here the cloning of Male Sterile23 (Ms23), encoding an anther-specific predicted basic helix-loop-helix (bHLH) transcription factor required for tapetal differentiation; transcripts localize initially to the precursor secondary parietal cells then predominantly to daughter tapetal cells. In knockout ms23-ref mutant anthers, five instead of the normal four wall layers are observed. Microarray transcript profiling demonstrates a more severe developmental disruption in ms23-ref than in ms32 anthers, which possess a different bHLH defect. RNA-seq and proteomics data together with yeast two-hybrid assays suggest that MS23 along with MS32, bHLH122 and bHLH51 act sequentially as either homo- or heterodimers to choreograph tapetal development. Among them, MS23 is the earliest-acting factor, upstream of bHLH51 and bHLH122, controlling tapetal specification and maturation. By contrast, MS32 is constitutive and independently regulated and is required later than MS23 in tapetal differentiation.
Collapse
Affiliation(s)
- Guo-Ling Nan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jixian Zhai
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.,Department of Biology, South University of Science and Technology, Shenzhen 518055, China
| | - Siwaret Arikit
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Darren Morrow
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - John Fernandes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lan Mai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nhi Nguyen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Blake C Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Kim YJ, Jang MG, Zhu L, Silva J, Zhu X, Sukweenadhi J, Kwon WS, Yang DC, Zhang D. Cytological characterization of anther development in Panax ginseng Meyer. PROTOPLASMA 2016; 253:1111-1124. [PMID: 26277352 DOI: 10.1007/s00709-015-0869-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Ginseng (Panax ginseng), a valued medicinal herb, is a slow-growing plant that flowers after 3 years of growth with the formation of a solitary terminal umbel inflorescence. However, little is known about cytological events during ginseng reproduction, such as the development of the male organ, the stamen. To better understand the mechanism controlling ginseng male reproductive development, here, we investigated the inflorescence and flower structure of ginseng. Moreover, we performed cytological analysis of anther morphogenesis and showed the common and specialized cytological events including the formation of four concentric cell layers surrounding male reproductive cells followed by subsequent cell differentiation and degeneration of tapetal cells, as well as the formation of mature pollen grains via meiosis and mitosis during ginseng anther development. Particularly, our transverse section and microscopic observations showed that the ginseng tapetal layer exhibits obvious nonsynchronous cell division evidenced by the observation of one or two tapetal layers frequently observed in one anther lobe, suggesting the unique control of cell division. To facilitate the future study on ginseng male reproduction, we grouped the anther development into 10 developmental stages according to the characterized cytological events.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China.
| | - Moon-Gi Jang
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Jeniffer Silva
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Xiaolei Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Johan Sukweenadhi
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Woo-Saeng Kwon
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Deok-Chun Yang
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China
| |
Collapse
|
20
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
21
|
Sharma KD, Nayyar H. Regulatory Networks in Pollen Development under Cold Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:402. [PMID: 27066044 PMCID: PMC4814731 DOI: 10.3389/fpls.2016.00402] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Cold stress modifies anthers' metabolic pathways to induce pollen sterility. Cold-tolerant plants, unlike the susceptible ones, produce high proportion of viable pollen. Anthers in susceptible plants, when exposed to cold stress, increase abscisic acid (ABA) metabolism and reduce ABA catabolism. Increased ABA negatively regulates expression of tapetum cell wall bound invertase and monosaccharide transport genes resulting in distorted carbohydrate pool in anther. Cold-stress also reduces endogenous levels of the bioactive gibberellins (GAs), GA4 and GA7, in susceptible anthers by repression of the GA biosynthesis genes. Here, we discuss recent findings on mechanisms of cold susceptibility in anthers which determine pollen sterility. We also discuss differences in regulatory pathways between cold-stressed anthers of susceptible and tolerant plants that decide pollen sterility or viability.
