1
|
Zhang P, Sharwood RE, Carroll A, Estavillo GM, von Caemmerer S, Furbank RT. Systems analysis of long-term heat stress responses in the C4 grass Setaria viridis. THE PLANT CELL 2025; 37:koaf005. [PMID: 39778116 PMCID: PMC11964294 DOI: 10.1093/plcell/koaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high-temperature stress for 2 wk (42 °C, compared to 28 °C). This resulted in stunted growth, but surprisingly had little impact on leaf thickness, leaf area-based photosynthetic rates, and bundle sheath leakiness. Dark respiration rates increased, and there were major alterations in carbon and nitrogen metabolism in the heat-stressed plants. Abscisic acid and indole-3-acetic acid-amino acid conjugates accumulated in the heat-stressed plants, consistent with transcriptional changes. Leaf transcriptomics, proteomics, and metabolomics analyses were carried out and mapped onto the metabolic pathways of photosynthesis, respiration, carbon/nitrogen metabolism, and phytohormone biosynthesis and signaling. An in-depth analysis of correlations between transcripts and their corresponding proteins revealed strong differences between groups in the strengths and signs of correlations. Overall, many stress signaling pathways were upregulated, consistent with multiple signals leading to reduced plant growth. A systems-based model of the plant response to long-term heat stress is presented based on the oxidative stress, phytohormone, and sugar signaling pathways.
Collapse
Affiliation(s)
- Peng Zhang
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Adam Carroll
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gonzalo M Estavillo
- Commonwealth Scientific and Research Organisation, Agriculture and Food, Black Mountain Canberra, ACT 2601, Australia
| | - Susanne von Caemmerer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert T Furbank
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Vélez-Bermúdez IC, Lin WD, Chou SJ, Chen AP, Schmidt W. Transcriptome and translatome comparison of tissues from Arabidopsis thaliana. Sci Data 2025; 12:504. [PMID: 40133305 PMCID: PMC11937538 DOI: 10.1038/s41597-025-04805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Translation is one of the multiple complementary steps that orchestrates gene activity. In contrast to the straightforwardness of transcriptional surveys, genome-wide profiles of the translational landscape of plant cells remain technically challenging and are thus less well explored. Protein-coding genes are expressed at a variable degree of efficiency, resulting in pronounced discordance among the regulatory levels that govern gene activity. Ribo-Seq is an extremely useful tool for estimating translation efficiency, but the data sets available for plants are limited. Here, we compare inventories of expressed and translated RNA populations, generated by mRNA sequencing (RNA-Seq) and ribosome footprinting (Ribo-Seq) from shoots and roots of Arabidopsis thaliana seedlings. Our data set provides information on the translational fitness of protein-coding mRNAs that may aid in obtaining a comprehensive picture of the regulatory levels governing genes activity across the genome.
Collapse
Affiliation(s)
- Isabel Cristina Vélez-Bermúdez
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Di4A, Udine, 33100, Italy.
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Bioinformatics Core Lab, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Genomic Technology Core, Academia Sinica, Taipei, 11529, Taiwan
| | - Ai-Ping Chen
- Institute of Plant and Microbial Biology, Genomic Technology Core, Academia Sinica, Taipei, 11529, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
3
|
Martínez-Esteso MJ, Morante-Carriel J, Samper-Herrero A, Martínez-Márquez A, Sellés-Marchart S, Nájera H, Bru-Martínez R. Proteomics: An Essential Tool to Study Plant-Specialized Metabolism. Biomolecules 2024; 14:1539. [PMID: 39766246 PMCID: PMC11674799 DOI: 10.3390/biom14121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Plants are a valuable source of specialized metabolites that provide a plethora of therapeutic applications. They are natural defenses that plants use to adapt and respond to their changing environment. Decoding their biosynthetic pathways and understanding how specialized plant metabolites (SPMs) respond to biotic or abiotic stress will provide vital knowledge for plant biology research and its application for the future sustainable production of many SPMs of interest. Here, we focus on the proteomic approaches and strategies that help with the study of plant-specialized metabolism, including the: (i) discovery of key enzymes and the clarification of their biosynthetic pathways; (ii) study of the interconnection of both primary (providers of carbon and energy for SPM production) and specialized (secondary) metabolism; (iii) study of plant responses to biotic and abiotic stress; (iv) study of the regulatory mechanisms that direct their biosynthetic pathways. Proteomics, as exemplified in this review by the many studies performed to date, is a powerful tool that forms part of omics-driven research. The proteomes analysis provides an additional unique level of information, which is absent from any other omics studies. Thus, an integrative analysis, considered versus a single omics analysis, moves us more closely toward a closer interpretation of real cellular processes. Finally, this work highlights advanced proteomic technologies with immediate applications in the field.
Collapse
Affiliation(s)
- María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Hugo Nájera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico;
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
4
|
Al-Kazimi N, Jarrar Y, Abdul-Wahab G, Alsayed AR, Madani A, Abulebdah D, Musleh RS, Jarrar Q, Al-Ameer HJ, Al-Awaida W, Abdullah E. Effects of intermittent fasting on the histology and mRNA expression of major drug-metabolizing cyp450s in the liver of diabetic mice. Libyan J Med 2023; 18:2270188. [PMID: 37883503 PMCID: PMC11018316 DOI: 10.1080/19932820.2023.2270188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction:There is a variation in drug response among patients who practice intermittent fasting. Alteration in the expression of drug-metabolizing enzymes (DMEs) can affect the pharmacokinetics and drug response.Aims: This research aimed to determine the effect of intermittent fasting on the mRNA expression of major drug-metabolizing cyp450s in the liver of diabetic mice.Methods: Thirty-two male Balb/c mice were divided into four groups; control, nonfasting diabetic, non-diabetic fasting, and diabetic fasting mice. Insulin-dependent diabetes was induced in mice by a single high-dose (250 mg/kg) streptozocin. Mice of non-diabetic and diabetic fasting groups were subjected to 10-day intermittent fasting for 17 hours daily. Then, the mRNA expression of mouse phase I DMEs cyp1a1, cyp2c29, cyp2d9, and cyp3a11 was analyzed using real-time polymerase chain reaction. In addition, the liver of mice in all groups was examined for pathohistological alterations.Results: Diabetes downregulated the mRNA expression of hepatic drug-metabolizing cyp450s in diabetic mice, while intermittent fasting significantly (P < 0.05) increased it. Also, cyp2d9 and cyp3a11 were upregulated in the liver of diabetic fasting mice. These alterations in the gene expression were correlated with the pathohistological alterations, where livers of diabetic mice showed dilatation in the blood sinusoids and inflammatory cells leukocyte infiltrations. Whereas livers of diabetic fasting mice showed almost comparable histological findings to control mice.Conclusions: Intermittent fasting can protect the liver against diabetes-induced hepatotoxicity and the down-regulation of DME genes in the diabetic liver. These results can explain, at least partly, the inter-individual variation in the drug response during practicing fasting.
