1
|
Zhang H, Liu H, Wu Y, Li S, Jiao Q, Fan L, Li G, Agathokleous E, Chen Y, Wang Y, Liu S, Jiang Y. Integrated ultrastructural, physiological and transcriptomic analyses uncover alterations in photosynthetic biomacromolecule structures by cadmium and cerium co-exposure and their regulation by hormone signaling and antioxidant pathways in maize. Int J Biol Macromol 2025; 309:142472. [PMID: 40164270 DOI: 10.1016/j.ijbiomac.2025.142472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Co-contamination of soil by cadmium (Cd) and cerium (Ce) has become increasingly prevalent and poses a significant threat to agricultural productivity. To investigate the effects of this joint pollution on plant growth, we investigated the ultrastructural, transcriptomic, and molecular responses of maize seedlings to Cd, Ce, and their mixtures. The results indicated that Cd, Ce, and their mixtures had detrimental effects on maize growth by reducing biomass accumulation (shoot dry weight was decreased by 59.94 %, 37.94 %, and 54.10 %, respectively), disrupting photosynthesis and chlorophyll synthesis, and causing ROS imbalance. However, co-exposure to Cd and Ce resulted in a less severe impact on the maize photosynthetic system compared to Cd treatment alone, as it reduced the production of osmiophilic plastoglobuli. Transcriptomic and molecular docking analyses revealed that Ce enhanced the repair of photosystem II under Cd stress by upregulating chlorophyll-binding proteins and carbon assimilation proteins. SOT5 (Zm00001eb327110) is primarily involved in photosynthesis, ROS scavenging, and phytohormone signaling, which could be crucial for breeding stress-resilient crops. For the first time, we demonstrate that Cd and Ce interacted antagonistically in transcriptomic level. This study provides new insights into how maize responds to heavy metals and rare earth elements and highlights critical pathways for improving stress tolerance.
Collapse
Affiliation(s)
- Huihong Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China.
| | - Yue Wu
- Agricultural Technology Extension Center of Shandong Province, Jinan 250100, PR China
| | - Shiying Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Evgenios Agathokleous
- Department of Ecology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Yinglong Chen
- The UWA Institute of Agriculture, & School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Yi Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China.
| |
Collapse
|
2
|
Chen Z, Han M, Guo Z, Feng Y, Guo Y, Yan X. An integration of physiology, transcriptomics, and proteomics reveals carbon and nitrogen metabolism responses in alfalfa (Medicago sativa L.) exposed to titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134851. [PMID: 38852253 DOI: 10.1016/j.jhazmat.2024.134851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Nanoparticle (NP) pollution has negative impacts and is a major global environmental problem. However, the molecular response of alfalfa (Medicago sativa L.) to titanium dioxide nanoparticles (TiO2 NPs) is limited. Herein, the dual effects of TiO2 NPs (0-1000 mg L-1) on carbon (C) and nitrogen (N) metabolisms in alfalfa were investigated. The results showed that 500 mg L-1 TiO2 NPs (Ti-500) had the highest phytotoxicity in the C/N metabolizing enzymes; and it significantly increased total soluble sugar, starch, sucrose, and sucrose-phosphate synthase. Furthermore, obvious photosynthesis responses were found in alfalfa exposed to Ti-500. By contrast, 100 mg L-1 TiO2 NPs (Ti-100) enhanced N metabolizing enzymes. RNA-seq analyses showed 4265 and 2121 differentially expressed genes (DEGs) in Ti-100 and Ti-500, respectively. A total of 904 and 844 differentially expressed proteins (DEPs) were identified in Ti-100 and Ti-500, respectively. Through the physiological, transcriptional, and proteomic analyses, the DEGs and DEPs related to C/N metabolism, photosynthesis, chlorophyll synthesis, starch and sucrose metabolism, and C fixation in photosynthetic organisms were observed. Overall, TiO2 NPs at low doses improve photosynthesis and C/N regulation, but high doses can cause toxicity. It is valuable for the safe application of NPs in agriculture.
Collapse
Affiliation(s)
- Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengli Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhipeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuxia Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Isanta-Navarro J, Peoples LM, Bras B, Church MJ, Elser JJ. Elemental and macromolecular plasticity of Chlamydomonas reinhardtii (Chlorophyta) in response to resource limitation and growth rate. JOURNAL OF PHYCOLOGY 2024; 60:418-431. [PMID: 38196398 DOI: 10.1111/jpy.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green alga Chlamydomonas reinhardtii adjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed that Chlamydomonas exhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential of Chlamydomonas in a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.
