1
|
Duan Y, Han M, Schikora A. The coordinated responses of host plants to diverse N-acyl homoserine lactones. PLANT SIGNALING & BEHAVIOR 2024; 19:2356406. [PMID: 38785260 PMCID: PMC11135860 DOI: 10.1080/15592324.2024.2356406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
In nature, co-evolution shaped balanced entities of host plants and their associated microorganism. Plants maintain this balance by detecting their associated microorganism and coordinating responses to them. Quorum sensing (QS) is a widespread bacterial cell-to-cell communication mechanism to modulate the collective behavior of bacteria. As a well-characterized QS signal, N-acyl homoserine lactones (AHL) also influence plant fitness. Plants need to coordinate their responses to diverse AHL molecules since they might host bacteria producing various AHL. This opinion paper discusses plants response to a mixture of multiple AHL molecules. The function of various phytohormones and WRKY transcription factors seems to be characteristic for plants' response to multiple AHL. Additionally, the perspectives and possible approaches to facilitate further research and the application of AHL-producing bacteria are discussed.
Collapse
Affiliation(s)
- Yongming Duan
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Min Han
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
2
|
Singh AA, Singh AK. Role of bacterial quorum sensing in plant growth promotion. World J Microbiol Biotechnol 2024; 41:18. [PMID: 39724256 DOI: 10.1007/s11274-024-04232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing. Phytochemicals present in plant root exudates and QS signal molecules as well as volatile organic compounds (VOCs) produced by microorganisms work in coordination to establish intra- and inter-species communications. Interestingly, a number of plant growth promoting rhziobacterial (PGPR) activities like effective/enhanced root colonization, nutrient uptake, nodulation, nitrogen fixation, production of plant hormones, antimicrobial compounds and induction of plant defences can be attributed directly or indirectly to their quorum sensing and quenching abilities. Although not completely understood, root development, stress tolerance and defence against phytopathogens are some of the implications of such abilities which might prove beneficial for sustainable agriculture. Deciphering the mechanism of these interactions would be instrumental in improving crop health. Plant beneficial microorganisms employing QS and QS inhibition (QSI) strategies have been discussed in this review.
Collapse
Affiliation(s)
- Aparna Anil Singh
- Department of Microbiology, Tolani College of Arts and Science, Adipur, Kachchh, 370205, Gujarat, India.
| | - Anil Kumar Singh
- Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India
| |
Collapse
|
3
|
Wei C, Liu M, Meng G, Wang M, Zhou X, Xu J, Hu J, Zhang L, Dong C. Characterization of Endofungal Bacteria and Their Role in the Ectomycorrhizal Fungus Helvella bachu. J Fungi (Basel) 2024; 10:889. [PMID: 39728385 DOI: 10.3390/jof10120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Helvella bachu, an ectomycorrhizal fungus, forms a symbiotic relationship with Populus euphratica, a rare and endangered species crucial to desert riparian ecosystems. In this study, endofungal bacteria (EFBs) within the fruiting bodies of H. bachu were confirmed by a polyphasic approach, including genomic sequencing, real-time quantitative PCR targeting the 16S rRNA gene, full-length and next-generation sequencing (NGS) of the 16S rRNA gene, and culture methods. The genera Stenotrophomonas, Variovorax, Acidovorax, and Pedobacter were abundant in the EFBs of fruiting bodies associated with three Populus hosts and were consistently present across different developmental stages. Notably, S. maltophilia and V. paradoxus were detected in high abundance, as revealed by full-length 16S rRNA sequencing, with S. maltophilia also isolated by culture methods. KO-pathway analysis indicated that pathways related to primary, secondary, and energy metabolism were predominantly enriched, suggesting these bacteria may promote H. bachu growth by producing essential compounds, including sugars, proteins, and vitamins, and secondary metabolites. This study confirmed the presence of EFBs in H. bachu and provided the first comprehensive overview of their structure, functional potential, and dynamic changes throughout fruiting body maturation, offering valuable insights for advancing the artificial domestication of this species.