Collapse
Affiliation(s)
- Nour Al-Kazimi
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ghasaq Abdul-Wahab
- Department of Oral Surgery and Periodontology, College of Dentistry, Al-Mustansiriya University, Baghdad, Iraq
| | - Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Abdalla Madani
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Dina Abulebdah
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rami Salem Musleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Qais Jarrar
- Department of pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Hamzeh J Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Eman Abdullah
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| |
Collapse
|
5
|
Trexler RV, Van Goethem MW, Goudeau D, Nath N, Malmstrom RR, Northen TR, Couradeau E. BONCAT-FACS-Seq reveals the active fraction of a biocrust community undergoing a wet-up event. Front Microbiol 2023; 14:1176751. [PMID: 37434715 PMCID: PMC10330726 DOI: 10.3389/fmicb.2023.1176751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Determining which microorganisms are active within soil communities remains a major technical endeavor in microbial ecology research. One promising method to accomplish this is coupling bioorthogonal non-canonical amino acid tagging (BONCAT) with fluorescence activated cell sorting (FACS) which sorts cells based on whether or not they are producing new proteins. Combined with shotgun metagenomic sequencing (Seq), we apply this method to profile the diversity and potential functional capabilities of both active and inactive microorganisms in a biocrust community after being resuscitated by a simulated rain event. We find that BONCAT-FACS-Seq is capable of discerning the pools of active and inactive microorganisms, especially within hours of applying the BONCAT probe. The active and inactive components of the biocrust community differed in species richness and composition at both 4 and 21 h after the wetting event. The active fraction of the biocrust community is marked by taxa commonly observed in other biocrust communities, many of which play important roles in species interactions and nutrient transformations. Among these, 11 families within the Firmicutes are enriched in the active fraction, supporting previous reports indicating that the Firmicutes are key early responders to biocrust wetting. We highlight the apparent inactivity of many Actinobacteria and Proteobacteria through 21 h after wetting, and note that members of the Chitinophagaceae, enriched in the active fraction, may play important ecological roles following wetting. Based on the enrichment of COGs in the active fraction, predation by phage and other bacterial members, as well as scavenging and recycling of labile nutrients, appear to be important ecological processes soon after wetting. To our knowledge, this is the first time BONCAT-FACS-Seq has been applied to biocrust samples, and therefore we discuss the potential advantages and shortcomings of coupling metagenomics to BONCAT to intact soil communities such as biocrust. In all, by pairing BONCAT-FACS and metagenomics, we are capable of highlighting the taxa and potential functions that typifies the microbes actively responding to a rain event.
Collapse
Affiliation(s)
- Ryan V. Trexler
- Intercollege Graduate Degree Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Marc W. Van Goethem
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Danielle Goudeau
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Nandita Nath
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Rex R. Malmstrom
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Estelle Couradeau
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Vélez-Bermúdez IC, Jain D, Ravindran A, Chen CW, Hsu CC, Schmidt W. Tandem Mass Tag-Based Phosphoproteomics in Plants. Methods Mol Biol 2023; 2581:309-319. [PMID: 36413327 DOI: 10.1007/978-1-0716-2784-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mass spectrometry-based proteomics provide a powerful tool for plant research, allowing global detection of steady-state levels of proteins under a given experimental setup. Here, we provide an optimized protocol for proteomic profiling using tandem mass tag (TMT) labeling followed by liquid chromatography-mass spectrometry (LC-MS/MS) to quantitate phosphopeptides and non-phosphopeptides from the same samples. The outlined protocol comprises a series of successive steps, namely, SDS (sodium dodecyl sulfate) protein extraction, protein precipitation, digestion, TMT labeling, phosphopeptide enrichment, high pH reversed-phase fractionation, LC-MS/MS analysis, protein identification, and data analysis. Our proteome-scale protocol requires 0.1 mg protein per sample and allows for the reliable and accurate quantification of more than 8000 proteins in Arabidopsis plant samples across multiple conditions, including low abundant peptides.
Collapse
Affiliation(s)
| | - Dharmesh Jain
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Arya Ravindran
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chin-Wen Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Hippocampal and amygdalar increased BDNF expression in the extinction of opioid-induced place preference. IBRO Neurosci Rep 2022; 13:402-409. [PMID: 36275846 PMCID: PMC9580243 DOI: 10.1016/j.ibneur.2022.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The opioid crisis was exacerbated during the COVID-19 pandemic in the United States with alarming statistics about overdose-related deaths. Current treatment options, such as medication assisted treatments, have been unable to prevent relapse in many patients, whereas cue-based exposure therapy have had mixed results in human trials. To improve patient outcomes, it is imperative to develop animal models of addiction to understand molecular mechanisms and identify potential therapeutic targets. We previously found increased brain derived neurotrophic factor (bdnf) transcript in the ventral striatum/nucleus accumbens (VS/NAc) of rats that extinguished morphine-induced place preference. Here, we expand our study to determine whether BDNF protein expression was modulated in mesolimbic brain regions of the reward system in animals exposed to extinction training. Drug conditioning and extinction sessions were followed by Western blots for BDNF in the hippocampus (HPC), amygdala (AMY) and VS/NAc. Rears, as a measure of withdrawal-induced anxiety were also measured to determine their impact on extinction. Results showed that animals who received extinction training and successfully extinguished morphine CPP significantly increased BDNF in the HPC when compared to animals deprived of extinction training (sham-extinction). This increase was not significant in animals who failed to extinguish (extinction-resistant). In AMY, all extinction-trained animals showed increased BDNF, regardless of behavior phenotype. No BDNF modulation was observed in the VS/NAc. Finally, extinction-trained animals showed no difference in rears regardless of extinction outcome, suggesting that anxiety elicited by drug withdrawal did not significantly impact extinction of morphine CPP. Our results suggest that BDNF expression in brain regions of the mesolimbic reward system could play a key role in extinction of opioid-induced maladaptive behaviors and represents a potential therapeutic target for future combined pharmacological and extinction-based therapies.
Collapse
|
8
|
Jue D, Liu L, Sang X, Shi S. A comparative proteomic analysis provides insight into the molecular mechanism of bud break in longan. BMC PLANT BIOLOGY 2022; 22:486. [PMID: 36224553 PMCID: PMC9558362 DOI: 10.1186/s12870-022-03868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The timing of bud break is very important for the flowering and fruiting of longan. To obtain new insights into the underlying regulatory mechanism of bud break in longan, a comparative analysis was conducted in three flower induction stages of two longan varieties with opposite flowering phenotypes by using isobaric tags for relative and absolute quantification (iTRAQ). RESULTS In total, 3180 unique proteins were identified in 18 samples, and 1101 differentially abundant proteins (DAPs) were identified. "SX" ("Shixia"), a common longan cultivated variety that needs an appropriate period of low temperatures to accumulate energy and nutrients for flower induction, had a strong primary inflorescence, had a strong axillary inflorescence, and contained high contents of sugars, and most DAPs during the bud break process were enriched in assimilates and energy metabolism. Combined with our previous transcriptome data, it was observed that sucrose synthase 6 (SS6) and granule-bound starch synthase 1 (GBSSI) might be the key DAPs for "SX" bud break. Compared to those of "SX", the primary inflorescence, axillary inflorescence, floral primordium, bract, and prophyll of "SJ" ("Sijimi") were weaker. In addition, light, rather than a high sugar content or chilling duration, might act as the key signal for triggering bud break. In addition, catalase isozyme 1, an important enzyme in the redox cycle, and RuBisCO, a key enzyme in the Calvin cycle of photosynthetic carbon assimilation, might be the key DAPs for SJ bud break. CONCLUSION Our results present a dynamic picture of the bud break of longan, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this fruit tree species.
