1
|
Nowicka P, Lech K, Wojdyło A. The influence of different drying techniques on polyphenols profile (LC-MS-PDA-Q/TOF) of peach fruit and their pro-health properties by in vitro. Sci Rep 2025; 15:2623. [PMID: 39838032 PMCID: PMC11751322 DOI: 10.1038/s41598-025-87003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
ABSTARCT Drying plant raw materials using modern techniques or combined methods is currently one of the main trends in food technology, which combines process optimization in line with the principles of sustainable development while maintaining high product quality. Therefore, this study aims to be innovative, assessing the possibility of using sublimation techniques, convective drying (CD) at different temperatures (50 °C, 60 °C, 70 °C), vaccum microwave drying (VMD) at different power levels (120 W, 240 W, 360 W, and 360/120 W), and combining these two techniques- CD-VMD (50 °C/120 W, 60 °C/120 W, 70 °C/120 W) in the production of peach snacks. The qualitative analysis of the tested dried peaches showed that the content of polyphenols was dominated by polymers of procyanidins (82.5%), followed by phenolic acids (10.6%) > > flavanols (monomers and dimers 4.6%) > > flavonols (1.3%) and anthocyanins (1.0%). The VMD was found to be the most effective method for shaping the final concentration of bioactive compounds. In this process, the final polyphenol concentration was influenced by the total duration of the process and the temperature of the dried material. Moreover, based on the results it can be concluded that dried peaches demonstrate strong antioxidant properties and act as more potent inhibitors of pancreatic lipase and cholinesterases (both AChE and BuChE).
Collapse
Affiliation(s)
- Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str, 51-630, Wrocław, Poland.
| | - Krzysztof Lech
- Institute of Agricultural Engineering, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str, 51-630, Wrocław, Poland
| |
Collapse
|
2
|
Zhou D, Yi J, Zhang X, Tu K. Integrated omics analysis reveals the interactions among ROS metabolism and malate metabolism associated with chilling tolerance in peach fruit treated with hot air. Food Res Int 2025; 200:115435. [PMID: 39779075 DOI: 10.1016/j.foodres.2024.115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Continuous supply of NADPH is necessary for the synthesis of ROS, which can be derived from the decarboxylation of malic acid, providing fuels for RbOHs to sustain ROS production. However, excessive accumulations of ROS lead to significant chilling injury (CI) in peaches during cold storage. Our previous studies indicated that hot air (HA) slows the CI progression in peaches by preventing malate degradation. In this study, we investigated the interactions among CI, ROS, and malate metabolism to elucidate the molecular mechanisms through which HA treatment alleviates CI in peaches. The results demonstrated that HA treatment inhibited both ROS accumulation and malate degradation. Transcriptomic and proteomic analyses revealed that HA impacts carbohydrate metabolism and ROS synthesis. Specifically, HA treatment down-regulated the expression of PpRbOHs, and increased the activities of SOD, CAT, APX, and GR. This resulted in reduced levels of H2O2 and O2- in peaches during low temperature storage. Regarding malate metabolism, HA treatment prevented the decrease in malic acid by enhancing the activities of PEPC and MDH while inhibiting NADP-ME activity. These findings were consistent with omics data, which showed that HA up-regulated the expression of PpPEPC and PpMDH, but down-regulated the expression of PpME. In summary, our results indicate that the increased resistance to CI in peaches treated with HA is linked to higher malate levels, which down-regulated the expression of PpRbOHs and inhibited ROS production, thereby reducing CI in peach fruit.
Collapse
Affiliation(s)
- Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210095, China
| | - Jinyu Yi
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210095, China
| | - Xiaoyu Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Gismondi M, Strologo L, Gabilondo J, Budde C, Drincovich MF, Bustamante C. Characterization of ZAT12 protein from Prunus persica: role in fruit chilling injury tolerance and identification of gene targets. PLANTA 2024; 261:14. [PMID: 39672956 DOI: 10.1007/s00425-024-04593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
MAIN CONCLUSION PpZAT12, a transcription factor differentially expressed in peach varieties with distinct susceptibility tochilling injury (CI), is a potential candidate gene for CI tolerance by regulating several identified gene targets. ZAT (zinc finger of Arabidopsis thaliana) proteins play roles in multiple abiotic stress tolerance in Arabidopsis and other species; however, there are few reports on these transcription factors (TFs) in fruit crops. This study aimed to evaluate PpZAT12, a C2H2 TF up-regulated in peach fruit by a heat treatment applied before postharvest cold storage for reducing chilling injury (CI) symptoms. Here, the expression of PpZAT12 in different tissues and fruits subjected to either postharvest heat or cold treatments, was evaluated in peach varieties with differential susceptibility to develop CI. PpZAT12 increased by cold storage in CI-resistant cultivars ('Elegant Lady' and 'Rojo 2'), while it was not modified in a cultivar susceptible to develop CI ('Flordaking'). Besides, we expressed PpZAT12 in Arabidopsis (35S::PpZAT12) and found that these plants show impaired plant growth and development, rendering small plants with senescence delay and aborted seeds. We applied a proteomic approach to decipher the peptides responding to PpZAT12 in Arabidopsis and found 348 differential expressed proteins (DEPs) relative to the wild type. Besides, comparing the DEPs between Arabidopsis plants expressing PpZAT12 or AtZAT12 (35S::AtZAT12) we found common and specific responses to these TFs. Based on the proteomic information obtained here and published data about AtZAT12, we searched ZAT12-targets in peach allowing the identification of a putative ZAT12 regulon in this species. The identified peach ZAT12-protein targets could underlie the differential susceptibility to CI among different peach varieties and can be used as future targets to improve adaptation to refrigeration in fleshy fruits.
Collapse
Affiliation(s)
- Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Laura Strologo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina
| | - Julieta Gabilondo
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional No 9 Km 170, San Pedro, Argentina
| | - Claudio Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional No 9 Km 170, San Pedro, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Zheng H, Deng W, Yu L, Shi Y, Deng Y, Wang D, Zhong Y. Chitosan coatings with different degrees of deacetylation regulate the postharvest quality of sweet cherry through internal metabolism. Int J Biol Macromol 2024; 254:127419. [PMID: 37848115 DOI: 10.1016/j.ijbiomac.2023.127419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
In this study, chitosan coatings with different degrees of deacetylation (DD, 88.1 % and 95.2 %) were electrostatically sprayed on sweet cherries to evaluate their impacts on postharvest characteristics and internal metabolism. The results showed that chitosan coating could effectively delay the change of weight, color, firmness, and maintain the content of total phenols, flavonoids and titratable acids, and inhibit the activities of β-galactosidase and polyphenol oxidase during cold storage. The storage qualities and physiological activities of sweet cherry were significantly correlated with the contents of sorbitol, 4-hydroxycinnamic acid, hydrogenated hydroxycinnamic acid, tyrosine, proline, glutamine, phenylalanine, and other metabolites. Chitosan coating may modulate fruit quality by inhibiting the energy metabolism, accelerating the accumulation of carbohydrates, and promoting the metabolism of phenylalanine and flavonoid. Especially, chitosan coating with 88.1 % DD had better wettability on sweet cherry's peel and displayed more obvious preservation effect through stronger metabolic regulation ability.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanqing Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yu
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuchen Shi
- Shanghai SOLON Information Technology Co., Ltd., 479 Chundong Road, Shanghai, 201108, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Iqbal B, Hussain F, khan MS, Iqbal T, Shah W, Ali B, Al Syaad KM, Ercisli S. Physiology of gamma-aminobutyric acid treated Capsicum annuum L. (Sweet pepper) under induced drought stress. PLoS One 2023; 18:e0289900. [PMID: 37590216 PMCID: PMC10434925 DOI: 10.1371/journal.pone.0289900] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
There is now widespread agreement that global warming is the source of climate variability and is a global danger that poses a significant challenge for the 21st century. Climate crisis has exacerbated water deficit stress and restricts plant's growth and output by limiting nutrient absorption and raising osmotic strains. Worldwide, Sweet pepper is among the most important vegetable crops due to its medicinal and nutritional benefits. Drought stress poses negative impacts on sweet pepper (Capsicum annuum L.) growth and production. Although, γ aminobutyric acid (GABA) being an endogenous signaling molecule and metabolite has high physio-molecular activity in plant's cells and could induce tolerance to water stress regimes, but little is known about its influence on sweet pepper development when applied exogenously. The current study sought to comprehend the effects of foliar GABA application on vegetative development, as well as physiological and biochemical constituents of Capsicum annuum L. A Field experiment was carried out during the 2021 pepper growing season and GABA (0, 2, and 4mM) concentrated solutions were sprayed on two Capsicum annuum L. genotypes including Scope F1 and Mercury, under drought stress of 50% and 30% field capacity. Results of the study showed that exogenous GABA supplementation significantly improved vegetative growth attributes such as, shoot and root length, fresh and dry weight, as well as root shoot ratio (RSR), and relative water content (RWC) while decreasing electrolyte leakage (EL). Furthermore, a positive and significant effect on chlorophyll a, b, a/b ratio and total chlorophyll content (TCC), carotenoids content (CC), soluble protein content (SPC), soluble sugars content (SSC), total proline content (TPC), catalase (CAT), and ascorbate peroxidase (APX) activity was observed. The application of GABA at 2mM yielded the highest values for these variables. In both genotypes, peroxidase (POD) and superoxide dismutase (SOD) content increased with growing activity of those antioxidant enzymes in treated plants compared to non-treated plants. In comparison with the rest of GABA treatments, 2mM GABA solution had the highest improvement in morphological traits, and biochemical composition. In conclusion, GABA application can improve development and productivity of Capsicum annuum L. under drought stress regimes. In addition, foliar applied GABA ameliorated the levels of osmolytes and the activities of antioxidant enzymes involved in defense mechanism.