Collapse
Affiliation(s)
- Caihong Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianping Xu
- Department of Biology, Institute of Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianwei Hu
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Lili Zhang
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
5
|
Lee DY, Kang SW, Kim JS, Bae JY, Lee HL, Lee H, Seo WD, Jang YS, Kim JH. Effect of Abiotic Signals on the Accumulation of Saponarin in Barley Leaves in Hydroponics Under Artificial Lights. ACS OMEGA 2024; 9:10852-10859. [PMID: 38463256 PMCID: PMC10918822 DOI: 10.1021/acsomega.3c09809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Functional flavonoid production is a new agenda in the agricultural industry, and young barley leaves (YBL) are one of the highlighted crops due to their health-beneficial flavonoid, saponarin. For the year-round cultivation of a high saponarin content of YBL, abiotic signal effects on the biosynthesis and metabolism in YBL need to be understood clearly. In this research, the effects of reactive oxygen species (ROS)-related abiotic signals, such as light, potassium, and sodium, were investigated on the biosynthetic metabolism in YBL cultivation under artificial lights. A higher quantity of blue-rich white light (6500 K of light temperature) irradiation enhanced ROS levels and the related enzyme activities (APX and CAT), as well as photosynthesis and saponarin amount, while red-rich white light (3000 K of light temperature) increased the photosynthesis only. In addition, 1.0 g L-1 K+ treatment in water slightly reduced ROS levels and increased saponarin accumulation in YBL. These blue-rich light and K+ supplemental conditions relatively increased OGT expression and reduced 4-coumaric acid and isovitexin as saponarin precursors. Furthermore, the relative ratio of lutonarin as an oxidized product of saponarin increased in increments of light quantity. Finally, the abiotic conditions for saponarin production were optimized with the mixture solution treatment of 1.0 g L-1 Na+ and 1.0 g L-1 K+ under 500 PPFD of 6500 K light, and the saponarin amount per leaf was 219.5 μg plant-1; it was comparable amount with that under sunlight condition.
Collapse
Affiliation(s)
- Deuk-Yeong Lee
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang-Woo Kang
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Seong Kim
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Yeon Bae
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Haeng-Lim Lee
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - HanGyeol Lee
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Woo-Duck Seo
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yu-Sin Jang
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Hyo Kim
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Tamang A, Swarnkar M, Kumar P, Kumar D, Pandey SS, Hallan V. Endomicrobiome of in vitro and natural plants deciphering the endophytes-associated secondary metabolite biosynthesis in Picrorhiza kurrooa, a Himalayan medicinal herb. Microbiol Spectr 2023; 11:e0227923. [PMID: 37811959 PMCID: PMC10715050 DOI: 10.1128/spectrum.02279-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Picrorhiza kurrooa is a major source of picrosides, potent hepatoprotective molecules. Due to the ever-increasing demands, overexploitation has caused an extensive decline in its population in the wild and placed it in the endangered plants' category. At present plant in-vitro systems are widely used for the sustainable generation of P. kurrooa plants, and also for the conservation of other commercially important, rare, endangered, and threatened plant species. Furthermore, the in-vitro-generated plants had reduced content of therapeutic secondary metabolites compared to their wild counterparts, and the reason behind, not well-explored. Here, we revealed the loss of plant-associated endophytic communities during in-vitro propagation of P. kurrooa plants which also correlated to in-planta secondary metabolite biosynthesis. Therefore, this study emphasized to consider the essential role of plant-associated endophytic communities in in-vitro practices which may be the possible reason for reduced secondary metabolites in in-vitro plants.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
7
|
Duan Y, Han M, Grimm M, Schierstaedt J, Imani J, Cardinale M, Le Jean M, Nesme J, Sørensen SJ, Schikora A. Hordeum vulgare differentiates its response to beneficial bacteria. BMC PLANT BIOLOGY 2023; 23:460. [PMID: 37789272 PMCID: PMC10548682 DOI: 10.1186/s12870-023-04484-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored. RESULTS This study used the soil-borne Ensifer meliloti, as well as Pantoea sp. and Pseudomonas sp. isolated from barley seeds, individually. The results demonstrated that those bacteria persisted in the rhizosphere but with different colonization patterns. Although root-leaf translocation was not observed, all three bacteria induced systemic resistance (ISR) against foliar fungal pathogens. Transcriptome analysis revealed that ion- and stress-related genes were regulated in plants that first encountered bacteria. Iron homeostasis and heat stress responses were involved in the response to E. meliloti and Pantoea sp., even if the iron content was not altered. Heat shock protein-encoding genes responded to inoculation with Pantoea sp. and Pseudomonas sp. Furthermore, bacterial inoculation affected the composition of seed endophytes. Investigation of the following generation indicated that the enhanced resistance was not heritable. CONCLUSIONS Here, using barley as a model, we highlighted different responses to three different beneficial bacteria as well as the influence of soil-borne Ensifer meliloti on the seed microbiome. In total, these results can help to understand the interaction between ISR-triggering bacteria and a crop plant, which is essential for the application of biological agents in sustainable agriculture.