Collapse
Affiliation(s)
- Dengwei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400715, Beibei, Chongqing, China
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091, Zhanjiang, China
| | - Xuelian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China.
| | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091, Zhanjiang, China.
| |
Collapse
|
9
|
Chacon DS, Santos MDM, Bonilauri B, Vilasboa J, da Costa CT, da Silva IB, Torres TDM, de Araújo TF, Roque ADA, Pilon AC, Selegatto DM, Freire RT, Reginaldo FPS, Voigt EL, Zuanazzi JAS, Scortecci KC, Cavalheiro AJ, Lopes NP, Ferreira LDS, dos Santos LV, Fontes W, de Sousa MV, Carvalho PC, Fett-Neto AG, Giordani RB. Non-target molecular network and putative genes of flavonoid biosynthesis in Erythrina velutina Willd., a Brazilian semiarid native woody plant. FRONTIERS IN PLANT SCIENCE 2022; 13:947558. [PMID: 36161018 PMCID: PMC9493460 DOI: 10.3389/fpls.2022.947558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.
Collapse
Affiliation(s)
- Daisy Sotero Chacon
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Bernardo Bonilauri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cibele Tesser da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Taffarel de Melo Torres
- Bioinformatics, Biostatistics and Computer Biology Nucleus, Rural Federal University of the Semiarid, Mossoró, RN, Brazil
| | | | - Alan de Araújo Roque
- Institute for Sustainable Development and Environment, Dunas Park Herbarium, Natal, RN, Brazil
| | - Alan Cesar Pilon
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Denise Medeiros Selegatto
- Zimmermann Group, European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Rafael Teixeira Freire
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Eduardo Luiz Voigt
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Kátia Castanho Scortecci
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | | | - Leandro Vieira dos Santos
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Paulo Costa Carvalho
- Computational and Structural Proteomics Laboratory, Carlos Chagas Institute, Fiocruz, PR, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Raquel Brandt Giordani
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
10
|
Ślesak I, Mazur Z, Ślesak H. Genes encoding the photosystem II proteins are under purifying selection: an insight into the early evolution of oxygenic photosynthesis. PHOTOSYNTHESIS RESEARCH 2022; 153:163-175. [PMID: 35648248 DOI: 10.1007/s11120-022-00917-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The molecular evolution concerns coding sequences (CDSs) of genes and may affect the structure and function of proteins. Non-uniform use of synonymous codons during translation, known as codon usage bias (CUB), depends on the balance between mutations bias and natural selection. We estimated different CUB indices, i.e. the effective number of codons (ENC), G + C content in the 3rd codon positions (GC3), and codon adaptation index for CDSs of intrinsic proteins of photosystem II (PSII), such as psbA (D1), psbD (D2), psbB (CP47), psbC (CP43), and CDSs of the extrinsic protein psbO (PsbO). These genes occur in all organisms that perform oxygenic photosynthesis (OP) on Earth: cyanobacteria, algae and plants. Comparatively, a similar analysis of codon bias for CDSs of L and M subunits that constitute the core proteins of the type II reaction centre (RCII) in anoxygenic bacteria was performed. Analysis of CUB indices and determination of the number of synonymous (dS) and nonsynonymous substitutions (dN) in all analysed CDSs indicated that the crucial PSII and RCII proteins were under strong purifying (negative) selection in course of evolution. Purifying selection was also estimated for CDSs of atpA, the α subunit of ATP synthase, an enzyme that was most likely already present in the last universal common ancestor (LUCA). The data obtained point to an ancient origin of OP, even in the earliest stages of the evolution of life on Earth.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Zofia Mazur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
11
|
Arumugam MK, Chava S, Rasineni K, Paal MC, Donohue TM, Osna NA, Kharbanda KK. Elevated S-adenosylhomocysteine induces adipocyte dysfunction to promote alcohol-associated liver steatosis. Sci Rep 2021; 11:14693. [PMID: 34282217 PMCID: PMC8289835 DOI: 10.1038/s41598-021-94180-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
It has been previously shown that chronic ethanol administration-induced increase in adipose tissue lipolysis and reduction in the secretion of protective adipokines collectively contribute to alcohol-associated liver disease (ALD) pathogenesis. Further studies have revealed that increased adipose S-adenosylhomocysteine (SAH) levels generate methylation defects that promote lipolysis. Here, we hypothesized that increased intracellular SAH alone causes additional related pathological changes in adipose tissue as seen with alcohol administration. To test this, we used 3-deazaadenosine (DZA), which selectively elevates intracellular SAH levels by blocking its hydrolysis. Fully differentiated 3T3-L1 adipocytes were treated in vitro for 48 h with DZA and analysed for lipolysis, adipokine release and differentiation status. DZA treatment enhanced adipocyte lipolysis, as judged by lower levels of intracellular triglycerides, reduced lipid droplet sizes and higher levels of glycerol and free fatty acids released into the culture medium. These findings coincided with activation of both adipose triglyceride lipase and hormone sensitive lipase. DZA treatment also significantly reduced adipocyte differentiation factors, impaired adiponectin and leptin secretion but increased release of pro-inflammatory cytokines, IL-6, TNF and MCP-1. Together, our results demonstrate that elevation of intracellular SAH alone by DZA treatment of 3T3-L1 adipocytes induces lipolysis and dysregulates adipokine secretion. Selective elevation of intracellular SAH by DZA treatment mimics ethanol's effects and induces adipose dysfunction. We conclude that alcohol-induced elevations in adipose SAH levels contribute to the pathogenesis and progression of ALD.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srinivas Chava
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew C Paal
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Terrence M Donohue
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Natalia A Osna
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K Kharbanda
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
12
|
The Roots of Rye ( Secale cereale L.) Are Capable of Synthesizing Benzoxazinoids. Int J Mol Sci 2021; 22:ijms22094656. [PMID: 33925031 PMCID: PMC8124178 DOI: 10.3390/ijms22094656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
According to current opinion, the first step of benzoxazinoids (BXs) synthesis, that is, the conversion of indole-3-glycerol phosphate to indole, occurs exclusively in the photosynthesising parts of plants. However, the results of our previous work and some other studies suggest that this process may also occur in the roots. In this study, we provide evidence that the first step of BXs synthesis does indeed occur in the roots of rye seedlings. We detected ScBx1 transcripts, BX1 enzyme, and six BXs (2-hydroxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-1,4-benzoxazin-3-one, (2R)-2-O-β-d-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one glucoside, 2,4-dihydroxy- 7-methoxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside, and 6-methoxy-2-benzoxazolinone) in the roots developed from seeds deprived of the coleoptile at 2 days after sowing (i.e., roots without contact with aerial parts). In roots regenerated in vitro, both ScBx1 transcripts and BX1 enzyme were detected at a low but still measurable levels. Thus, BXs are able to be synthesised in both the roots and above-ground parts of rye plants.