Collapse
Affiliation(s)
- Babar Iqbal
- Department of Chemical & Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Fida Hussain
- Department of Chemical & Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
- Department of Botany, Islamia College Peshawar, Peshawar, Pakistan
| | | | - Taimur Iqbal
- Faculty of Crop Protection Sciences, Department of Plant Pathology, University of Agriculture, Peshawar, Pakistan
| | - Wadood Shah
- Biological Sciences Research Division, Pakistan Forest Institute, Peshawar, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Aazam University, Islamabad, Pakistan
| | - Khalid M. Al Syaad
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sezai Ercisli
- Faculty of Agriculture, Department of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| |
Collapse
|
6
|
Lorente-Mento JM, Carrión-Antolí A, Guillén F, Serrano M, Valero D, Martínez-Romero D. Relationship among Sugars, Organic Acids, Mineral Composition, and Chilling Injury Sensitivity on Six Pomegranate Cultivars Stored at 2 °C. Foods 2023; 12:foods12071364. [PMID: 37048185 PMCID: PMC10093234 DOI: 10.3390/foods12071364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pomegranate is a sensitive fruit to chilling injury (CI) during storage at temperatures below 7 °C. However, sensitivity of pomegranate to CI is dependent on cultivar and exposure times to low temperatures. In this work, the sensitivity to CI of six pomegranate cultivars (Punica granatum L.) 'Wonderful', 'Kingdom', 'Bigful', 'Acco', 'Purple Queen', and 'Mollar de Elche', was evaluated after 30 d at 2 °C plus 2 d at 20 °C. Among cultivars, there was a great variability in the sensitivity to the appearance of CI symptoms. 'Kingdom' cultivar was the most CI sensitive and 'Mollar de Elche' cultivar was the least sensitive cultivar. CI symptoms were greater in the internal part of the skin than in the external part, although no correlation was found between ion leakage (IL) and CI severity after cold storage. However, both, external and internal CI index were correlated with the IL at harvest, with Pearson correlation of 0.63 and 0.80, respectively. In addition, this variability to CI among cultivars could also be due to composition and tissue structures in arils and peel. The solute content of the arils (anthocyanins, sugars, and organic acids, in particular citric acid), showed high correlations with CI sensitivity, with Pearson correlations (r) of 0.56 for total soluble solids, 0.87 for total acidity, 0.94 for anthocyanins, -0.94 for oxalic acid, 0.87 for citric acid, 0.62 for tartaric acid, -0.91 for malic acid, 0.8 for sucrose, and 0.71 for glucose, which can leak to the inner surface of the peel causing browning reactions. In addition, the high peel Ca/K ratio could play an important role on increasing fruit tolerance to CI, since it was negatively correlated with the internal and external CI indexes.
Collapse
Affiliation(s)
- José Manuel Lorente-Mento
- Department of Applied Biology, EPSO, CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Alberto Carrión-Antolí
- Department of Food Technology, EPSO, CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Fabián Guillén
- Department of Food Technology, EPSO, CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - María Serrano
- Department of Applied Biology, EPSO, CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Daniel Valero
- Department of Food Technology, EPSO, CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| | - Domingo Martínez-Romero
- Department of Food Technology, EPSO, CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|
7
|
Olmedo P, Zepeda B, Delgado-Rioseco J, Leiva C, Moreno AA, Sagredo K, Blanco-Herrera F, Pedreschi R, Infante R, Meneses C, Campos-Vargas R. Metabolite Profiling Reveals the Effect of Cold Storage on Primary Metabolism in Nectarine Varieties with Contrasting Mealiness. PLANTS (BASEL, SWITZERLAND) 2023; 12:766. [PMID: 36840114 PMCID: PMC9965640 DOI: 10.3390/plants12040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Chilling injury is a physiological disorder caused by cold storage in peaches and nectarines. The main symptom of chilling injury is mealiness/wooliness, described as a lack of juice in fruit flesh. In this work, we studied two nectarine varieties (Andes Nec-2 and Andes Nec-3) with contrasting susceptibility to mealiness after cold storage. A non-targeted metabolomic analysis was conducted by GC-MS to understand if changes in metabolite abundance are associated with nectarine mealiness induced by cold storage. Multivariate analyses indicated that in unripe nectarines, cold storage promoted a higher accumulation of amino acids in both varieties. Interestingly, for ripe nectarines, cold storage induced an accumulation of fewer amino acids in both varieties and showed an increased abundance of sugars and organic acids. A pathway reconstruction of primary metabolism revealed that in ripe nectarines, cold storage disrupted metabolite abundance in sugar metabolism and the TCA cycle, leading to a differential accumulation of amino acids, organic acids, and sugars in mealy and juicy nectarines.
Collapse
Affiliation(s)
- Patricio Olmedo
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| | - Baltasar Zepeda
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Joaquín Delgado-Rioseco
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Carol Leiva
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| | - Adrián A. Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Karen Sagredo
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
- ANID—Millennium Science Initiative Program—Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
| | - Rodrigo Infante
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| | - Claudio Meneses
- ANID—Millennium Science Initiative Program—Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| |
Collapse
|
8
|
Differences in total phenolics, antioxidant activity and metabolic characteristics in peach fruits at different stages of ripening. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
9
|
Li Y, Yu X, Ma K. Physiological effects of γ-aminobutyric acid application on cold tolerance in Medicago ruthenica. FRONTIERS IN PLANT SCIENCE 2022; 13:958029. [PMID: 36420039 PMCID: PMC9676939 DOI: 10.3389/fpls.2022.958029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Low temperatures in the seedling stage during early spring limit Medicago ruthenica germination and seedling growth. Elucidating the physiological mechanism of γ-aminobutyric acid (GABA)-regulated cold tolerance in M. ruthenica could provide a reference for alleviating the harmful effects of low temperatures on legumes in alpine meadows. The regulatory effects of GABA on M. ruthenica physiological parameters were explored by simulating the ground temperatures in the alpine meadow area of Tianzhu, China, in early May (2 h at 7°C; 6 h at 15°C; 4 h at 12°C; 2 h at 7°C; 10 h at 3°C). Our results showed that 15 mmol/l GABA was the optimal spray concentration to promote growth in the aboveground and belowground parts and increase the fresh and dry weights of seedlings. At this concentration, GABA enhanced the activities of catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase; increased the osmotic balance; and inhibited the production of harmful substances in the cells under low-temperature conditions. GABA also regulated the tissue structure of leaves, increased the cell tense ratio, maintained photochemical activity, increased the amount of light energy to the photochemical reaction center, and improved the photosynthetic rate. Furthermore, exogenous GABA application increased the endogenous GABA content by promoting GABA synthesis in the early stages of low-temperature stress but mainly participated in low-temperature stress mitigation via GABA degradation in the late stages. Our results show that GABA can improve the cold tolerance of M. ruthenica by promoting endogenous GABA metabolism, protecting the membrane system, and improving the leaf structure.