Collapse
Affiliation(s)
- Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Logan M Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
4
|
A Fast-Growing Oleaginous Strain of Coelastrella Capable of Astaxanthin and Canthaxanthin Accumulation in Phototrophy and Heterotrophy. Life (Basel) 2022; 12:life12030334. [PMID: 35330084 PMCID: PMC8955800 DOI: 10.3390/life12030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Considering the importance of microalgae as a promising feedstock for the production of both low- and high-value products, such as lipids and pigments, it is desirable to isolate strains which simultaneously accumulate these two types of products and grow in various conditions in order to widen their biotechnological applicability. A novel freshwater strain from the genus Coelastrella was isolated in Belgium. Compared to other Coelastrella species, the isolate presented rapid growth in phototrophy, dividing 3.5 times per day at a light intensity of 400 µmol·m−2·s−1 and 5% CO2. In addition, nitrogen depletion was associated with the accumulation of astaxanthin, canthaxanthin, and fatty acids, which reached ~30% of dry weight, and a majority of SFAs and MUFAs, which are good precursors for biodiesel. This strain also accumulated astaxanthin and canthaxanthin in heterotrophy. Although the content was very low in this latter condition, it is an interesting feature considering the biotechnological potential of the microalgal heterotrophic growth. Thus, due to its rapid growth in the light, its carotenogenesis, and its fatty acids characteristics, the newly identified Coelastrella strain could be considered as a potential candidate for biorefinery purposes of both low- and high-values products.
Collapse
|
5
|
Wei L, You W, Gong Y, El Hajjami M, Liang W, Xu J, Poetsch A. Transcriptomic and proteomic choreography in response to light quality variation reveals key adaption mechanisms in marine Nannochloropsis oceanica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137667. [PMID: 32325597 DOI: 10.1016/j.scitotenv.2020.137667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/04/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic organisms need to respond frequently to the fluctuation of light quality and light quantity in their habitat. In response to the fluctuation of different single wavelength lights, these organisms have to adjust and optimize the employment of light energy by redistributing excitation energy and remodeling photosystem stoichiometry or light complex structure. However, the response of whole cellular processes to fluctuations in single wavelength light is mostly unknown. Here, we report the transcriptomic and proteomic dynamics and metabolic adaptation mechanisms of Nannochloropsis oceanica to blue and red light. Preferential exposure to different light spectra induces massive reprogramming of the Nannochloropsis transcriptome and proteome. Combined with physiological and biochemical investigation, the rewiring of many cellular processes was observed, including carbon/nitrogen assimilation, photosynthesis, chlorophyll and cartenoid biosynthesis, reactive oxygen species (ROS) scavenging systems, and chromatin state regulation. A strong and rapid regulation of genes or proteins related to nitrogen metabolism, photosynthesis, chlorophyll synthesis, ROS scavenging system, and carotenoid metabolism were observed during 12 h and 24 h of exposure under red light. Additionally, two light harvesting complex proteins induced by blue light and one by red light were observed. The differential responses of N. oceanica to red and blue irradiation reveal how marine microalgae adapt to change in light quality and can be exploited for biofuel feedstock development.
Collapse
Affiliation(s)
- Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wuxin You
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Mohamed El Hajjami
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Wensi Liang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Musa M, Ayoko GA, Ward A, Rösch C, Brown RJ, Rainey TJ. Factors Affecting Microalgae Production for Biofuels and the Potentials of Chemometric Methods in Assessing and Optimizing Productivity. Cells 2019; 8:E851. [PMID: 31394865 PMCID: PMC6721732 DOI: 10.3390/cells8080851] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
Microalgae are swift replicating photosynthetic microorganisms with several applications for food, chemicals, medicine and fuel. Microalgae have been identified to be suitable for biofuels production, due to their high lipid contents. Microalgae-based biofuels have the potential to meet the increasing energy demands and reduce greenhouse gas (GHG) emissions. However, the present state of technology does not economically support sustainable large-scale production. The biofuel production process comprises the upstream and downstream processing phases, with several uncertainties involved. This review examines the various production and processing stages, and considers the use of chemometric methods in identifying and understanding relationships from measured study parameters via statistical methods, across microalgae production stages. This approach enables collection of relevant information for system performance assessment. The principal benefit of such analysis is the identification of the key contributing factors, useful for decision makers to improve system design, operation and process economics. Chemometrics proffers options for time saving in data analysis, as well as efficient process optimization, which could be relevant for the continuous growth of the microalgae industry.