Collapse
|
13
|
Panda K, McCue AD, Slotkin RK. Arabidopsis RNA Polymerase IV generates 21-22 nucleotide small RNAs that can participate in RNA-directed DNA methylation and may regulate genes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190417. [PMID: 32075560 DOI: 10.1098/rstb.2019.0417] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The plant-specific RNA Polymerase IV (Pol IV) transcribes heterochromatic regions, including many transposable elements (TEs), with the well-described role of generating 24 nucleotide (nt) small interfering RNAs (siRNAs). These siRNAs target DNA methylation back to TEs to reinforce the boundary between heterochromatin and euchromatin. In the male gametophytic phase of the plant life cycle, pollen, Pol IV switches to generating primarily 21-22 nt siRNAs, but the biogenesis and function of these siRNAs have been enigmatic. In contrast to being pollen-specific, we identified that Pol IV generates these 21-22 nt siRNAs in sporophytic tissues, likely from the same transcripts that are processed into the more abundant 24 nt siRNAs. The 21-22 nt forms are specifically generated by the combined activities of DICER proteins DCL2/DCL4 and can participate in RNA-directed DNA methylation. These 21-22 nt siRNAs are also loaded into ARGONAUTE1 (AGO1), which is known to function in post-transcriptional gene regulation. Like other plant siRNAs and microRNAs incorporated into AGO1, we find a signature of genic mRNA cleavage at the predicted target site of these siRNAs, suggesting that Pol IV-generated 21-22 nt siRNAs may function to regulate gene transcript abundance. Our data provide support for the existing model that in pollen Pol IV functions in gene regulation. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO 63132-2918, USA
| | - Andrea D McCue
- Donald Danforth Plant Science Center, St. Louis, MO 63132-2918, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1214, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO 63132-2918, USA.,Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| |
Collapse
|
14
|
Ji Y, Rizk A, Voulalas P, Aljohani H, Akerman S, Dussor G, Keller A, Masri R. Sex differences in the expression of calcitonin gene-related peptide receptor components in the spinal trigeminal nucleus. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 6:100031. [PMID: 31223141 PMCID: PMC6565752 DOI: 10.1016/j.ynpai.2019.100031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) plays an important role in migraine pathophysiology. CGRP acts primarily by activating a receptor composed of 3 proteins: calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and receptor component protein (RCP). We tested the hypothesis that sex differences exist in protein levels of two key components of this CGRP receptor: CLR and RCP. METHODS We used specific antibodies to assess baseline protein levels of CLR and RCP in the spinal trigeminal nucleus caudalis (SpVc) and upper cervical spinal cord of both male and female rats. We also tested if manipulations that knock-down the expression of RCP in SpVc, using locally-mediated gene transfer of short hairpin RNA (shRNA), ameliorate pain in an animal model of intracranial migraine-like pain induced by chemical noxious stimulation of the meninges. To assess pain, we used tests of ongoing pain (rat face grimace test and freezing behavior) and tests of facial mechanical hypersensitivity and allodynia. RESULTS There was no difference in CLR levels between male and female animals (p > 0.11) in SpVc and the upper cervical cord. However, female animals exhibited greater baseline levels of RCP (up to 3-fold higher) compared to males (p < 0.002). The knock-down of RCP expression in SpVc attenuated mechanical facial allodynia induced by chemical noxious stimulation of the meninges, but had little effect on ongoing pain behaviors in female and male animals. CONCLUSIONS RCP is an integral component of the CGRP receptor and may play a key role in mediating CGRP induced central sensitization after noxious stimulation of the meninges. RCP expression in the SpVc and upper cervical cord is sexually dimorphic, with higher levels of expression in females. This dimorphism may be related to the increased incidence of migraines in females-a hypothesis that should be tested in the future.
Collapse
Affiliation(s)
- Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandra Rizk
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Pamela Voulalas
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Department of Oral Medicine and Diagnostics Sciences, King Saud University, School of Dentistry, Riyadh, Saudi Arabia
| | - Simon Akerman
- Department of Neural Sciences and Pain, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Asaf Keller
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Price DRG, Nisbet AJ, Frew D, Bartley Y, Oliver EM, McLean K, Inglis NF, Watson E, Corripio-Miyar Y, McNeilly TN. Characterisation of a niche-specific excretory-secretory peroxiredoxin from the parasitic nematode Teladorsagia circumcincta. Parasit Vectors 2019; 12:339. [PMID: 31292008 PMCID: PMC6617597 DOI: 10.1186/s13071-019-3593-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 11/24/2022] Open
Abstract
Background The primary cause of parasitic gastroenteritis in small ruminants in temperate regions is the brown stomach worm, Teladorsagia circumcincta. Host immunity to this parasite is slow to develop, consistent with the ability of T. circumcincta to suppress the host immune response. Previous studies have shown that infective fourth-stage T. circumcincta larvae produce excretory–secretory products that are able to modulate the host immune response. The objective of this study was to identify immune modulatory excretory–secretory proteins from populations of fourth-stage T. circumcincta larvae present in two different host-niches: those associated with the gastric glands (mucosal-dwelling larvae) and those either loosely associated with the mucosa or free-living in the lumen (lumen-dwelling larvae). Results In this study excretory–secretory proteins from mucosal-dwelling and lumen-dwelling T. circumcincta fourth stage larvae were analysed using comparative 2-dimensional gel electrophoresis. A total of 17 proteins were identified as differentially expressed, with 14 proteins unique to, or enriched in, the excretory–secretory proteins of mucosal-dwelling larvae. One of the identified proteins, unique to mucosal-dwelling larvae, was a putative peroxiredoxin (T. circumcincta peroxiredoxin 1, Tci-Prx1). Peroxiredoxin orthologs from the trematode parasites Schistosoma mansoni and Fasciola hepatica have previously been shown to alternatively activate macrophages and play a key role in promoting parasite induced Th2 type immunity. Here we demonstrate that Tci-Prx1 is expressed in all infective T. circumcincta life-stages and, when produced as a recombinant protein, has peroxidase activity, whereby hydrogen peroxide (H2O2) is reduced and detoxified. Furthermore, we use an in vitro macrophage stimulation assay to demonstrate that, unlike peroxiredoxins from trematode parasites Schistosoma mansoni and Fasciola hepatica, Tci-Prx1 is unable to alternatively activate murine macrophage cells. Conclusions In this study, we identified differences in the excretory–secretory proteome of mucosal-dwelling and lumen-dwelling infective fourth-stage T. circumcincta larvae, and demonstrated the utility of this comparative proteomic approach to identify excretory–secretory proteins of potential importance for parasite survival and/or host immune modulation. Electronic supplementary material The online version of this article (10.1186/s13071-019-3593-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK.