Collapse
Affiliation(s)
- Yongming Duan
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany
| | - Min Han
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany
| | - Maja Grimm
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany
| | - Jasper Schierstaedt
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) - Department Plant-Microbe Systems, Theodor-Echtermeyer Weg 1, 14979, Großbeeren, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP6 Lecce- Monteroni, Lecce, 73100, Italy
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Marie Le Jean
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS, Université de Lorraine, 8 rue du Général Delestraint, Metz, 57070, France
| | - Joseph Nesme
- Department of Biology, Section of Microbiology, Copenhagen University, Universitetsparken 15, Copenhagen, 2100, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, Copenhagen University, Universitetsparken 15, Copenhagen, 2100, Denmark
| | - Adam Schikora
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany.
| |
Collapse
|
8
|
Kantharaj V, Yoon YE, Lee KA, Choe H, Chohra H, Seo WD, Kim YN, Lee YB. Saponarin, a Di-glycosyl Flavone from Barley ( Hordeum vulgare L.): An Effective Compound for Plant Defense and Therapeutic Application. ACS OMEGA 2023; 8:22285-22295. [PMID: 37396229 PMCID: PMC10308553 DOI: 10.1021/acsomega.3c00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Saponarin (SA) is a major di-C-glycosyl-O-glycosyl flavone, which is predominantly accumulated in the young green leaves of barley (Hordeum vulgare L.), with numerous biological functions in plants, such as protection against environmental stresses. Generally, SA synthesis and its localization in the mesophyll vacuole or leaf epidermis are largely stimulated in response to biotic and abiotic stresses to participate in a plant's defense response. In addition, SA is also credited for its pharmacological properties, such as the regulation of signaling pathways associated with antioxidant and anti-inflammatory responses. In recent years, many researchers have shown the potential of SA to treat oxidative and inflammatory disorders, such as in protection against liver diseases, and reducing blood glucose, along with antiobesity effects. This review aims to highlight natural variations of SA in plants, biosynthesis pathway, and SA's role in response to environmental stress and implications in various therapeutic applications. In addition, we also discuss the challenges and knowledge gaps concerning SA use and commercialization.
Collapse
Affiliation(s)
- Vimalraj Kantharaj
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young-Eun Yoon
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keum-Ah Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonji Choe
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Hadjer Chohra
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Woo Duck Seo
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Nam Kim
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Yong Bok Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| |
Collapse
|
9
|
Vrábl D, Nezval J, Pech R, Volná A, Mašková P, Pleva J, Kuzniciusová N, Provazová M, Štroch M, Špunda V. Light Drives and Temperature Modulates: Variation of Phenolic Compounds Profile in Relation to Photosynthesis in Spring Barley. Int J Mol Sci 2023; 24:ijms24032427. [PMID: 36768753 PMCID: PMC9916737 DOI: 10.3390/ijms24032427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Accumulation and metabolic profile of phenolic compounds (PheCs; serving as UV-screening pigments and antioxidants) as well as carbon fixation rate (An) and plant growth are sensitive to irradiance and temperature. Since these factors are naturally co-acting in the environment, it is worthy to study the combined effects of these environmental factors to assess their possible physiological consequences. We investigated how low and high irradiance in combination with different temperatures modify the metabolic profile of PheCs and expression of genes involved in the antioxidative enzyme and PheCs biosynthesis, in relation to photosynthetic activity and availability of non-structural carbohydrates (NSC) in spring barley seedlings. High irradiance positively affected An, NSC, PheCs content, and antioxidant activity (AOX). High temperature led to decreased An, NSC, and increased dark respiration, whilst low temperature was accompanied by reduction of UV-A shielding but increase of PheCs content and AOX. Besides that, irradiance and temperature caused changes in the metabolic profile of PheCs, particularly alteration in homoorientin/isovitexin derivatives ratio, possibly related to demands on AOX-based protection. Moreover, we also observed changes in the ratio of sinapoyl-/feruloyl- acylated flavonoids, the function of which is not yet known. The data also strongly suggested that the NSC content may support the PheCs production.
Collapse
Affiliation(s)
- Daniel Vrábl
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Correspondence: (J.N.); (V.Š.)