Collapse
Affiliation(s)
- Kamal D. Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
22
|
Egger RL, Walbot V. A framework for evaluating developmental defects at the cellular level: An example from ten maize anther mutants using morphological and molecular data. Dev Biol 2016; 419:26-40. [PMID: 26992364 DOI: 10.1016/j.ydbio.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Abstract
In seed plants, anthers are critical for sexual reproduction, because they foster both meiosis and subsequent pollen development of male germinal cells. Male-sterile mutants are analyzed to define steps in anther development. Historically the major topics in these studies are meiotic arrest and post-meiotic gametophyte failure, while relatively few studies focus on pre-meiotic defects of anther somatic cells. Utilizing morphometric analysis we demonstrate that pre-meiotic mutants can be impaired in anticlinal or periclinal cell division patterns and that final cell number in the pre-meiotic anther lobe is independent of cell number changes of individual differentiated somatic cell types. Data derived from microarrays and from cell wall NMR analyses allow us to further refine our understanding of the onset of phenotypes. Collectively the data highlight that even minor deviations from the correct spatiotemporal pattern of somatic cell proliferation can result in male sterility in Zea mays.
Collapse
Affiliation(s)
- Rachel L Egger
- Department of Biology, Stanford University, 365 Serra Mall, Stanford, CA 94305, United States.
| | - Virginia Walbot
- Department of Biology, Stanford University, 365 Serra Mall, Stanford, CA 94305, United States
| |
Collapse
|
23
|
Field S, Thompson B. Analysis of the Maize dicer-like1 Mutant, fuzzy tassel, Implicates MicroRNAs in Anther Maturation and Dehiscence. PLoS One 2016; 11:e0146534. [PMID: 26745722 PMCID: PMC4706427 DOI: 10.1371/journal.pone.0146534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/18/2015] [Indexed: 11/23/2022] Open
Abstract
Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.
Collapse
Affiliation(s)
- Sterling Field
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, United States of America
| | - Beth Thompson
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, United States of America
| |
Collapse
|
24
|
Yang J, Chen X, Zhu C, Peng X, He X, Fu J, Ouyang L, Bian J, Hu L, Sun X, Xu J, He H. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage. BMC Genomics 2015; 16:959. [PMID: 26576634 PMCID: PMC4650392 DOI: 10.1186/s12864-015-2141-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Background Rice (Oryza sativa) is one of the most important cereal crops, providing food for more than half of the world’s population. However, grain yields are challenged by various abiotic stresses such as drought, fertilizer, heat, and their interaction. Rice at reproductive stage is much more sensitive to environmental temperatures, and little is known about molecular mechanisms of rice spikelet in response to high temperature interacting with nitrogen (N). Results Here we reported the transcriptional profiling analysis of rice spikelet at meiosis stage using RNA sequencing (RNA-seq) as an attempt to gain insights into molecular events associated with temperature and nitrogen. This study received four treatments: 1) NN: normal nitrogen level (165 kg ha−1) with natural temperature (30 °C); 2) HH: high nitrogen level (330 kg ha−1) with high temperature (37 °C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and natural temperature, respectively. The de novo assembly generated 52,553,536 clean reads aligned with 72,667 unigenes. About 10 M reads were identified from each treatment. In these differentially expressed genes (DEGs), we found 151 and 323 temperature-responsive DEGs in NN-vs-NH and HN-vs-HH, and 114 DEGs were co-expressed. Meanwhile, 203 and 144 nitrogen-responsive DEGs were focused in NN-vs-HN and NH-vs-HH, and 111 DEGs were co-expressed. The temperature-responsive genes were principally associated with calcium-dependent protein, cytochrome, flavonoid, heat shock protein, peroxidase, ubiquitin, and transcription factor while the nitrogen-responsive genes were mainly involved in glutamine synthetase, transcription factor, anthocyanin, amino acid transporter, leucine zipper protein, and hormone. It is noted that, rice spikelet fertility was significantly decreased under high temperature, but it was more reduced under higher nitrogen. Accordingly, numerous spikelet genes involved in pollen development, pollen tube growth, pollen germination, especially sporopollenin biosynthetic process, and pollen exine formation were mainly down-regulated under high temperature. Moreover, the expression levels of co-expressed DEGs including 5 sporopollenin biosynthetic process and 7 pollen exine formation genes of NN-vs-NH were lower than that of HN-vs-HH. Therefore, these spikelet genes may play important roles in response to high temperature with high nitrogen and may be good candidates for crop improvement. Conclusions This RNA-seq study will help elucidate the molecular mechanisms of rice spikelet defense response to high temperature interacting with high nitrogen level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2141-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Xiaotang Sun
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, 1101 Zhimin Street, Changbei economic and technological development zone, QingShanHu District, Nanchang, Jiangxi Province, 330045, China.