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - David Frew
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Yvonne Bartley
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - E Margaret Oliver
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Kevin McLean
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Neil F Inglis
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Eleanor Watson
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | | | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| |
Collapse
|
16
|
Garrett SM, Zhao Q, Feghali-Bostwick C. Induction of a Th17 Phenotype in Human Skin-A Mimic of Dermal Inflammatory Diseases. Methods Protoc 2019; 2:mps2020045. [PMID: 31164624 PMCID: PMC6632176 DOI: 10.3390/mps2020045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 01/13/2023] Open
Abstract
Th17 cells are a subset of effector T helper cells that produce interleukin (IL)-17A, IL-17F, IL-22, and IL-26, which can promote tissue inflammation and contribute to the pathogenesis of rheumatic, fibrosing, and other diseases. Research into these diseases is often limited by a lack of an animal model that closely mimics human disease and the paucity of patient clinical tissues. Therefore, the development of relevant experimental models is crucial. Three media formulations of Th17-skewing cocktail (CT) were evaluated for the ability to induce a Th17 signature in an ex vivo human skin model: CT9 contained αCD3, αCD28, IL-23, IL-1β, IFNγ, IL-4, IL-6, IL-21, and TGFβ; CT8 lacked IL-1β; and CT4 only contained αCD3, αCD28, IL-23, and IL-1β. Healthy donor skin was defatted, distributed as 3 mm punch biopsies, and incubated with one of the cocktail formulations or vehicle for 48 h. All of the cocktail formulations independently significantly stimulated the expression of each gene examined. CT4 induced IL-17A expression 1024-fold, significantly higher than CT9 and CT8. IL-17F was robustly stimulated by CT4 (1557-fold), CT9 (622-fold), and CT8 (111-fold), with significant differences between the CT groups. All of the formulations significantly induced IL-22 (16–42-fold). CT9 stimulated the highest IL-26 response (41-fold), which was significantly higher than CT4 and CT8. IL-10 was stimulated significantly higher with CT8 (10-fold) than CT4 or CT9. The secretion of IL-17A was significantly elevated with all cocktail formulations. Robust IL-17A/IL-17F cytokine induction was preferentially mediated by CT4, which suggested that its components are the minimal constituents necessary for the full induction of these genes in this human skin explant model, while the downstream cytokines were preferentially upregulated by CT4 (IL-22), CT9 (IL-26), or CT8 (IL-10). In summary, our findings suggest that the induction of a Th17 phenotype in human skin is feasible and can be used as a model for rheumatic and fibrosing diseases where Th17 skewing is observed.
Collapse
Affiliation(s)
- Sara M Garrett
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Qihong Zhao
- Bristol-Myers Squibb, Princeton, NJ 08543, USA.
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| |
Collapse
|
17
|
Gutsch A, Keunen E, Guerriero G, Renaut J, Cuypers A, Hausman J, Sergeant K, Luo Z. Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:1023-1035. [PMID: 29908008 PMCID: PMC6221066 DOI: 10.1111/plb.12865] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/12/2018] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a non-essential, toxic heavy metal that poses serious threats to both ecosystems and human health. Plants employ various cellular and molecular mechanisms to minimise the impact of Cd toxicity and cell walls function as a defensive barrier during Cd exposure. In this study, we adopted a quantitative gel-based proteomic approach (two-dimensional difference gel electrophoresis) to investigate changes in the abundance of cell wall and soluble proteins in stems of Medicago sativa L. upon long-term exposure to Cd (10 mg·Cd·kg-1 soil as CdSO4 ). Obtained protein data were complemented with targeted gene expression analyses. Plants were affected by Cd exposure at an early growth stage but seemed to recover at a more mature stage as no difference in biomass was observed. The accumulation of Cd was highest in roots followed by stems and leaves. Quantitative proteomics revealed a changed abundance for 179 cell wall proteins and 30 proteins in the soluble fraction upon long-term Cd exposure. These proteins are involved in cell wall remodelling, defence response, carbohydrate metabolism and promotion of the lignification process. The data indicate that Cd exposure alters the cell wall proteome and underline the role of cell wall proteins in defence against Cd stress. The identified proteins are linked to alterations in cell wall structure and lignification process in stems of M. sativa, underpinning the function of the cell wall as an effective barrier against Cd stress.
Collapse
Affiliation(s)
- A. Gutsch
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - E. Keunen
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - G. Guerriero
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - J. Renaut
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - A. Cuypers
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - J.‐F. Hausman
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - K. Sergeant
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | | |
Collapse
|
18
|
Glenn WS, Stone SE, Ho SH, Sweredoski MJ, Moradian A, Hess S, Bailey-Serres J, Tirrell DA. Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT) Enables Time-Resolved Analysis of Protein Synthesis in Native Plant Tissue. PLANT PHYSIOLOGY 2017; 173:1543-1553. [PMID: 28104718 PMCID: PMC5338676 DOI: 10.1104/pp.16.01762] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/14/2017] [Indexed: 05/11/2023]
Abstract
Proteomic plasticity undergirds stress responses in plants, and understanding such responses requires accurate measurement of the extent to which proteins levels are adjusted to counter external stimuli. Here, we adapt bioorthogonal noncanonical amino acid tagging (BONCAT) to interrogate protein synthesis in vegetative Arabidopsis (Arabidopsis thaliana) seedlings. BONCAT relies on the translational incorporation of a noncanonical amino acid probe into cellular proteins. In this study, the probe is the Met surrogate azidohomoalanine (Aha), which carries a reactive azide moiety in its amino acid side chain. The azide handle in Aha can be selectively conjugated to dyes and functionalized beads to enable visualization and enrichment of newly synthesized proteins. We show that BONCAT is sensitive enough to detect Arabidopsis proteins synthesized within a 30-min interval defined by an Aha pulse and that the method can be used to detect proteins made under conditions of light stress, osmotic shock, salt stress, heat stress, and recovery from heat stress. We further establish that BONCAT can be coupled to tandem liquid chromatography-mass spectrometry to identify and quantify proteins synthesized during heat stress and recovery from heat stress. Our results are consistent with a model in which, upon the onset of heat stress, translation is rapidly reprogrammed to enhance the synthesis of stress mitigators and is again altered during recovery. All experiments were carried out with commercially available reagents, highlighting the accessibility of the BONCAT method to researchers interested in stress responses as well as translational and posttranslational regulation in plants.
Collapse
Affiliation(s)
- Weslee S Glenn
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Shannon E Stone
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Samuel H Ho
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Michael J Sweredoski
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Annie Moradian
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Sonja Hess
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Julia Bailey-Serres
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| |
Collapse
|
19
|
Iñiguez LP, Hernández G. The Evolutionary Relationship between Alternative Splicing and Gene Duplication. Front Genet 2017; 8:14. [PMID: 28261262 PMCID: PMC5306129 DOI: 10.3389/fgene.2017.00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/02/2017] [Indexed: 01/23/2023] Open
Abstract
The protein diversity that exists today has resulted from various evolutionary processes. It is well known that gene duplication (GD) along with the accumulation of mutations are responsible, among other factors, for an increase in the number of different proteins. The gene structure in eukaryotes requires the removal of non-coding sequences, introns, to produce mature mRNAs. This process, known as cis-splicing, referred to here as splicing, is regulated by several factors which can lead to numerous splicing arrangements, commonly designated as alternative splicing (AS). AS, producing several transcripts isoforms form a single gene, also increases the protein diversity. However, the evolution and manner for increasing protein variation differs between AS and GD. An important question is how are patterns of AS affected after a GD event. Here, we review the current knowledge of AS and GD, focusing on their evolutionary relationship. These two processes are now considered the main contributors to the increasing protein diversity and therefore their relationship is a relevant, yet understudied, area of evolutionary study.