Collapse
|
10
|
Lurie S. Proteomic and metabolomic studies on chilling injury in peach and nectarine. FRONTIERS IN PLANT SCIENCE 2022; 13:958312. [PMID: 36267944 PMCID: PMC9577496 DOI: 10.3389/fpls.2022.958312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Peaches and nectarines are temperate climate stone fruits, which should be stored at 0°C to prevent the ripening of these climacteric fruits. However, if stored for too long or if stored at a higher temperature (4 or 5°C), they develop chilling injury. Chilling injury damage includes (1) dry, mealy, wooly (lack of juice) fruits, (2) hard-textured fruits with no juice (leatheriness), (3) flesh browning, and (4) flesh bleeding or internal reddening. There are genetic components to these disorders in that early season fruits are generally more resistant than late season fruits, and white-fleshed fruits are more susceptible to internal browning than yellow-fleshed fruits. A recent review covered the recent research in genomic and transcriptomic studies, and this review examines findings from proteomic and metabolomics studies. Proteomic studies found that the ethylene synthesis proteins are decreased in cold compromised fruits, and this affects the processes initiated by ethylene including cell wall and volatile changes. Enzymes in metabolic pathways were both higher and lower in abundance in CI fruits, an indication of an imbalance in energy production. Stress proteins increased in both fruits with or without CI, but were higher in damaged fruits. Metabolomics showed the role of levels of sugars, sucrose, raffinose, galactinol, and glucose-6-phosphate in protection against chilling injury, along with other membrane stabilizers such as polyamines. Amino acid changes were inconsistent among the studies. Lipid species changes during storage could be correlated with sensitivity or resistance to CI, but more studies are needed.
Collapse
|
11
|
Abidi W, Akrimi R. Phenotypic diversity of nutritional quality attributes and chilling injury symptoms in four early peach [ Prunus persica (L.) Batsch] cultivars grown in west central Tunisia. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3938-3950. [PMID: 36193378 PMCID: PMC9525473 DOI: 10.1007/s13197-022-05425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to characterize the phenotypic diversity of agronomical and biochemical fruit quality traits in four early peach cultivars. The sensibility to chilling injury symptoms (CI) was studied after two cold storage periods (2 and 4 weeks) at 5 ºC and 95% relative humidity (RH) followed by 2 days at room temperature. Agronomical attributes such as fruit weight, firmness, soluble solids content (SSC), pH, titratable acidity (TA) and color parameters were recorded. Antioxidant compounds such as anthocyanins, flavonoids, total phenolics, vitamin C and relative antioxidant capacity (RAC) were evaluated. Chilling injury symptoms such as mealiness, graininess, flesh browning, flesh bleeding, leatheriness and off-flavor were analyzed. Results revealed high antioxidant compounds in peel regarding to flesh fruit. The antioxidant compounds content in both peel and pulp decreased during cold storage except anthocyanins which exhibited different pattern. After 2 weeks of storage, fruits presented high SSC and low score of chilling injury symptoms. At the end of the trial, the studied cultivars were unacceptable for consumption due to the severity of CI. PCA analysis showed that the cultivars Plagold 5 and Plagold 10 had less sensibility to chilling injury. Graphical abstract
Collapse
Affiliation(s)
- Walid Abidi
- Regional Center of Agricultural Research of Sidi Bouzid (CRRA), PB 357, 9100 Sidi Bouzid, Tunisia
| | - Rawaa Akrimi
- Regional Center of Agricultural Research of Sidi Bouzid (CRRA), PB 357, 9100 Sidi Bouzid, Tunisia
| |
Collapse
|
12
|
Drapal M, De Boeck B, Kreuze HL, Bonierbale M, Fraser PD. Identification of metabolites associated with boiled potato sensory attributes in freshly harvested and stored potatoes. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
del Olmo I, Romero I, Alvarez MD, Tarradas R, Sanchez-Ballesta MT, Escribano MI, Merodio C. Transcriptomic analysis of CO 2-treated strawberries ( Fragaria vesca) with enhanced resistance to softening and oxidative stress at consumption. FRONTIERS IN PLANT SCIENCE 2022; 13:983976. [PMID: 36061763 PMCID: PMC9437593 DOI: 10.3389/fpls.2022.983976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
One of the greatest threats to wild strawberries (Fragaria vesca Mara des Bois) after harvest is the highly perishability at ambient temperature. Breeders have successfully met the quality demands of consumers, but the prevention of waste after harvest in fleshy fruits is still pending. Most of the waste is due to the accelerated progress of senescence-like process after harvest linked to a rapid loss of water and firmness at ambient temperature. The storage life of strawberries increases at low temperature, but their quality is limited by the loss of cell structure. The application of high CO2 concentrations increased firmness during cold storage. However, the key genes related to resistance to softening and cell wall disassembly following transference from cold storage at 20°C remain unclear. Therefore, we performed RNA-seq analysis, constructing a weighted gene co-expression network analysis (WGCNA) to identify which molecular determinants play a role in cell wall integrity, using strawberries with contrasting storage conditions, CO2-cold stored (CCS), air-cold stored (ACS), non-cold stored (NCS) kept at ambient temperature, and intact fruit at harvest (AH). The hub genes associated with the cell wall structural architecture of firmer CO2-treated strawberries revealed xyloglucans stabilization attributed mainly to a down-regulation of Csl E1, XTH 15, Exp-like B1 and the maintenance of expression levels of nucleotide sugars transferases such as GMP and FUT as well as improved lamella integrity linked to a down-regulation of RG-lyase, PL-like and PME. The preservation of cell wall elasticity together with the up-regulation of LEA, EXPA4, and MATE, required to maintain cell turgor, is the mechanisms controlled by high CO2. In stressed air-cold stored strawberries, in addition to an acute softening, there is a preferential transcript accumulation of genes involved in lignin and raffinose pathways. Non-cold stored strawberries kept at 20°C after harvest are characterized by an enrichment in genes mainly involved in oxidative stress and up-expression of genes involved in jasmonate biosynthesis. The present results on transcriptomic analysis of CO2-treated strawberries with enhanced resistance to softening and oxidative stress at consumption will help to improve breeding strategies of both wild and cultivated strawberries.
Collapse
|
14
|
Cao K, Wang B, Fang W, Zhu G, Chen C, Wang X, Li Y, Wu J, Tang T, Fei Z, Luo J, Wang L. Combined nature and human selections reshaped peach fruit metabolome. Genome Biol 2022; 23:146. [PMID: 35788225 PMCID: PMC9254577 DOI: 10.1186/s13059-022-02719-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Plant metabolites reshaped by nature and human beings are crucial for both their lives and human health. However, which metabolites respond most strongly to selection pressure at different evolutionary stages and what roles they undertake on perennial fruit crops such as peach remain unclear. Results Here, we report 18,052 significant locus-trait associations, 12,691 expression-metabolite correlations, and 294,676 expression quantitative trait loci (eQTLs) for peach. Our results indicate that amino acids accumulated in landraces may be involved in the environmental adaptation of peaches by responding to low temperature and drought. Moreover, the contents of flavonoids, the major nutrients in fruits, have kept decreasing accompanied by the reduced bitter flavor during both domestication and improvement stages. However, citric acid, under the selection of breeders’ and consumers’ preference for flavor, shows significantly different levels between eastern and western varieties. This correlates with differences in activity against cancer cells in vitro in fruit from these two regions. Based on the identified key genes regulating flavonoid and acid contents, we propose that more precise and targeted breeding technologies should be designed to improve peach varieties with rich functional contents because of the linkage of genes related to bitterness and acid taste, antioxidant and potential anti-cancer activity that are all located at the top of chromosome 5. Conclusions This study provides powerful data for future improvement of peach flavor, nutrition, and resistance in future and expands our understanding of the effects of natural and artificial selection on metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02719-6.