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jan Pleva
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Nikola Kuzniciusová
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Michaela Provazová
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Michal Štroch
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Correspondence: (J.N.); (V.Š.)
| |
Collapse
|
10
|
The Role of Quorum Sensing Molecules in Bacterial-Plant Interactions. Metabolites 2023; 13:metabo13010114. [PMID: 36677039 PMCID: PMC9863971 DOI: 10.3390/metabo13010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Quorum sensing (QS) is a system of communication of bacterial cells by means of chemical signals called autoinducers, which modulate the behavior of entire populations of Gram-negative and Gram-positive bacteria. Three classes of signaling molecules have been recognized, Al-1, Al-2, Al-3, whose functions are slightly different. However, the phenomenon of quorum sensing is not only concerned with the interactions between bacteria, but the whole spectrum of interspecies interactions. A growing number of research results confirm the important role of QS molecules in the growth stimulation and defense responses in plants. Although many of the details concerning the signaling metabolites of the rhizosphere microflora and plant host are still unknown, Al-1 compounds should be considered as important components of bacterial-plant interactions, leading to the stimulation of plant growth and the biological control of phytopathogens. The use of class 1 autoinducers in plants to induce beneficial activity may be a practical solution to improve plant productivity under field conditions. In addition, researchers are also interested in tools that offer the possibility of regulating the activity of autoinducers by means of degrading enzymes or specific inhibitors (QSI). Current knowledge of QS and QSI provides an excellent foundation for the application of research to biopreparations in agriculture, containing a consortia of AHL-producing bacteria and QS inhibitors and limiting the growth of phytopathogenic organisms.
Collapse
|
11
|
Du J, Liu Y, Zhu H. Genome-based analyses of the genus Acidovorax: proposal of the two novel genera Paracidovorax gen. nov., Paenacidovorax gen. nov. and the reclassification of Acidovorax antarcticus as Comamonas antarctica comb. nov. and emended description of the genus Acidovorax. Arch Microbiol 2022; 205:42. [PMID: 36574033 DOI: 10.1007/s00203-022-03379-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
The genus Acidovorax is a genetically heterogeneous species clustering that comprises many environmental and plant-pathogenic taxa. To better understand the evolutionary relationships among the Acidovorax species, 22 available genome sequences of type strains including the genera Acidovorax and Comamonas were used to conduct the genome-based analyses. Three well-supported monophyletic clusters of the Acidovorax species were determined based on the phylogenomic tree reconstructed using core genes, while they were not grouped in the 16S rRNA gene-based phylogenetic tree. The species arrangements of the genus Acidovorax were further confirmed by the comparisons of the digital DNA-DNA hybridization and average nucleotide identity (ANI) values. The ANI, average amino acid identity, and the percentage of conserved proteins values among the inter-clusters were approximately 83, 81, and 61%, respectively, and thus were proposed as practical thresholds for genus delineation. Besides, Acidovorax antarcticus was much closer to members of the genus Comamonas rather than those of the genus Acidovorax based on the genome-based analysis. Taken together, we propose the division of the current genus Acidovorax into the emended genus Acidovorax and the two novel genera Paracidovorax gen. nov., Paenacidovorax gen. nov. and the transfer of Acidovorax antarcticus into the genus Comamonas as Comamonas antarctica comb. nov.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Building 66, Xianlie Middle Road 100, Guangzhou, 510070, Guangdong Province, People's Republic of China
| | - Yang Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Building 66, Xianlie Middle Road 100, Guangzhou, 510070, Guangdong Province, People's Republic of China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Building 66, Xianlie Middle Road 100, Guangzhou, 510070, Guangdong Province, People's Republic of China.
| |
Collapse
|
12
|
Wang L, Chen M, Lam PY, Dini-Andreote F, Dai L, Wei Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. MICROBIOME 2022; 10:233. [PMID: 36527160 PMCID: PMC9756786 DOI: 10.1186/s40168-022-01420-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/09/2022] [Indexed: 05/07/2023]
Abstract
Plant-microbe interactions dynamically affect plant growth, health, and development. The mechanisms underpinning these associations are-to a large extent-mediated by specialized host-derived secondary metabolites. Flavonoids are one of the most studied classes of such metabolites, regulating both plant development and the interaction with commensal microbes. Here, we provide a comprehensive review of the multiple roles of flavonoids in mediating plant-microbe interactions. First, we briefly summarize the general aspects of flavonoid synthesis, transport, and exudation in plants. Then, we review the importance of flavonoids regulating plant-microbe interactions and dynamically influencing the overall community assembly of plant-root microbiomes. Last, we highlight potential knowledge gaps in our understanding of how flavonoids determine the interactions between plants and commensal microbes. Collectively, we advocate the importance of advancing research in this area toward innovative strategies to effectively manipulate plant-microbiome composition, in this case, via flavonoid production and exudation in plant roots. Video Abstract.