Collapse
Affiliation(s)
- Luis P Iñiguez
- Programa de Genómica Funcional de Eucariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, México
| | - Georgina Hernández
- Programa de Genómica Funcional de Eucariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, México
| |
Collapse
|
20
|
Li CX, Xu ZG, Dong RQ, Chang SX, Wang LZ, Khalil-Ur-Rehman M, Tao JM. An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light. FRONTIERS IN PLANT SCIENCE 2017; 8:78. [PMID: 28197159 PMCID: PMC5281588 DOI: 10.3389/fpls.2017.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 05/27/2023]
Abstract
Using an RNA sequencing (RNA-seq) approach, we analyzed the differentially expressed genes (DEGs) and physiological behaviors of "Manicure Finger" grape plantlets grown in vitro under white, blue, green, and red light. A total of 670, 1601, and 746 DEGs were identified in plants exposed to blue, green, and red light, respectively, compared to the control (white light). By comparing the gene expression patterns with the growth and physiological responses of the grape plantlets, we were able to link the responses of the plants to light of different spectral wavelengths and the expression of particular sets of genes. Exposure to red and green light primarily triggered responses associated with the shade-avoidance syndrome (SAS), such as enhanced elongation of stems, reduced investment in leaf growth, and decreased chlorophyll levels accompanied by the expression of genes encoding histone H3, auxin repressed protein, xyloglucan endotransglycosylase/hydrolase, the ELIP protein, and microtubule proteins. Furthermore, specific light treatments were associated with the expression of a large number of genes, including those involved in the glucan metabolic pathway and the starch and sucrose metabolic pathways; these genes were up/down-regulated in ways that may explain the increase in the starch, sucrose, and total sugar contents in the plants. Moreover, the enhanced root growth and up-regulation of the expression of defense genes accompanied with SAS after exposure to red and green light may be related to the addition of 30 g/L sucrose to the culture medium of plantlets grown in vitro. In contrast, blue light induced the up-regulation of genes related to microtubules, serine carboxypeptidase, chlorophyll synthesis, and sugar degradation and the down-regulation of auxin-repressed protein as well as a large number of resistance-related genes that may promote leaf growth, improve chlorophyll synthesis and chloroplast development, increase the ratio of chlorophyll a (chla)/chlorophyll b (chlb), and decrease the ratio of carbohydrates to proteins in plants. Although exposure to red and green light seems to impose "shade stress" on the plantlets, growth under blue light is comparable to growth observed under white or broad-spectrum light.
Collapse
Affiliation(s)
- Chun-Xia Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zhi-Gang Xu
- College of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Rui-Qi Dong
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sheng-Xin Chang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | - Lian-Zhen Wang
- College of Agriculture, Nanjing Agricultural UniversityNanjing, China
- College of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuaian, China
| | | | - Jian-Min Tao
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
21
|
Gowik U, Schulze S, Saladié M, Rolland V, Tanz SK, Westhoff P, Ludwig M. A MEM1-like motif directs mesophyll cell-specific expression of the gene encoding the C4 carbonic anhydrase in Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:311-320. [PMID: 28040798 PMCID: PMC5853542 DOI: 10.1093/jxb/erw475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The first two reactions of C4 photosynthesis are catalysed by carbonic anhydrase (CA) and phosphoenolpyruvate carboxylase (PEPC) in the leaf mesophyll (M) cell cytosol. Translatome experiments using a tagged ribosomal protein expressed under the control of M and bundle-sheath (BS) cell-specific promoters showed transcripts encoding CA3 from the C4 species Flaveria bidentis were highly enriched in polysomes from M cells relative to those of the BS. Localisation experiments employing a CA3-green fluorescent protein fusion protein showed F. bidentis CA3 is a cytosolic enzyme. A motif showing high sequence homology to that of the Flaveria M expression module 1 (MEM1) element was identified approximately 2 kb upstream of the F. bidentis and F. trinervia ca3 translation start sites. MEM1 is located in the promoter of C4 Flaveria ppcA genes, which encode the C4-associated PEPC, and is necessary for M-specific expression. No MEM1-like sequence was found in the 4 kb upstream of the C3 species F. pringlei ca3 translation start site. Promoter-reporter fusion experiments demonstrated the region containing the ca3 MEM1-like element also directs M-specific expression. These results support the idea that a common regulatory switch drives the expression of the C4 Flaveria ca3 and ppcA1 genes specifically in M cells.
Collapse
Affiliation(s)
- Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Montserrat Saladié
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Vivien Rolland
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sandra K Tanz
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martha Ludwig
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
22
|
Lauterbach M, Billakurthi K, Kadereit G, Ludwig M, Westhoff P, Gowik U. C3 cotyledons are followed by C4 leaves: intra-individual transcriptome analysis of Salsola soda (Chenopodiaceae). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:161-176. [PMID: 27660482 PMCID: PMC5853821 DOI: 10.1093/jxb/erw343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Some species of Salsoleae (Chenopodiaceae) convert from C3 photosynthesis during the seedling stage to the C4 pathway in adult leaves. This unique developmental transition of photosynthetic pathways offers the exceptional opportunity to follow the development of the derived C4 syndrome from the C3 condition within individual plants, avoiding phylogenetic noise. Here we investigate Salsola soda, a little-studied species from tribe Salsoleae, using an ontogenetic approach. Anatomical sections, carbon isotope (δ13C) values, transcriptome analysis by means of mRNA sequencing, and protein levels of the key C4 enzyme phosphoenolpyruvate carboxylase (PEPC) were examined from seed to adult plant stages. Despite a previous report, our results based on δ13C values, anatomy and transcriptomics clearly indicate a C3 phase during the cotyledon stage. During this stage, the entire transcriptional repertoire of the C4 NADP-malic enzyme type is detected at low levels compared to a significant increase in true leaves. In contrast, abundance of transcripts encoding most of the major photorespiratory enzymes is not significantly decreased in leaves compared to cotyledons. PEPC polypeptide was detected only in leaves, correlating with increased PEPC transcript abundance from the cotyledon to leaf stage.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- Institut für Allgemeine und Spezielle Botanik und Botanischer Garten der Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Kumari Billakurthi
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), D-06225 Düsseldorf, Germany
| | - Gudrun Kadereit
- Institut für Allgemeine und Spezielle Botanik und Botanischer Garten der Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Martha Ludwig
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), D-06225 Düsseldorf, Germany
| | - Udo Gowik