Collapse
Affiliation(s)
- Ke Cao
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Weichao Fang
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Gengrui Zhu
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Changwen Chen
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xinwei Wang
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yong Li
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinlong Wu
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tang Tang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China. .,College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
| | - Lirong Wang
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China. .,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
15
|
Yan C, Zhang N, Wang Q, Fu Y, Zhao H, Wang J, Wu G, Wang F, Li X, Liao H. Full-length transcriptome sequencing reveals the molecular mechanism of potato seedlings responding to low-temperature. BMC PLANT BIOLOGY 2022; 22:125. [PMID: 35300606 PMCID: PMC8932150 DOI: 10.1186/s12870-022-03461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is one of the world's most important crops, the cultivated potato is frost-sensitive, and low-temperature severely influences potato production. However, the mechanism by which potato responds to low-temperature stress is unclear. In this research, we apply a combination of second-generation sequencing and third-generation sequencing technologies to sequence full-length transcriptomes in low-temperature-sensitive cultivars to identify the important genes and main pathways related to low-temperature resistance. RESULTS In this study, we obtained 41,016 high-quality transcripts, which included 15,189 putative new transcripts. Amongst them, we identified 11,665 open reading frames, 6085 simple sequence repeats out of the potato dataset. We used public available genomic contigs to analyze the gene features, simple sequence repeat, and alternative splicing event of 24,658 non-redundant transcript sequences, predicted the coding sequence and identified the alternative polyadenylation. We performed cluster analysis, GO, and KEGG functional analysis of 4518 genes that were differentially expressed between the different low-temperature treatments. We examined 36 transcription factor families and identified 542 transcription factors in the differentially expressed genes, and 64 transcription factors were found in the AP2 transcription factor family which was the most. We measured the malondialdehyde, soluble sugar, and proline contents and the expression genes changed associated with low temperature resistance in the low-temperature treated leaves. We also tentatively speculate that StLPIN10369.5 and StCDPK16 may play a central coordinating role in the response of potatoes to low temperature stress. CONCLUSIONS Overall, this study provided the first large-scale full-length transcriptome sequencing of potato and will facilitate structure-function genetic and comparative genomics studies of this important crop.
Collapse
Affiliation(s)
- Chongchong Yan
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| | - Nan Zhang
- Anhui Vocational College of City Management, Hefei, 231635, Anhui, China
| | - Qianqian Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Yuying Fu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Hongyuan Zhao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Jiajia Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Gang Wu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Feng Wang
- Jieshou County Agricultural Technology Promotion Center, Jieshou, 236500, Anhui, China
| | - Xueyan Li
- Funan County Agricultural Technology Promotion Center, Funan, 236300, Anhui, China
| | - Huajun Liao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
16
|
Parijadi AAR, Yamamoto K, Ikram MMM, Dwivany FM, Wikantika K, Putri SP, Fukusaki E. Metabolome Analysis of Banana (Musa acuminata) Treated With Chitosan Coating and Low Temperature Reveals Different Mechanisms Modulating Delayed Ripening. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.835978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Banana (Musa acuminata) is one of the most important crop plants consumed in many countries. However, the commercial value decreases during storage and transportation. To maintain fruit quality, postharvest technologies have been developed. Storage at low temperature is a common method to prolong the shelf life of food products, especially during transportation and distribution. Another emerging approach is the use of chitosan biopolymer as an edible coating, which can extend the shelf life of fruit by preventing moisture and aroma loss, and inhibiting oxygen penetration into the plant tissue. Gas chromatography-mass spectrometry metabolite profiling of the banana ripening process was performed to clarify the global metabolism changes in banana after chitosan coating or storage at low temperature. Both postharvest treatments were effective in delaying banana ripening. Interestingly, principal component analysis and orthogonal projection to latent structure regression analysis revealed significant differences of both treatments in the metabolite changes, indicating that the mechanism of prolonging the banana shelf life may be different. Chitosan (1.25% w/v) treatment stored for 11 days resulted in a distinct accumulation of 1-aminocyclopropane-1-carboxylic acid metabolite, an important precursor of ethylene that is responsible for the climacteric fruit ripening process. Low temperature (LT, 14 ± 1°C) treatment stored for 9 days resulted in higher levels of putrescine, a polyamine that responds to plant stress, at the end of ripening days. The findings clarify how chitosan delays fruit ripening and provides a deeper understanding of how storage at low temperature affects banana metabolism. The results may aid in more effective development of banana postharvest strategies.
Collapse
|
17
|
Zhang X, Liu T, Zhu S, Wang D, Sun S, Xin L. Short‐term hypobaric treatment alleviates chilling injury by regulating membrane fatty acids metabolism in peach fruit. J Food Biochem 2022; 46:e14113. [DOI: 10.1111/jfbc.14113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tao Liu
- Huangdao Customs District P. R. China Qingdao PR China
| | - Shuhua Zhu
- College of Chemistry and Material Science Shandong Agricultural University Tai’an PR China
| | - Dan Wang
- Shandong Institute of Pomology Tai’an PR China
| | - Shan Sun
- Shandong Institute of Pomology Tai’an PR China
| | - Li Xin
- Shandong Institute of Pomology Tai’an PR China
| |
Collapse
|
18
|
Sanches AG, Pedrosa VMD, Checchio MV, Fernandes TFS, Mayorquin Guevara JE, Gratão PL, Teixeira GHDA. Polyols can alleviate chilling injury in ‘Palmer’ mangoes during cold storage. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Yan C, Zhang N, Wang Q, Fu Y, Wang F, Su Y, Xue B, Zhou L, Liao H. The Effect of Low Temperature Stress on the Leaves and MicroRNA Expression of Potato Seedlings. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.727081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In recent years, with the wanton destruction of the ecological environment by humans and the frequent occurrence of extreme bad weather, many places that should have been warm and blooming in spring have instead experienced the phenomenon of the “April blizzard,” which has seriously affected China's crops, especially spring potato production in most areas. Potato cultivars, especially potato seedlings, are sensitive to frost, and low temperature frost has become one of the most important abiotic stresses affecting potato production. Potato cold tolerance is regulated by a complex gene network. Although some low temperature resistant microRNAs have been identified, little is known about the role of miRNAs in response to low temperature stress in potato. Therefore, the objective of this study is to clarify the influence of low temperature stress on the miRNA expression of potato by comparing the expression differences of miRNA in potato which was treated with different low temperatures. For the study, 307 known miRNAs belonging to 73 small RNA families and 211 novel miRNAs were obtained. When the temperature decreased, the number of both known and novel miRNA decreased, and the minimum temperature was −2°C. Most of the miRNAs respond to low temperature, drought, and disease stress; some conserved miRNAs were first found to respond to low temperature stress in potato, such as stu-miR530, stu-miR156d, and stu-miR167b. The Gene Ontology, Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis of 442 different expression miRNAs target genes indicated that there existed diversified low temperature responsive pathways, but Abscisic Acid was found likely to play a central coordinating role in response to low temperature stress in many metabolism pathways. Quantitative real-time PCR assays indicated that the related targets were negatively regulated by the tested different expression miRNAs during low temperature stress. The results indicated that miRNAs may play an important coordination role in response to low temperature stress in many metabolic pathways by regulating abscisic acid and gibberellin, which provided insight into the roles of miRNAs during low temperature stress and would be helpful for alleviating low temperature stress and promoting low temperature resistant breeding in potatoes.
Collapse
|
20
|
Drincovich MF. Identifying sources of metabolomic diversity and reconfiguration in peach fruit: taking notes for quality fruit improvement. FEBS Open Bio 2021; 11:3211-3217. [PMID: 34176215 PMCID: PMC8634865 DOI: 10.1002/2211-5463.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022] Open
Abstract
The metabolomic content determines many of the important features of a fruit, such as its taste, flavor, color, nutritional value, and abiotic or biotic resistance. Peach (Prunus persica (L.) Batsch) is one of the best genetically characterized species used as a model for Rosaceae, the drupes of which are a source of minerals, vitamins, fiber, and antioxidant compounds for healthy diets around the world. During the last few years, a great advance in the analysis of the metabolic diversity and reconfiguration in different peach varieties in response to developmental and environmental factors has occurred. These studies have shown that the great phenotypic diversity among different peach varieties is correlated with differential metabolomic content. Besides, the fruit metabolome of each peach variety is not static; on the contrary, it is drastically configured in response to both developmental and environmental signals, and moreover, it was found that these metabolic reconfigurations are also variety dependent. In the present review, the main sources of metabolic diversity and conditions that induce modifications in the peach fruit metabolome are summarized. It is postulated that comparison of the metabolic reconfigurations that take place among the fruits from different varieties may help us better understand peach fruit metabolism and their key drivers, which in turn may aid in the future design of high‐quality peach fruits.