Collapse
Affiliation(s)
- Mutah Musa
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia.
| | - Godwin A Ayoko
- Environmental Technologies Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia
| | - Andrew Ward
- Queensland Urban Utilities (QUU), Innovation Centre, Main Beach Road Myrtletown QLD 4008, Australia
- Advanced Water Management Centre (AWMC), University of Queensland (UQ), St Lucia, Brisbane, Queensland 4072, Australia
| | - Christine Rösch
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Richard J Brown
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia
| | - Thomas J Rainey
- Biofuel Engine Research Facility, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Queensland 4000, Australia.
| |
Collapse
|
7
|
Chen T, Zhao Q, Wang L, Xu Y, Wei W. Comparative Metabolomic Analysis of the Green Microalga Chlorella sorokiniana Cultivated in the Single Culture and a Consortium with Bacteria for Wastewater Remediation. Appl Biochem Biotechnol 2017; 183:1062-1075. [DOI: 10.1007/s12010-017-2484-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/17/2017] [Indexed: 12/25/2022]
|
8
|
Choi YK, Kim HJ, Kumaran RS, Song HJ, Song KG, Kim KJ, Lee SH, Yang YH, Kim HJ. Enhanced growth and total fatty acid production of microalgae under various lighting conditions induced by flashing light. Eng Life Sci 2017; 17:976-980. [PMID: 32624847 DOI: 10.1002/elsc.201700001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 11/05/2022] Open
Abstract
Microalgae are gaining importance as a source of high-value bioproducts. However, data regarding optimization of algal productivity via variation of environmental factors are lacking. Here, we evaluated a novel lighting method for the enhancement of biomass and total fatty acid (TFA) productivities during algal cultivation. We cultivated six different algal strains (Chlorella vulgaris KCTC AG10002, Acutodesmus obliquus KGE18, Uronema sp. KGE03, Micractinium reisseri KGE19, Fragilaria sp., and Spirogyra sp.) under various lighting conditions-continuous light (CL), light-dark cycle (LD), and continuous dark (CD)-with or without additional flashing light. We monitored dry cell weight (DCW) and TFA concentrations during cultivation. For each algal strain, the growth rate showed markedly different responses to the various lighting modes. The growth rates of C. vulgaris KCTC AG10002 (1.34-fold DCW increase, LD with flash), A. obliquus KGE18 (5.16-fold DCW increase, LD with flash), Uronema sp. KGE03 (2.77-fold DCW increase, CL with flash), and M. reisseri KGE19 (1.52-fold DCW increase, CL with flash) markedly increased in response to flashing light. Additionally, in some algal strains cultivated under the LD mode, the flashing light treatment induced increased TFA concentrations (C. vulgaris, 1.19-fold increase; A. obliquus, 2.59-fold increase; and M. reisseri, 3.31-fold increase). Phytohormone analysis of M. reisseri revealed increases in growth rate and TFA concentrations, associated with phytohormone induction via flashing light (e.g. 2.93-fold increase in gibberellic acid); hence, flashing light can promote substantial alterations in algal metabolism.
Collapse
Affiliation(s)
- Yong-Keun Choi
- Department of Biological Engineering Konkuk University Seoul Republic of Korea
| | - Hyun-Joong Kim
- Department of Biological Engineering Konkuk University Seoul Republic of Korea
| | | | - Hak-Jin Song
- Department of Biological Engineering Konkuk University Seoul Republic of Korea
| | | | - Kwang Jin Kim
- Urban Agriculture Research Division NIHHS Chunjoo Republic of Korea
| | - Sang Hyun Lee
- Department of Biological Engineering Konkuk University Seoul Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering Konkuk University Seoul Republic of Korea
| | - Hyung Joo Kim
- Department of Biological Engineering Konkuk University Seoul Republic of Korea
| |
Collapse
|