Collapse
Affiliation(s)
- Lanxiang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Moxian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pui-Ying Lam
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
13
|
Kuhl-Nagel T, Rodriguez PA, Gantner I, Chowdhury SP, Schwehn P, Rosenkranz M, Weber B, Schnitzler JP, Kublik S, Schloter M, Rothballer M, Falter-Braun P. Novel Pseudomonas sp. SCA7 Promotes Plant Growth in Two Plant Families and Induces Systemic Resistance in Arabidopsis thaliana. Front Microbiol 2022; 13:923515. [PMID: 35875540 PMCID: PMC9297469 DOI: 10.3389/fmicb.2022.923515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas sp. SCA7, characterized in this study, was isolated from roots of the bread wheat Triticum aestivum. Sequencing and annotation of the complete SCA7 genome revealed that it represents a potential new Pseudomonas sp. with a remarkable repertoire of plant beneficial functions. In vitro and in planta experiments with the reference dicot plant A. thaliana and the original monocot host T. aestivum were conducted to identify the functional properties of SCA7. The isolate was able to colonize roots, modify root architecture, and promote growth in A. thaliana. Moreover, the isolate increased plant fresh weight in T. aestivum under unchallenged conditions. Gene expression analysis of SCA7-inoculated A. thaliana indicated a role of SCA7 in nutrient uptake and priming of plants. Moreover, confrontational assays of SCA7 with fungal and bacterial plant pathogens revealed growth restriction of the pathogens by SCA7 in direct as well as indirect contact. The latter indicated involvement of microbial volatile organic compounds (mVOCs) in this interaction. Gas chromatography-mass spectrometry (GC-MS) analyses revealed 1-undecene as the major mVOC, and octanal and 1,4-undecadiene as minor abundant compounds in the emission pattern of SCA7. Additionally, SCA7 enhanced resistance of A. thaliana against infection with the plant pathogen Pseudomonas syringae pv. tomato DC3000. In line with these results, SA- and JA/ET-related gene expression in A. thaliana during infection with Pst DC3000 was upregulated upon treatment with SCA7, indicating the ability of SCA7 to induce systemic resistance. The thorough characterization of the novel Pseudomonas sp. SCA7 showed a remarkable genomic and functional potential of plant beneficial traits, rendering it a promising candidate for application as a biocontrol or a biostimulation agent.
Collapse
Affiliation(s)
- Theresa Kuhl-Nagel
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patricia Antonia Rodriguez
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabella Gantner
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patrick Schwehn
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Baris Weber
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
14
|
Pech R, Volná A, Hunt L, Bartas M, Červeň J, Pečinka P, Špunda V, Nezval J. Regulation of Phenolic Compound Production by Light Varying in Spectral Quality and Total Irradiance. Int J Mol Sci 2022; 23:ijms23126533. [PMID: 35742975 PMCID: PMC9223736 DOI: 10.3390/ijms23126533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Photosynthetically active radiation (PAR) is an important environmental cue inducing the production of many secondary metabolites involved in plant oxidative stress avoidance and tolerance. To examine the complex role of PAR irradiance and specific spectral components on the accumulation of phenolic compounds (PheCs), we acclimated spring barley (Hordeum vulgare) to different spectral qualities (white, blue, green, red) at three irradiances (100, 200, 400 µmol m−2 s−1). We confirmed that blue light irradiance is essential for the accumulation of PheCs in secondary barley leaves (in UV-lacking conditions), which underpins the importance of photoreceptor signals (especially cryptochrome). Increasing blue light irradiance most effectively induced the accumulation of B-dihydroxylated flavonoids, probably due to the significantly enhanced expression of the F3′H gene. These changes in PheC metabolism led to a steeper increase in antioxidant activity than epidermal UV-A shielding in leaf extracts containing PheCs. In addition, we examined the possible role of miRNAs in the complex regulation of gene expression related to PheC biosynthesis.
Collapse
Affiliation(s)
- Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
| | - Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Praha, Czech Republic;
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (M.B.); (J.Č.); (P.P.)
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Correspondence: (V.Š.); (J.N.)
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (R.P.); (A.V.)
- Correspondence: (V.Š.); (J.N.)