Collapse
Affiliation(s)
- María F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| |
Collapse
|
21
|
Ren L, Zhang T, Wu H, Ge Y, Zhao X, Shen X, Zhou W, Wang T, Zhang Y, Ma D, Wang A. Exploring the metabolic changes in sweet potato during postharvest storage using a widely targeted metabolomics approach. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lei Ren
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Tingting Zhang
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Haixia Wu
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Yuxin Ge
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Xuehong Zhao
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Xiaodie Shen
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Wuyu Zhou
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Tianlong Wang
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Yungang Zhang
- Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou) Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District Xuzhou People’s Republic of China
| | - Daifu Ma
- Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou) Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District Xuzhou People’s Republic of China
| | - Aimin Wang
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| |
Collapse
|
22
|
Anthony BM, Chaparro JM, Prenni JE, Minas IS. Early metabolic priming under differing carbon sufficiency conditions influences peach fruit quality development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:416-431. [PMID: 33202321 DOI: 10.1016/j.plaphy.2020.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Crop load management is an important preharvest factor to balance yield, quality, and maturation in peach. However, few studies have addressed how preharvest factors impact metabolism on fruit of equal maturity. An experiment was conducted to understand how carbon competition impacts fruit internal quality and metabolism in 'Cresthaven' peach trees by imposing distinct thinning severities. Fruit quality was evaluated at three developmental stages (S2, S3, S4), while controlling for equal maturity using non-destructive visual to near-infrared spectroscopy. Non-targeted metabolite profiling was used to characterize fruit at each developmental stage from trees that were unthinned (carbon starvation) or thinned (carbon sufficiency). Carbon sufficiency resulted in significantly higher fruit dry matter content and soluble solids concentration at harvest when compared to the carbon starved, underscoring the true impact of carbon manipulation on fruit quality. Significant differences in the fruit metabolome between treatments were observed at S2 when phenotypes were similar, while less differences were observed at S4 when the carbon sufficient fruit exhibited a superior phenotype. This suggests a potential metabolic priming effect on fruit quality when carbon is sufficiently supplied during early fruit growth and development. In particular, elevated levels of catechin may suggest a link between secondary/primary metabolism and fruit quality development.
Collapse
Affiliation(s)
- Brendon M Anthony
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
23
|
Lee JG, Yi G, Choi JH, Lee EJ. Analyses of targeted/untargeted metabolites and reactive oxygen species of pepper fruits provide insights into seed browning induced by chilling. Food Chem 2020; 332:127406. [PMID: 32615387 DOI: 10.1016/j.foodchem.2020.127406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
Abstract
Hot peppers are sensitive to low temperature, and seed browning significantly reduces the fruit quality. This study aims to clarify the mechanisms of seed browning in terms of metabolite changes. Metabolites were analysed during a 30-day-storage period at 2 °C and 10 °C. Gamma-aminobutyric acid, tyrosine, phenylalanine, and isoleucine concentrations were significantly higher at 2 °C storage than at 10 °C. Reactive oxygen species (ROS) generation was associated with seed browning. Transcription of jasmonic acid synthesis and ROS scavenging genes were higher in hot peppers stored at 2 °C than those stored at 10 °C. This study elucidated the mechanisms underlying seed browning and chill damage in hot peppers during storage at low temperatures and our findings may help improve hot peppers' quality following harvesting.
Collapse
Affiliation(s)
- Jeong Gu Lee
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gibum Yi
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hee Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun Jin Lee
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Pott DM, de Abreu e Lima F, Soria C, Willmitzer L, Fernie AR, Nikoloski Z, Osorio S, Vallarino JG. Metabolic reconfiguration of strawberry physiology in response to postharvest practices. Food Chem 2020; 321:126747. [DOI: 10.1016/j.foodchem.2020.126747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022]
|
25
|
Pott DM, Vallarino JG, Osorio S. Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites 2020; 10:metabo10050187. [PMID: 32397309 PMCID: PMC7281412 DOI: 10.3390/metabo10050187] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound generation. As a consequence, measures to reduce economic losses have to be taken by the fruit industry and have mostly consisted of storage at cold temperatures and the use of controlled atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense, metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a powerful tool for further understanding the biochemical basis of postharvest physiology and have the potential to play a critical role in the identification of the pathways affected by fruit senescence. Here, we provide an overview of the metabolic changes during postharvest storage, with special attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions is highlighted.
Collapse
Affiliation(s)
| | - José G. Vallarino
- Correspondence: (J.G.V.); (S.O.); Tel.: +34-952134271 (J.G.V. & S.O.)
| | - Sonia Osorio
- Correspondence: (J.G.V.); (S.O.); Tel.: +34-952134271 (J.G.V. & S.O.)
| |
Collapse
|
26
|
Zhao J, Quan P, Liu H, Li L, Qi S, Zhang M, Zhang B, Li H, Zhao Y, Ma B, Han M, Zhang H, Xing L. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4699-4716. [PMID: 32078318 DOI: 10.1021/acs.jafc.9b07107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.
Collapse
Affiliation(s)
- Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Pengkun Quan
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Lei Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Baiquan Ma
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Haihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| |
Collapse
|
27
|
Lillo-Carmona V, Espinoza A, Rothkegel K, Rubilar M, Nilo-Poyanco R, Pedreschi R, Campos-Vargas R, Meneses C. Identification of Metabolite and Lipid Profiles in a Segregating Peach Population Associated with Mealiness in Prunus persica (L.) Batsch. Metabolites 2020; 10:metabo10040154. [PMID: 32316167 PMCID: PMC7240955 DOI: 10.3390/metabo10040154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The peach is the third most important temperate fruit crop considering fruit production and harvested area in the world. Exporting peaches represents a challenge due to the long-distance nature of export markets. This requires fruit to be placed in cold storage for a long time, which can induce a physiological disorder known as chilling injury (CI). The main symptom of CI is mealiness, which is perceived as non-juicy fruit by consumers. The purpose of this work was to identify and compare the metabolite and lipid profiles between two siblings from contrasting populations for juice content, at harvest and after 30 days at 0 °C. A total of 119 metabolites and 189 lipids were identified, which showed significant differences in abundance, mainly in amino acids, sugars and lipids. Metabolites displaying significant changes from the E1 to E3 stages corresponded to lipids such as phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG) and lysophosphatidylcholines (LPC), and sugars such as fructose 1 and 1-fructose-6 phosphate. These metabolites might be used as early stage biomarkers associated with mealiness at harvest and after cold storage.
Collapse
Affiliation(s)
- Victoria Lillo-Carmona
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Alonso Espinoza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Karin Rothkegel
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Miguel Rubilar
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile;
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile;
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
- FONDAP Center for Genome Regulation, Universidad Andrés Bello, Blanco Encalada 2085, Santiago 87370415, Chile
- Correspondence:
| |
Collapse
|
28
|
Datir SS, Yousf S, Sharma S, Kochle M, Ravikumar A, Chugh J. Cold storage reveals distinct metabolic perturbations in processing and non-processing cultivars of potato (Solanum tuberosum L.). Sci Rep 2020; 10:6268. [PMID: 32286457 PMCID: PMC7156394 DOI: 10.1038/s41598-020-63329-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/27/2020] [Indexed: 11/09/2022] Open
Abstract
Cold-induced sweetening (CIS) causes considerable losses to the potato processing industry wherein the selection of potato genotypes using biochemical information has found to be advantageous. Here, 1H NMR spectroscopy was performed to identify metabolic perturbations from tubers of five potato cultivars (Atlantic, Frito Lay-1533, Kufri Jyoti, Kufri Pukhraj, and PU1) differing in their CIS ability and processing characteristics at harvest and after cold storage (4 °C). Thirty-nine water-soluble metabolites were detected wherein significantly affected metabolites after cold storage were categorized into sugars, sugar alcohols, amino acids, and organic acids. Multivariate statistical analysis indicated significant differences in the metabolic profiles among the potato cultivars. Pathway enrichment analysis revealed that carbohydrates, amino acids, and organic acids are the key players in CIS. Interestingly, one of the processing cultivars, FL-1533, exhibited a unique combination of metabolites represented by low levels of glucose, fructose, and asparagine accompanied by high citrate levels. Conversely, non-processing cultivars (Kufri Pukhraj and Kufri Jyoti) showed elevated glucose, fructose, and malate levels. Our results indicate that metabolites such as glucose, fructose, sucrose, asparagine, glutamine, citrate, malate, proline, 4-aminobutyrate can be potentially utilized for the prediction, selection, and development of potato cultivars for long-term storage, nutritional, as well as processing attributes.