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, D-40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Bartosch C, Monteiro-Reis S, Almeida-Rios D, Vieira R, Castro A, Moutinho M, Rodrigues M, Graça I, Lopes JM, Jerónimo C. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget 2016; 7:1144-54. [PMID: 26701732 PMCID: PMC4811449 DOI: 10.18632/oncotarget.6691] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Sirtuins participate in hormone imbalance, metabolism and aging, which are important processes for endometrial cancer (EC) development. Sirtuins mRNA expression (SIRT1 to 7) was determined in 76 ECs (63 Type I, 12 Type II and one mixed EC), and 30 non-neoplastic endometria (NNE) by quantitative real-time PCR. SIRT1 and SIRT7 protein expression was evaluated by immunohistochemistry using Allred score. Compared to NNE, ECs showed SIRT7 (p < 0.001) mRNA overexpression, whereas SIRT1 (p < 0.001), SIRT2 (p < 0.001), SIRT4 (p < 0.001) and SIRT5 (p < 0.001) were underexpressed. No significant differences were observed for SIRT3 and SIRT6. Type II ECs displayed lower SIRT1 (p = 0.032) and SIRT3 (p = 0.016) transcript levels than Type I ECs. Concerning protein expression, SIRT1 immunostaining median score was higher in ECs compared to NNE epithelium (EC = 5 vs. NNE = 2, p < 0.001), while SIRT7 was lower in ECs (EC = 6 vs. NNE = 7, p < 0.001). No significant associations were found between SIRT1/7 immunoexpression and histological subtype, grade, lymphovascular invasion or stage. Our data shows that sirtuins are deregulated in EC. The diversity of expression patterns observed suggests that sirtuins may have distinctive roles in endometrial cancer similarly to what has been described in other cancer models.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal.,Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal
| | - Sara Monteiro-Reis
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - Diogo Almeida-Rios
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - Renata Vieira
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal
| | - Armando Castro
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Manuel Moutinho
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Marta Rodrigues
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Inês Graça
- Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP (Institute of Molecular Pathology and Immunology, University of Porto), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
24
|
Sheen JM, Chen YC, Hsu MH, Tain YL, Yu HR, Huang LT. Combined Intraperitoneal and Intrathecal Etanercept Reduce Increased Brain Tumor Necrosis Factor-Alpha and Asymmetric Dimethylarginine Levels and Rescues Spatial Deficits in Young Rats after Bile Duct Ligation. Front Cell Neurosci 2016; 10:167. [PMID: 27445694 PMCID: PMC4917524 DOI: 10.3389/fncel.2016.00167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Rats subjected to bile duct ligation (BDL) exhibit increased systemic oxidative stress and brain dysfunction characteristic of hepatic encephalopathy (HE), including fatigue, neurotransmitter alterations, cognitive and motor impairment, and brain inflammation. The levels of tumor necrosis factor-alpha (TNF-α) and asymmetric dimethylarginine (ADMA) are both increased in plasma and brain in encephalopathy induced by chronic liver failure. This study first determined the temporal profiles of TNF-α and ADMA in the plasma, brain cortex, and hippocampus in young BDL rats. Next, we examined whether etanercept was beneficial in preventing brain damage. METHODS Young rats underwent sham ligation or BDL at day 17 ± 1 for 4 weeks. Treatment group rats were administered etanercept (10 mg/kg) intraperitoneally (IP) three times per week with or without etanercept (100 μg) intrathecally (IT) three times in total. RESULTS We found increased plasma TNF-α, soluble tumor necrosis factor receptor 1 (sTNFR1), soluble tumor necrosis factor receptor 2 (sTNFR2), and ADMA levels, increased cortical TNF-α mRNA and protein and ADMA, and hippocampal TNF-α mRNA and protein, and spatial defects in young BDL rats. The increase in cortex TNF-α mRNA and ADMA were reduced by IP etanercept or combined IP and IT etanercept. Dually IP/IT etanercept administration reduced the increased cortical and hippocampal TNF-α mRNA and protein level as well as spatial deficits. CONCLUSIONS We conclude that combined intraperitoneal and intrathecal etanercept reduce increased brain TNF-α and ADMA levels and rescues spatial deficits in young rats after BDL.
Collapse
Affiliation(s)
- Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| |
Collapse
|
25
|
Whitby SL, Hunter DA, Yau W, Howerth EW, Gato WE. Inflammatory effect of 2-aminoanthracene (2AA) on adipose tissue gene expression in pregnant Sprague Dawley rats. Interdiscip Toxicol 2016; 9:17-24. [PMID: 28652843 PMCID: PMC5458110 DOI: 10.1515/intox-2016-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/19/2016] [Accepted: 03/23/2016] [Indexed: 11/15/2022] Open
Abstract
Adipocyte dysfunction may be a critical link between obesity and insulin resistance as a result of abnormal fat storage and mobilization. Adipocytes uniquely secrete adipokines and cytokines, such as leptin and TNFα, wich promote insulin sensitivity. Previously we reported insulin-signaling related altered gene expression in animals exposed to 2-Aminoanthracene (2AA). 2AA is an amino-substituted polycyclic aromatic hydrocarbon used in manufacturing dyes, chemicals, inks, resins, and polyurethanes. The objective of this study was to examine the inflammation related effects of 2AA exposure from gestation to postnatal period on dams that ingested 2AA. To examine 2AA effects, pregnant dams were assigned into dose regimens of 2AA. Dams were fed 2AA contaminated diet during the period of gestation and postpartum. The expression of key gene transcripts reported to be important in mediating inflammatory processes was examined via quantitative RT-PCR. Histologic examination of adipose tissue (AT) was also carried out to understand the anatomy of AT due to 2AA exposure during gestation and two weeks postpartum. Examination of the adipose tissue for microscopic changes revealed no alterations between control and low-dose animals. However, AT of the high-dose animals was infiltrated by increased numbers of CD68+mononuclear cells (macrophages) and small numbers of eosinophils and mast cells, consistent with inflammation. In addition, analysis of the mRNA expression of cytokines and adipokines demonstrated the importance of inflammation in AT dysfunction. For instance, TNFα, LEPTIN and IL-6 transcripts were relatively more expressed in the low dose animals than in the high dose and control rats. At the protein level, however, high amounts of cytokines were noted. The effects of 2AA on pregnant dams appear to be more pronounced in the high dose group than in the low dose group, possibly indicating increased susceptibility of rat offspring within this group to elicit a diabetic-type response.
Collapse
Affiliation(s)
- Shamaya L Whitby
- Department of Chemistry, Georgia Southern University, Statesboro, GA 30458, USA
| | - Daniel A Hunter
- Department of Chemistry, Georgia Southern University, Statesboro, GA 30458, USA
| | - Wilson Yau
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Worlanyo E Gato
- Department of Chemistry, Georgia Southern University, Statesboro, GA 30458, USA
| |
Collapse
|
26
|
Park S, Gupta R, Krishna R, Kim ST, Lee DY, Hwang DJ, Bae SC, Ahn IP. Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10. THE PLANT PATHOLOGY JOURNAL 2016; 32:25-32. [PMID: 26889112 PMCID: PMC4755672 DOI: 10.5423/ppj.oa.05.2015.0076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/15/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.