| |
Collapse
|
15
|
Bziuk N, Maccario L, Sørensen SJ, Schikora A, Smalla K. Barley Rhizosphere Microbiome Transplantation – A Strategy to Decrease Susceptibility of Barley Grown in Soils With Low Microbial Diversity to Powdery Mildew. Front Microbiol 2022; 13:830905. [PMID: 35685930 PMCID: PMC9173696 DOI: 10.3389/fmicb.2022.830905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Beneficial bacteria in the rhizosphere are known to trigger faster and stronger plant immune responses to biotic and abiotic stressors. In the present study, we aimed to test the hypothesis that a rhizosphere microbiome transplant (RMT) may improve the immune response and reduce the disease rates of barley (Hordeum vulgare). This hypothesis was tested in a greenhouse system with the powdery mildew-causing fungus Blumeria graminis f. sp. hordei (Bgh). Detached rhizosphere microbiome from barley grown in a field soil was transplanted to barley seedlings grown in potting soil with reduced microbial diversity. Saline-treated plants served as control. At the three-leaf stage, barley was infected with Bgh. Decreased susceptibility to Bgh was observed for barley treated with the RMT as displayed by lower Bgh pustule counts in a detached leaf assay. A trend toward enhanced relative transcript abundances of the defense-related genes PR1b and PR17b was observed in leaves, 24 h after the Bgh challenge, when compared to the control. Moreover, 10 days after the Bgh challenge, the barley rhizosphere microbiome was harvested and analyzed by sequencing of 16S rRNA gene amplicons. The microbial community composition was significantly influenced by the RMT and displayed higher microbial diversity compared to the control. Furthermore, microbial beta-diversity and predicted functional profiles revealed a treatment-dependent clustering. Bacterial isolates from the RMT showed in vitro plant beneficial traits related to induced resistance. Our results showed that transplantation of a rhizosphere microbiome could be a sustainable strategy to improve the health of plants grown in potting soil with low microbial diversity under greenhouse conditions.
Collapse
Affiliation(s)
- Nina Bziuk
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Lorrie Maccario
- Section of Microbiology, Copenhagen University, Copenhagen, Denmark
| | | | - Adam Schikora
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- *Correspondence: Kornelia Smalla,
| |
Collapse
|
16
|
Jamil F, Mukhtar H, Fouillaud M, Dufossé L. Rhizosphere Signaling: Insights into Plant-Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022; 10:microorganisms10050899. [PMID: 35630345 PMCID: PMC9147336 DOI: 10.3390/microorganisms10050899] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rhizospheric plant-microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant-microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.
Collapse
Affiliation(s)
- Fatima Jamil
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Mireille Fouillaud
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France;
| |
Collapse
|
17
|
Babenko LM, Kosakivska IV, Romanenko КО. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biol Int 2021; 46:523-534. [PMID: 34937124 DOI: 10.1002/cbin.11749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022]
Abstract
N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Lidia M Babenko
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna V Kosakivska
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Кateryna О Romanenko
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
18
|
Siani R, Stabl G, Gutjahr C, Schloter M, Radl V. Acidovorax pan-genome reveals specific functional traits for plant beneficial and pathogenic plant-associations. Microb Genom 2021; 7. [PMID: 34889729 PMCID: PMC8767351 DOI: 10.1099/mgen.0.000666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Beta-proteobacteria belonging to the genus Acidovorax have been described from various environments. Many strains can interact with a range of hosts, including humans and plants, forming neutral, beneficial or detrimental associations. In the frame of this study, we investigated the genomic properties of 52 bacterial strains of the genus Acidovorax, isolated from healthy roots of Lotus japonicus, with the intent of identifying traits important for effective plant-growth promotion. Based on single-strain inoculation bioassays with L. japonicus, performed in a gnotobiotic system, we distinguished seven robust plant-growth promoting strains from strains with no significant effects on plant-growth. We showed that the genomes of the two groups differed prominently in protein families linked to sensing and transport of organic acids, production of phytohormones, as well as resistance and production of compounds with antimicrobial properties. In a second step, we compared the genomes of the tested isolates with those of plant pathogens and free-living strains of the genus Acidovorax sourced from public repositories. Our pan-genomics comparison revealed features correlated with commensal and pathogenic lifestyle. We showed that commensals and pathogens differ mostly in their ability to use plant-derived lipids and in the type of secretion-systems being present. Most free-living Acidovorax strains did not harbour any secretion-systems. Overall, our data indicate that Acidovorax strains undergo extensive adaptations to their particular lifestyle by horizontal uptake of novel genetic information and loss of unnecessary genes.