Collapse
Affiliation(s)
- Sagar S Datir
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India. .,Biology Department, Biosciences Complex, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Mohit Kochle
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ameeta Ravikumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India. .,Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
29
|
Jian H, Xie L, Wang Y, Cao Y, Wan M, Lv D, Li J, Lu K, Xu X, Liu L. Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses. PeerJ 2020; 8:e8704. [PMID: 32266113 PMCID: PMC7120054 DOI: 10.7717/peerj.8704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
The winter oilseed ecotype is more tolerant to low temperature than the spring ecotype. Transcriptome and metabolome analyses of leaf samples of five spring Brassica napus L. (B. napus) ecotype lines and five winter B. napus ecotype lines treated at 4 °C and 28 °C were performed. A total of 25,460 differentially expressed genes (DEGs) of the spring oilseed ecotype and 28,512 DEGs of the winter oilseed ecotype were identified after cold stress; there were 41 differentially expressed metabolites (DEMs) in the spring and 47 in the winter oilseed ecotypes. Moreover, more than 46.2% DEGs were commonly detected in both ecotypes, and the extent of the changes were much more pronounced in the winter than spring ecotype. By contrast, only six DEMs were detected in both the spring and winter oilseed ecotypes. Eighty-one DEMs mainly belonged to primary metabolites, including amino acids, organic acids and sugars. The large number of specific genes and metabolites emphasizes the complex regulatory mechanisms involved in the cold stress response in oilseed rape. Furthermore, these data suggest that lipid, ABA, secondary metabolism, signal transduction and transcription factors may play distinct roles in the spring and winter ecotypes in response to cold stress. Differences in gene expression and metabolite levels after cold stress treatment may have contributed to the cold tolerance of the different oilseed ecotypes.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Ling Xie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanhua Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanru Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Mengyuan Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Dianqiu Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xinfu Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Ikram MMM, Ridwani S, Putri SP, Fukusaki E. GC-MS Based Metabolite Profiling to Monitor Ripening-Specific Metabolites in Pineapple ( Ananas comosus). Metabolites 2020; 10:metabo10040134. [PMID: 32244367 PMCID: PMC7240947 DOI: 10.3390/metabo10040134] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Pineapple is one of the most cultivated tropical, non-climacteric fruits in the world due to its high market value and production volume. Since non-climacteric fruits do not ripen after harvest, the ripening stage at the time of harvest is an important factor that determines sensory quality and shelf life. The objective of this research was to investigate metabolite changes in the pineapple ripening process by metabolite profiling approach. Pineapple (Queen variety) samples from Indonesia were subjected to GC-MS analysis. A total of 56, 47, and 54 metabolites were annotated from the crown, flesh, and peel parts, respectively. From the principal component analysis (PCA) plot, separation of samples based on ripening stages from C0-C2 (early ripening stages) and C3-C4 (late ripening stages) was observed for flesh and peel parts, whereas no clear separation was seen for the crown part. Furthermore, orthogonal projection to latent structures (OPLS) analysis suggested metabolites that were associated with the ripening stages in flesh and peel parts of pineapple. This study indicated potentially important metabolites that are correlated to the ripening of pineapple that would provide a basis for further study on pineapple ripening process.
Collapse
Affiliation(s)
- Muhammad Maulana Malikul Ikram
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (M.M.M.I.); (E.F.)
| | - Sobir Ridwani
- Center for Tropical Horticulture Studies, IPB University, Jl. Baranangsiang, Bogor 16144, Indonesia;
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (M.M.M.I.); (E.F.)
- Correspondence: ; Tel.: +81-6-6879-7416
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (M.M.M.I.); (E.F.)
| |
Collapse
|
31
|
Gismondi M, Daurelio LD, Maiorano C, Monti LL, Lara MV, Drincovich MF, Bustamante CA. Generation of fruit postharvest gene datasets and a novel motif analysis tool for functional studies: uncovering links between peach fruit heat treatment and cold storage responses. PLANTA 2020; 251:53. [PMID: 31950388 DOI: 10.1007/s00425-020-03340-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
A survey of developed fruit gene-specific datasets and the implementation of a novel cis-element analysis tool indicate specific transcription factors as novel regulatory actors under HT response and CI protection. Heat treatment (HT) prior to cold storage (CS) has been successfully applied to ameliorate fruit chilling injury (CI) disorders. Molecular studies have identified several HT-driven benefits and putative CI-protective molecules and mechanisms. However, bioinformatic tools and analyses able to integrate fruit-specific information are necessary to begin functional studies and breeding projects. In this work, a HT-responsive gene dataset (HTds) and four fruit expression datasets (FEds), containing gene-specific information from several species and postharvest conditions, were developed and characterized. FEds provided information about HT-responsive genes, not only validating their sensitivity to HT in different systems but also revealing most of them as CS-responsive. A special focus was given to peach heat treatment-sensitive transcriptional regulation by the development of a novel Perl motif analysis software (cisAnalyzer) and a curated plant cis-elements dataset (PASPds). cisAnalyzer is able to assess sequence motifs presence, localization, enrichment and discovery on biological sequences. Its implementation for the enrichment analysis of PASPds motifs on the promoters of HTds genes rendered particular cis-elements that indicate certain transcription factor (TF) families as responsible of fruit HT-sensitive transcription regulation. Phylogenetic and postharvest expression data of these TFs showed a functional diversity of TF families, with members able to fulfil roles under HT, CS and/or both treatments. All integrated datasets and cisAnalyzer tool were deposited in FruitGeneDB (https://www.cefobi-conicet.gov.ar/FruitGeneDB/search1.php), a new available database with a great potential for fruit gene functional studies, including the markers of HT and CS responses whose study will contribute to unravel HT-driven CI-protection and select tolerant cultivars.
Collapse
Affiliation(s)
- Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Lucas D Daurelio
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2808 (S3080HOF), Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Claudia Maiorano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Laura L Monti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Maria V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Maria F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Claudia A Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| |
Collapse
|
32
|
Brizzolara S, Manganaris GA, Fotopoulos V, Watkins CB, Tonutti P. Primary Metabolism in Fresh Fruits During Storage. FRONTIERS IN PLANT SCIENCE 2020; 11:80. [PMID: 32140162 PMCID: PMC7042374 DOI: 10.3389/fpls.2020.00080] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 05/07/2023]
Abstract
The extension of commercial life and the reduction of postharvest losses of perishable fruits is mainly based on storage at low temperatures alone or in combination with modified atmospheres (MAs) and controlled atmospheres (CAs), directed primarily at reducing their overall metabolism thus delaying ripening and senescence. Fruits react to postharvest conditions with desirable changes if appropriate protocols are applied, but otherwise can develop negative and unacceptable traits due to the onset of physiological disorders. Extended cold storage periods and/or inappropriate temperatures can result in development of chilling injuries (CIs). The etiology, incidence, and severity of such symptoms vary even within cultivars of the same species, indicating the genotype significance. Carbohydrates and amino acids have protective/regulating roles in CI development. MA/CA storage protocols involve storage under hypoxic conditions and high carbon dioxide concentrations that can maximize quality over extended storage periods but are also affected by the cultivar, exposure time, and storage temperatures. Pyruvate metabolism is highly reactive to changes in oxygen concentration and is greatly affected by the shift from aerobic to anaerobic metabolism. Ethylene-induced changes in fruits can also have deleterious effects under cold storage and MA/CA conditions, affecting susceptibility to chilling and carbon dioxide injuries. The availability of the inhibitor of ethylene perception 1-methylcyclopropene (1-MCP) has not only resulted in development of a new technology but has also been used to increase understanding of the role of ethylene in ripening of both non-climacteric and climacteric fruits. Temperature, MA/CA, and 1-MCP alter fruit physiology and biochemistry, resulting in compositional changes in carbon- and nitrogen-related metabolisms and compounds. Successful application of these storage technologies to fruits must consider their effects on the metabolism of carbohydrates, organic acids, amino acids and lipids.
Collapse
Affiliation(s)
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Christopher B. Watkins
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Pietro Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- *Correspondence: Pietro Tonutti,
| |
Collapse
|
33
|
Sita K, Kumar V. Role of Gamma Amino Butyric Acid (GABA) against abiotic stress tolerance in legumes: a review. PLANT PHYSIOLOGY REPORTS 2020; 25. [PMCID: PMC7724459 DOI: 10.1007/s40502-020-00553-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legumes are well known for their nutritional and health benefits as well as for their impact in the sustainability of agricultural systems. Under current scenarios threatened by climate change highlights the necessity for concerted research approaches in order to develop crops that are able to cope up with environmental challenges. Various abiotic stresses such as cold, heat, drought, salt, and heavy metal induce a variety of negative effects in plant growth, development and significantly decline yield and quality. Plant growth regulators or natural products of plants are reported to be effective to improve plant tolerance to several abiotic stresses. Gamma Amino Butyric Acid (GABA) is a non-protein amino acid involved in various metabolic processes, and partially protects plants from abiotic stress. GABA appears to impart partial protection to various abiotic stresses in most plants by increasing leaf turgor, increased osmolytes and reduced oxidative damage by stimulation of antioxidants. We have compiled various scientific reports on the role and mechanism of GABA in plants against coping with various environmental stresses. We have also described the emerging information about the metabolic and signaling roles of GABA which is being used to improve legume crop against abiotic stress.