Collapse
Affiliation(s)
- Sangryeol Park
- Molecular Breeding Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 560-500,
Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707,
Korea
| | - R. Krishna
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707,
Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707,
Korea
| | - Dong Yeol Lee
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701,
Korea
| | - Duk-ju Hwang
- Molecular Breeding Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 560-500,
Korea
| | - Shin-Chul Bae
- Molecular Breeding Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 560-500,
Korea
| | - Il-Pyung Ahn
- Molecular Breeding Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 560-500,
Korea
| |
Collapse
|
27
|
Gong F, Hu X, Wang W. Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research? FRONTIERS IN PLANT SCIENCE 2015; 6:418. [PMID: 26097486 PMCID: PMC4456565 DOI: 10.3389/fpls.2015.00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/24/2015] [Indexed: 05/23/2023]
|
28
|
Schubert V, Weisshart K. Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1687-98. [PMID: 25740920 PMCID: PMC4357323 DOI: 10.1093/jxb/erv091] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic protein-coding genes. Analysing the topological distribution and quantification of RNAPII can contribute to understanding its function in interphase nuclei. Previously it was shown that RNAPII molecules in plant nuclei form reticulate structures within euchromatin of differentiated Arabidopsis thaliana nuclei rather than being organized in distinct 'transcription factories' as observed in mammalian nuclei. Immunosignal intensity measurements based on specific antibody labelling in maximum intensity projections of image stacks acquired by structured illumination microscopy (SIM) suggested a relative proportional increase of RNAPII in endopolyploid plant nuclei. Here, photoactivated localization microscopy (PALM) was applied to determine the absolute number and distribution of active and inactive RNAPII molecules in differentiated A. thaliana nuclei. The proportional increase of RNAPII during endopolyploidization is confirmed, but it is also shown that PALM measurements are more reliable than those based on SIM in terms of quantification. The single molecule localization results show that, although RNAPII molecules are globally dispersed within plant euchromatin, they also aggregate within smaller distances as described for mammalian transcription factories.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Stadt Seeland, Germany
| | | |
Collapse
|
29
|
Liyanage VRB, Zachariah RM, Davie JR, Rastegar M. Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements. Exp Neurol 2015; 265:102-17. [PMID: 25620416 DOI: 10.1016/j.expneurol.2015.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/23/2014] [Accepted: 01/18/2015] [Indexed: 11/29/2022]
Abstract
Methyl CpG Binding Protein 2 (MeCP2) is an important epigenetic factor in the brain. MeCP2 expression is affected by different environmental insults including alcohol exposure. Accumulating evidence supports the role of aberrant MeCP2 expression in ethanol exposure-induced neurological symptoms. However, the underlying molecular mechanisms of ethanol-induced MeCP2 deregulation remain elusive. To study the effect of ethanol on Mecp2/MeCP2 expression during neurodifferentiation, we established an in vitro model of ethanol exposure, using differentiating embryonic brain-derived neural stem cells (NSC). Previously, we demonstrated the impact of DNA methylation at the Mecp2 regulatory elements (REs) on Mecp2/MeCP2 expression in vitro and in vivo. Here, we studied whether altered DNA methylation at these REs is associated with the Mecp2/MeCP2 misexpression induced by ethanol. Binge-like and continuous ethanol exposure upregulated Mecp2/MeCP2, while ethanol withdrawal downregulated its expression. DNA methylation analysis by methylated DNA immunoprecipitation indicated that increased 5-hydroxymethylcytosine (5hmC) and decreased 5-methylcytosine (5mC) enrichment at specific REs were associated with upregulated Mecp2/MeCP2 following continuous ethanol exposure. The reduced Mecp2/MeCP2 expression upon ethanol withdrawal was associated with reduced 5hmC and increased 5mC enrichment at these REs. Moreover, ethanol altered global DNA methylation (5mC and 5hmC). Under the tested conditions, ethanol had minimal effects on NSC cell fate commitment, but caused changes in neuronal morphology and glial cell size. Taken together, our data represent an epigenetic mechanism for ethanol-mediated misexpression of Mecp2/MeCP2 in differentiating embryonic brain cells. We also show the potential role of DNA methylation and MeCP2 in alcohol-related neurological disorders, specifically Fetal Alcohol Spectrum Disorders.
Collapse
Affiliation(s)
- Vichithra Rasangi Batuwita Liyanage
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Robby Mathew Zachariah
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - James Ronald Davie
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Mojgan Rastegar
- Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada; Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
30
|
Wu X, Gong F, Yang L, Hu X, Tai F, Wang W. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize. FRONTIERS IN PLANT SCIENCE 2015; 5:801. [PMID: 25653661 PMCID: PMC4299431 DOI: 10.3389/fpls.2014.00801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/22/2014] [Indexed: 05/29/2023]
Abstract
ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China e-mail:
| |
Collapse
|
31
|
Fukao Y. Discordance between protein and transcript levels detected by selected reaction monitoring. PLANT SIGNALING & BEHAVIOR 2015; 10:e1017697. [PMID: 26039477 PMCID: PMC4623550 DOI: 10.1080/15592324.2015.1017697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 05/25/2023]
Abstract
Expression levels between transcript and protein are not always correlated. In the present study, the abundance of protein PDR9/ABCG37 in 3 Arabidopsis pdr9/abcg37 mutant alleles was evaluated using selected reaction monitoring analysis. The results showed that protein and mRNA expression levels were similar in 2 mutant alleles. The mRNA expression levels in another mutant, determined by both semi-quantitative and quantitative RT-PCR, were similar to the wild-type, although the abundance of protein was about half the abundance of the wild-type. These results suggested that using only mRNA expression levels to infer protein abundance, compare mutants or responses to various stimuli may lead to incorrect interpretation and conclusions.
Collapse
Affiliation(s)
- Yoichiro Fukao
- Plant Global Education Project; Graduate School of Biological Sciences; Nara Institute of Science and Technology; Takayama, Ikoma, Japan
| |
Collapse
|
32
|
Gzyl J, Chmielowska-Bąk J, Przymusiński R, Gwóźdź EA. Cadmium affects microtubule organization and post-translational modifications of tubulin in seedlings of soybean (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:937. [PMID: 26594217 PMCID: PMC4635210 DOI: 10.3389/fpls.2015.00937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal, toxic to all living organisms. The microtubule (MT) cytoskeleton appears to be one of the main targets of Cd action. In this study we present, with the use of various immunological approaches, the effect of Cd at moderate (85 μM) and high (170 μM) concentrations on the structure and functioning of the MT cytoskeleton in the root cells of soybean seedlings. As the result of heavy metal action, root growth was significantly diminished and was accompanied by a reduction in mitotic activity and disturbance in the structure of the MT arrays, including randomization of the cortical MT arrangement, distorted mitotic arrays and complete depolymerization of the MTs. Biochemical analysis revealed decreased levels of various α- and β-tubulin isoforms with a parallel down-regulation of most examined α-tubulin genes. Simultaneously, Cd treatment led to differentiated changes in the level of tubulin post-translational modifications, including tyrosination, detyrosination, acetylation, and polyglutamylation. Decreased tyrosination and polyglutamylation of particular tubulin isoforms accompanied by increase in the level of specific detyrosinated and acetylated isoforms implies augmented stability and reduced turnover of the MTs during stress conditions. Taken together, the obtained results indicate the significant impact of Cd on gene expression levels and subsequent post-translational processing of tubulin, which may be related to the impairment of MT cytoskeleton functioning in root cells.
Collapse
|
33
|
Bhaskara GB, Yang TH, Verslues PE. Dynamic proline metabolism: importance and regulation in water limited environments. FRONTIERS IN PLANT SCIENCE 2015; 6:484. [PMID: 26161086 PMCID: PMC4479789 DOI: 10.3389/fpls.2015.00484] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/16/2015] [Indexed: 05/18/2023]
Abstract
Drought-induced proline accumulation observed in many plant species has led to the hypothesis that further increases in proline accumulation would promote drought tolerance. Here we discuss both previous and new data showing that proline metabolism and turnover, rather than just proline accumulation, functions to maintain growth during water limitation. Mutants of Δ (1)-Pyrroline-5-Carboxylate Synthetase1 (P5CS1) and Proline Dehydrogenase1 (PDH1), key enzymes in proline synthesis and catabolism respectively, both have similar reductions in growth during controlled soil drying. Such results are consistent with patterns of natural variation in proline accumulation and with evidence that turnover of proline can act to buffer cellular redox status during drought. Proline synthesis and catabolism are regulated by multiple cellular mechanisms, of which we know only a few. An example of this is immunoblot detection of P5CS1 and PDH1 showing that the Highly ABA-induced (HAI) protein phosphatase 2Cs (PP2Cs) have different effects on P5CS1 and PDH1 protein levels despite having similar increases in proline accumulation. Immunoblot data also indicate that both P5CS1 and PDH1 are subjected to unknown post-translational modifications.
Collapse
Affiliation(s)
| | | | - Paul E. Verslues
- *Correspondence: Paul E. Verslues, Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2 Academia Road, Nankang District, Taipei 11529, Taiwan,
| |
Collapse
|