Collapse
Affiliation(s)
- Roberto Siani
- Helmholtz Center for Environmental Health, Institute for Comparative Microbiome Analysis, Ingolstaedter Landstr, Oberschleissheim, Germany.,Technical University of Munich, School of Life Sciences, Chair for Soil Science, Freising, Germany
| | - Georg Stabl
- Technical University of Munich, School of Life Sciences, Plant Genetics, Freising, Germany
| | - Caroline Gutjahr
- Technical University of Munich, School of Life Sciences, Plant Genetics, Freising, Germany
| | - Michael Schloter
- Helmholtz Center for Environmental Health, Institute for Comparative Microbiome Analysis, Ingolstaedter Landstr, Oberschleissheim, Germany.,Technical University of Munich, School of Life Sciences, Chair for Soil Science, Freising, Germany
| | - Viviane Radl
- Helmholtz Center for Environmental Health, Institute for Comparative Microbiome Analysis, Ingolstaedter Landstr, Oberschleissheim, Germany
| |
Collapse
|
19
|
Importance of N-Acyl-Homoserine Lactone-Based Quorum Sensing and Quorum Quenching in Pathogen Control and Plant Growth Promotion. Pathogens 2021; 10:pathogens10121561. [PMID: 34959516 PMCID: PMC8706166 DOI: 10.3390/pathogens10121561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The biological control of plant pathogens is linked to the composition and activity of the plant microbiome. Plant-associated microbiomes co-evolved with land plants, leading to plant holobionts with plant-beneficial microbes but also with plant pathogens. A diverse range of plant-beneficial microbes assists plants to reach their optimal development and growth under both abiotic and biotic stress conditions. Communication within the plant holobiont plays an important role, and besides plant hormonal interactions, quorum-sensing signalling of plant-associated microbes plays a central role. Quorum-sensing (QS) autoinducers, such as N-acyl-homoserine lactones (AHL) of Gram-negative bacteria, cause a pronounced interkingdom signalling effect on plants, provoking priming processes of pathogen defence and insect pest control. However, plant pathogenic bacteria also use QS signalling to optimise their virulence; these QS activities can be controlled by quorum quenching (QQ) and quorum-sensing inhibition (QSI) approaches by accompanying microbes and also by plants. Plant growth-promoting bacteria (PGPB) have also been shown to demonstrate QQ activity. In addition, some PGPB only harbour genes for AHL receptors, so-called luxR-solo genes, which can contribute to plant growth promotion and biological control. The presence of autoinducer solo receptors may reflect ongoing microevolution processes in microbe–plant interactions. Different aspects of QS systems in bacteria–plant interactions of plant-beneficial and pathogenic bacteria will be discussed, and practical applications of bacteria with AHL-producing or -quenching activity; QS signal molecules stimulating pathogen control and plant growth promotion will also be presented.
Collapse
|
20
|
Bziuk N, Maccario L, Straube B, Wehner G, Sørensen SJ, Schikora A, Smalla K. The treasure inside barley seeds: microbial diversity and plant beneficial bacteria. ENVIRONMENTAL MICROBIOME 2021; 16:20. [PMID: 34711269 PMCID: PMC8554914 DOI: 10.1186/s40793-021-00389-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Bacteria associated with plants can enhance the plants' growth and resistance against phytopathogens. Today, growers aim to reduce the use of mineral fertilizers and pesticides. Since phytopathogens cause severe yield losses in crop production systems, biological alternatives gain more attention. Plant and also seed endophytes have the potential to influence the plant, especially seed-borne bacteria may express their beneficiary impact at initial plant developmental stages. In the current study, we assessed the endophytic seed microbiome of seven genetically diverse barley accessions by 16S rRNA gene amplicon sequencing and verified the in vitro plant beneficial potential of isolated seed endophytes. Furthermore, we investigated the impact of the barley genotype and its seed microbiome on the rhizosphere microbiome at an early growth stage by 16S rRNA gene amplicon sequencing. RESULTS The plant genotype displayed a significant impact on the microbiota in both barley seed and rhizosphere. Consequently, the microbial alpha- and beta-diversity of the endophytic seed microbiome was highly influenced by the genotype. Interestingly, no correlation was observed between the endophytic seed microbiome and the single nucleotide polymorphisms of the seven genotypes. Unclassified members of Enterobacteriaceae were by far most dominant. Other abundant genera in the seed microbiome belonged to Curtobacterium, Paenibacillus, Pantoea, Sanguibacter and Saccharibacillus. Endophytes isolated from barley seeds were affiliated to dominant genera of the core seed microbiome, based on their 16S rRNA gene sequence. Most of these endophytic isolates produced in vitro plant beneficial secondary metabolites known to induce plant resistance. CONCLUSION Although barley accessions representing high genetic diversity displayed a genotype-dependent endophytic seed microbiome, a core seed microbiome with high relative abundances was identified. Endophytic isolates were affiliated to members of the core seed microbiome and many of them showed plant beneficial properties. We propose therefore that new breeding strategies should consider genotypes with high abundance of beneficial microbes.