Collapse
Affiliation(s)
- Kumari Sita
- Department of Botany, Panjab University, Chandigarh, 160014 India
| | - Vaneet Kumar
- Department of Botany, S. L. Bawa DAV College, Batala, 143501 India
| |
Collapse
|
34
|
R Parijadi AA, Ridwani S, Dwivany FM, Putri SP, Fukusaki E. A metabolomics-based approach for the evaluation of off-tree ripening conditions and different postharvest treatments in mangosteen (Garcinia mangostana). Metabolomics 2019; 15:73. [PMID: 31054000 DOI: 10.1007/s11306-019-1526-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/10/2019] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Metabolomics is an important tool to support postharvest fruit development and ripening studies. Mangosteen (Garcinia mangostana L.) is a tropical fruit with high market value but has short shelf-life during postharvest handling. Several postharvest technologies have been applied to maintain mangosteen fruit quality during storage. However, there is no study to evaluate the metabolite changes that occur in different harvesting and ripening condition. Additionally, the effect of postharvest treatment using a metabolomics approach has never been studied in mangosteen. OBJECTIVES The aims of this study were to evaluate the metabolic changes between different harvesting and ripening condition and to evaluate the effect of postharvest treatment in mangosteen. METHODS Mangosteen ripening stage were collected with several different conditions ("natural on-tree", "random on-tree" and "off-tree"). The metabolite changes were investigated for each ripening condition. Additionally, mangosteen fruit was harvested in stage 2 and was treated with several different treatments (storage at low temperature (LT; 12.3 ± 1.4 °C) and stress inducer treatment (methyl jasmonate and salicylic acid) in comparison with control treatment (normal temperature storage) and the metabolite changes were monitored over the course of 10 days after treatment. The metabolome data obtained from gas chromatography coupled with mass spectrometry were analyzed by multivariate analysis, including hierarchical clustering analysis, principal component analysis, and partial to latent squares analysis. RESULTS "On-tree" ripening condition showed the progression of ripening process in accordance with the accumulation of some aroma precursor metabolites in the flesh part and pectin breakdown in the peel part. Interestingly, similar trend was found in the "off-tree" ripening condition although the progression of ripening process observed through color changes occurred much faster compared to "on-tree" ripening. Additionally, low-temperature treatment is shown as the most effective treatment to prolong mangosteen shelf-life among all postharvest treatments tested in this study compared to control treatment. After postharvest treatment, a total of 71 and 65 metabolites were annotated in peel and flesh part of mangosteen, respectively. Several contributed metabolites (xylose, galactose, galacturonic acid, glucuronate, glycine, and rhamnose) were decreased after treatment in the peel part. However, low-temperature treatment did not show any significant differences compared to a room temperature treatment in the flesh part. CONCLUSIONS Our findings clearly indicate that there is a similar trend of metabolic changes between on-tree and off-tree ripening conditions. Additionally, postharvest treatment directly or indirectly influences many metabolic processes (cell-wall degrading process, sweet-acidic taste quality) during postharvest treatment.
Collapse
Affiliation(s)
- Anjaritha A R Parijadi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sobir Ridwani
- Center of Tropical Horticultural Studies, Institut Pertanian Bogor, Jl. Raya Pajajaran, Bogor, 16144, Indonesia
| | - Fenny M Dwivany
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat, 40132, Indonesia
| | - Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat, 40132, Indonesia.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
35
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
36
|
Del Pozo T, Miranda S, Latorre M, Olivares F, Pavez L, Gutiérrez R, Maldonado J, Hinrichsen P, Defilippi BG, Orellana A, González M. Comparative Transcriptome Profiling in a Segregating Peach Population with Contrasting Juiciness Phenotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1598-1607. [PMID: 30632375 DOI: 10.1021/acs.jafc.8b05177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cold storage of fruit is one of the methods most commonly employed to extend the postharvest lifespan of peaches ( Prunus persica (L.) Batsch). However, fruit quality in this species is affected negatively by mealiness, a physiological disorder triggered by chilling injury after long periods of exposure to low temperatures during storage and manifested mainly as a lack of juiciness, which ultimately modifies the organoleptic properties of peach fruit. The aim of this study was to identify molecular components and metabolic processes underlying mealiness in susceptible and nonsusceptible segregants. Transcriptome and qRT-PCR profiling were applied to individuals with contrasting juiciness phenotypes in a segregating F2 population. Our results suggest that mealiness is a multiscale phenomenon, because juicy and mealy fruit display distinctive reprogramming processes affecting translational machinery and lipid, sugar, and oxidative metabolism. The candidate genes identified may be useful tools for further crop improvement.
Collapse
Affiliation(s)
- Talía Del Pozo
- Centro Tecnológico de Recursos Vegetales, Faculty of Sciences , Universidad Mayor , Santiago, Chile, Camino La Pirámide 5750 , Huechuraba , Santiago , Chile
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Simón Miranda
- Centro Tecnológico de Recursos Vegetales, Faculty of Sciences , Universidad Mayor , Santiago, Chile, Camino La Pirámide 5750 , Huechuraba , Santiago , Chile
- Laboratorio de Genética Molecular Vegetal , INTA, Universidad de Chile , Av. El Líbano 5524 , Macul , Santiago , Chile
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
- Instituto de Ingeniería , Universidad de O'Higgins , Av. Libertador Bernardo O'Higgins 611 , Rancagua , Chile
- Mathomics, Center for Mathematical Modeling , Universidad de Chile , Av. Almirante Beauchef 851, Seventh Floor , Santiago , Chile
| | - Felipe Olivares
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Leonardo Pavez
- Instituto de Ciencias Naturales , Universidad de Las Américas , Av. Manuel Montt 948 , Santiago , Chile
- Departamento de Ciencias Químicas y Biológicas , Universidad Bernardo O'Higgins , General Gana 1702 , Santiago , Chile
| | - Ricardo Gutiérrez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) , University of Cologne , Cologne , Germany
| | - Jonathan Maldonado
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Patricio Hinrichsen
- Laboratorio de Biotecnología , Instituto de Investigaciones Agropecuarias , INIA La Platina, Santa Rosa 11610 , Santiago , Chile
| | - Bruno G Defilippi
- Unidad de Poscosecha , Instituto de Investigaciones Agropecuarias , INIA La Platina, Santa Rosa 11610 , Santiago , Chile
| | - Ariel Orellana
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida , Universidad Andrés Bello , Santiago , Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
| |
Collapse
|
37
|
Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1091. [PMID: 31620143 PMCID: PMC6760520 DOI: 10.3389/fpls.2019.01091] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Collapse
Affiliation(s)
- Guillaume Decros
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Amélie Flandin
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| |
Collapse
|
38
|
Karagiannis E, Michailidis M, Karamanoli K, Lazaridou A, Minas IS, Molassiotis A. Postharvest responses of sweet cherry fruit and stem tissues revealed by metabolomic profiling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:478-484. [PMID: 29705568 DOI: 10.1016/j.plaphy.2018.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Sweet cherry, a non-climacteric and highly perishable fruit, is usually cold-stored during post-harvest period to prevent senescence; therefore, metabolic profiling in response to cold storage in sweet cherry is of economic and scientific interest. In the present work, metabolic analysis was performed in fruit and stem tissues to determine the metabolic dynamics associated with cold storage in response to 1-methylcyclopropene (1-MCP), an ethylene-action inhibitor, and modified atmosphere packaging (MAP). Fruit (cv. Regina) following harvest were treated with 1-MCP and then cold-stored (0 °C, relative humidity 95%) for 1 month in the presence or in the absence of MAP and subsequently maintained at 20 °C for up to 2 days. Physiological analysis suggested that cold storage stimulated anthocyanin production, respiration rate and stem browning. Cherry stem exposed to 1-MCP displayed senescence symptoms as demonstrated by the higher stem browning and the lower stem traction force while MAP treatment considerably altered these features. The metabolic profile of fruits and stems just following cold storage was distinctly different from those analyzed at harvest. Marked tissue-specific differences were also detected among sweet cherries exposed to individual and to combined 1-MCP and MAP treatments, notably for amino acid biosynthesis. The significance of some of these metabolites as cold storage hallmarks is discussed in the context of the limited knowledge on the 1-MCP and MAP response mechanisms at the level of cherry fruit and stem tissues. Overall, this study provides the first steps toward understanding tissue-specific postharvest behavior in sweet cherry under various conditions.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Lazaridou
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S Minas
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
39
|
Brizzolara S, Hertog M, Tosetti R, Nicolai B, Tonutti P. Metabolic Responses to Low Temperature of Three Peach Fruit Cultivars Differently Sensitive to Cold Storage. FRONTIERS IN PLANT SCIENCE 2018; 9:706. [PMID: 29892309 PMCID: PMC5985494 DOI: 10.3389/fpls.2018.00706] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/09/2018] [Indexed: 05/23/2023]
Abstract
Refrigerated storage is widely applied in order to maintain peach quality but it can also induce chilling injuries (CIs) such as flesh browning and bleeding, and mealiness. Peach fruit from three cultivars ('Red Haven', RH, 'Regina di Londa', RL, and 'Flaminia', FL) were stored for 4 weeks under low temperatures (0.5 and 5.5°C). GC-MS was employed to study changes in both metabolome and volatilome induced by cold storage in the mesocarp. CIs were assessed both at the end of each week of storage and after subsequent shelf-life (SL) at 20°C. Flesh browning and mealiness appeared to be more related to 5.5°C storage, while flesh bleeding revealed high incidence following 0.5°C storage. Compared to RL and FL, RH showed a marked lower incidence of CIs. Multivariate statistical analyses indicate that RH peaches indeed differ from RL and FL in particular when considering data from samples collected at the end of the cold storage. Common and divergent responses have been identified in terms of metabolic responses to the applied low temperatures. In all three cultivars raffinose, glucose-6P, fucose, xylose, sorbitol, GABA, epicatechin, catechin, and putrescine markedly increased during cold storage, while citramalic, glucuronic, mucic and shikimic acids decreased. Among volatile organic compounds (VOCs), aldehydes and alcohols generally accumulated more under low temperature conditions while esters and lactones evolved during subsequent SL. The main cultivar differences developed after cold storage during SL although some common responses (e.g., an increased production of ethyl acetate) were observed. The lower levels of flesh browning and bleeding displayed by RH peaches were related to compounds with antioxidant activity, or acting as osmotic protectants and membrane stabilizer. Indeed, RH showed higher levels of amino acids and urea, together with a marked increase in putrescine, sorbitol, maltitol, myoinositol and sucrose detected during storage and SL.