| |
Collapse
|
25
|
Murphy KM, Egger RL, Walbot V. Chloroplasts in anther endothecium of Zea mays (Poaceae). AMERICAN JOURNAL OF BOTANY 2015; 102:1931-7. [PMID: 26526813 DOI: 10.3732/ajb.1500384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/29/2015] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Although anthers of Zea mays, Oryza sativa, and Arabidopsis thaliana have been studied intensively using genetic and biochemical analyses in the past 20 years, few updates to anther anatomical and ultrastructural descriptions have been reported. For example, no transmission electron microscopy (TEM) images of the premeiotic maize anther have been published. Here we report the presence of chloroplasts in maize anthers. METHODS TEM imaging, electron acceptor photosynthesis assay, in planta photon detection, microarray analysis, and light and fluorescence microscopy were used to investigate the presence of chloroplasts in the maize anther. KEY RESULTS Most cells of the maize subepidermal endothecium have starch-containing chloroplasts that do not conduct measurable photosynthesis in vitro. CONCLUSIONS The maize anther contains chloroplasts in most subepidermal, endothecial cells. Although maize anthers receive sufficient light to photosynthesize in vivo and the maize anther transcribes >96% of photosynthesis-associated genes found in the maize leaf, no photosynthetic light reaction activity was detected in vitro. The endothecial cell layer should no longer be defined as a complete circle viewed transversely in anther lobes, because chloroplasts are observed only in cells directly beneath the epidermis and not those adjacent to the connective tissue. We propose that chloroplasts be a defining characteristic of differentiated endothecial cells and that nonsubepidermal endothecial cells that lack chloroplasts be defined as a separate cell type, the interendothecium.
Collapse
Affiliation(s)
- Katherine M Murphy
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, California 94305-5020 USA
| | - Rachel L Egger
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, California 94305-5020 USA
| | - Virginia Walbot
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, California 94305-5020 USA
| |
Collapse
|
26
|
Baroux C, Autran D. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:160-76. [PMID: 26031902 PMCID: PMC4502977 DOI: 10.1111/tpj.12890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 05/05/2023]
Abstract
Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of ZürichZollikerstrasse 107, 8008, Zürich, Switzerland
- *For correspondence (e-mail )
| | - Daphné Autran
- Institut de Recherche pour le Développement (UMR DIADE 232), Centre National de la Recherche Scientifique (URL 5300), Université de Montpellier911 avenue Agropolis, 34000, Montpellier, France
| |
Collapse
|
27
|
She W, Baroux C. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:294. [PMID: 25972887 PMCID: PMC4411972 DOI: 10.3389/fpls.2015.00294] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/12/2015] [Indexed: 05/18/2023]
Abstract
Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMC) committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition toward the male reproductive lineage. Here we show that Arabidopsis PMC differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMC). This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.
Collapse
Affiliation(s)
| | - Célia Baroux
- Department of Plant Developmental Genetics, Institute of Plant Biology and Zürich-Basel Plant Science Center, University of ZürichZürich, Switzerland
| |
Collapse
|