Collapse
Affiliation(s)
| | - Maarten Hertog
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
| | - Roberta Tosetti
- Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Bart Nicolai
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
- Flanders Centre of Postharvest Technology (VCBT), Leuven, Belgium
| | - Pietro Tonutti
- Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
40
|
Bustamante CA, Brotman Y, Monti LL, Gabilondo J, Budde CO, Lara MV, Fernie AR, Drincovich MF. Differential lipidome remodeling during postharvest of peach varieties with different susceptibility to chilling injury. PHYSIOLOGIA PLANTARUM 2018; 163:2-17. [PMID: 29094760 DOI: 10.1111/ppl.12665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/25/2017] [Indexed: 05/23/2023]
Abstract
Peaches ripen and deteriorate rapidly at room temperature. Therefore, refrigeration is used to slow these processes and to extend fruit market life; however, many fruits develop chilling injury (CI) during storage at low temperature. Given that cell membranes are likely sites of the primary effects of chilling, the lipidome of six peach varieties with different susceptibility to CI was analyzed under different postharvest conditions. By using liquid chromatography coupled to mass spectrometry (LC-MS), 59 lipid species were detected, including diacyl- and triacylglycerides. The decreases in fruit firmness during postharvest ripening were accompanied by changes in the relative amount of several plastidic glycerolipid and triacylglyceride species, which may indicate their use as fuels prior to fruit senescence. In addition, levels of galactolipids were also modified in fruits stored at 0°C for short and long periods, reflecting the stabilization of plastidic membranes at low temperature. When comparing susceptible and resistant varieties, the relative abundance of certain species of the lipid classes phosphatidylethanolamine, phosphatidylcholine and digalactosyldiacylglycerol correlated with the tolerance to CI, reflecting the importance of the plasma membrane in the development of CI symptoms and allowing the identification of possible lipid markers for chilling resistance. Finally, transcriptional analysis of genes involved in galactolipid metabolism revealed candidate genes responsible for the observed changes after cold exposure. When taken together, our results highlight the importance of plastids in the postharvest physiology of fruits and provide evidence that lipid composition and metabolism have a profound influence on the cold response.
Collapse
Affiliation(s)
- Claudia A Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, PO Box 653, Beersheva, 8410501, Israel
| | - Laura L Monti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Julieta Gabilondo
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional n° 9 Km 170, San Pedro, Argentina
| | - Claudio O Budde
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional n° 9 Km 170, San Pedro, Argentina
| | - María V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Germany
| | - María F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| |
Collapse
|
41
|
Tanou G, Minas IS, Scossa F, Belghazi M, Xanthopoulou A, Ganopoulos I, Madesis P, Fernie A, Molassiotis A. Exploring priming responses involved in peach fruit acclimation to cold stress. Sci Rep 2017; 7:11358. [PMID: 28900303 PMCID: PMC5595836 DOI: 10.1038/s41598-017-11933-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/01/2017] [Indexed: 01/11/2023] Open
Abstract
Cold storage of fruit may induce the physiological disorder chilling injury (CI); however, the molecular basis of CI development remains largely unexplored. Simulated conditions of CI priming and suppression provided an interesting experimental system to study cold response in fruit. Peaches (cv. June Gold) at the commercial harvest (CH) or tree-ripe (TR) stages were immediately exposed to cold treatment (40 d, 0 °C) and an additional group of CH fruits were pre-conditioned 48 h at 20 °C prior to low-temperature exposure (pre-conditioning, PC). Following cold treatment, the ripening behaviour of the three groups of fruits was analysed (3 d, 20 °C). Parallel proteomic, metabolomic and targeted transcription comparisons were employed to characterize the response of fruit to CI expression. Physiological data indicated that PC suppressed CI symptoms and induced more ethylene biosynthesis than the other treatments. Differences in the protein and metabolic profiles were identified, both among treatments and before and after cold exposure. Transcriptional expression patterns of several genes were consistent with their protein abundance models. Interestingly, metabolomic and gene expression results revealed a possible role for valine and/or isoleucine in CI tolerance. Overall, this study provides new insights into molecular changes during fruit acclimation to cold environment.
Collapse
Affiliation(s)
- Georgia Tanou
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis S Minas
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Western Colorado Research Center at Orchard Mesa, Colorado State University, Grand Junction, CO, USA
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la Frutticoltura (CREA-FRU), Roma, Italy
| | - Maya Belghazi
- Proteomics Analysis Center (CAPM), Faculty of Medicine, 13916, Marseilles, France
| | | | | | | | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Athanassios Molassiotis
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
42
|
Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, Xu Y, Lu P, Cao P. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics 2017; 18:496. [PMID: 28662642 PMCID: PMC5492280 DOI: 10.1186/s12864-017-3871-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CB-1 and K326 are closely related tobacco cultivars; however, their cold tolerance capacities are different. K326 is much more cold tolerant than CB-1. RESULTS We studied the transcriptomes and metabolomes of CB-1 and K326 leaf samples treated with cold stress. Totally, we have identified 14,590 differentially expressed genes (DEGs) in CB-1 and 14,605 DEGs in K326; there was also 200 differentially expressed metabolites in CB-1 and 194 in K326. Moreover, there were many overlapping genes (around 50%) that were cold-responsive in both plant cultivars, although there were also many differences in the cold responsive genes between the two cultivars. Importantly, for most of the overlapping cold responsive genes, the extent of the changes in expression were typically much more pronounced in K326 than in CB-1, which may help explain the superior cold tolerance of K326. Similar results were found in the metabolome analysis, particularly with the analysis of primary metabolites, including amino acids, organic acids, and sugars. The large number of specific responsive genes and metabolites highlight the complex regulatory mechanisms associated with cold stress in tobacco. In addition, our work implies that the energy metabolism and hormones may function distinctly between CB-1 and K326. CONCLUSIONS Differences in gene expression and metabolite levels following cold stress treatment seem likely to have contributed to the observed difference in the cold tolerance phenotype of these two tobacco cultivars.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| |
Collapse
|