Collapse
Affiliation(s)
- Nina Bziuk
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Lorrie Maccario
- Section of Microbiology, Copenhagen University, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Benjamin Straube
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Søren J. Sørensen
- Section of Microbiology, Copenhagen University, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
21
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
22
|
Lu H, Wei T, Lou H, Shu X, Chen Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J Fungi (Basel) 2021; 7:719. [PMID: 34575757 PMCID: PMC8466524 DOI: 10.3390/jof7090719] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Endophytic fungi infect plant tissues by evading the immune response, potentially stimulating stress-tolerant plant growth. The plant selectively allows microbial colonization to carve endophyte structures through phenotypic genes and metabolic signals. Correspondingly, fungi develop various adaptations through symbiotic signal transduction to thrive in mycorrhiza. Over the past decade, the regulatory mechanism of plant-endophyte interaction has been uncovered. Currently, great progress has been made on plant endosphere, especially in endophytic fungi. Here, we systematically summarize the current understanding of endophytic fungi colonization, molecular recognition signal pathways, and immune evasion mechanisms to clarify the transboundary communication that allows endophytic fungi colonization and homeostatic phytobiome. In this work, we focus on immune signaling and recognition mechanisms, summarizing current research progress in plant-endophyte communication that converge to improve our understanding of endophytic fungi.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Xiaoli Shu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| |
Collapse
|
23
|
Kuhl T, Chowdhury SP, Uhl J, Rothballer M. Genome-Based Characterization of Plant-Associated Rhodococcus qingshengii RL1 Reveals Stress Tolerance and Plant-Microbe Interaction Traits. Front Microbiol 2021; 12:708605. [PMID: 34489897 PMCID: PMC8416521 DOI: 10.3389/fmicb.2021.708605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Stress tolerant, plant-associated bacteria can play an important role in maintaining a functional plant microbiome and protecting plants against various (a)biotic stresses. Members of the stress tolerant genus Rhodococcus are frequently found in the plant microbiome. Rhodococcus qingshengii RL1 was isolated from Eruca sativa and the complete genome was sequenced, annotated and analyzed using different bioinformatic tools. A special focus was laid on functional analyses of stress tolerance and interactions with plants. The genome annotation of RL1 indicated that it contains a repertoire of genes which could enable it to survive under different abiotic stress conditions for e.g., elevated mercury concentrations, to interact with plants via root colonization, to produce phytohormones and siderophores, to fix nitrogen and to interact with bacterial signaling via a LuxR-solo and quorum quenching. Based on the identified genes, functional analyses were performed in vitro with RL1 under different growth conditions. The R. qingshengii type strain djl6 and a closely related Rhodococcus erythropolis BG43 were included in the experiments to find common and distinct traits between the strains. Genome based phylogenetic analysis of 15 available and complete R. erythropolis and R. qingshengii genome sequences revealed a separation of the R. erythropolis clade in two subgroups. First one harbors only R. erythropolis strains including the R. erythropolis type strain. The second group consisted of the R. qingshengii type strain and a mix of R. qingshengii and R. erythropolis strains indicating that some strains of the second group should be considered for taxonomic re-assignment. However, BG43 was clearly identified as R. erythropolis and RL1 clearly as R. qingshengii and the strains had most tested traits in common, indicating a close functional overlap of traits between the two species.
Collapse
Affiliation(s)
- Theresa Kuhl
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jenny Uhl
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
24
|
Bziuk N, Maccario L, Douchkov D, Lueck S, Babin D, Sørensen SJ, Schikora A, Smalla K. Tillage shapes the soil and rhizosphere microbiome of barley-but not its susceptibility towards Blumeria graminis f. sp. hordei. FEMS Microbiol Ecol 2021; 97:6129324. [PMID: 33544837 DOI: 10.1093/femsec/fiab018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Long-term agricultural practices are assumed to shape the rhizosphere microbiome of crops with implications for plant health. In a long-term field experiment, we investigated the effect of different tillage and fertilization practices on soil and barley rhizosphere microbial communities by means of amplicon sequencing of 16S rRNA gene fragments from total community DNA. Differences in the microbial community composition depending on the tillage practice, but not the fertilization intensity were revealed. To examine whether these soil and rhizosphere microbiome differences influence the plant defense response, barley (cultivar Golden Promise) was grown in field or standard potting soil under greenhouse conditions and challenged with Blumeria graminis f. sp. hordei (Bgh). Amplicon sequence analysis showed that preceding tillage practice, but also aboveground Bgh challenge significantly influenced the microbial community composition. Expression of plant defense-related genes PR1b and PR17b was higher in challenged compared to unchallenged plants. The Bgh infection rates were strikingly lower for barley grown in field soil compared to potting soil. Although previous agricultural management shaped the rhizosphere microbiome, no differences in plant health were observed. We propose therefore that the management-independent higher microbial diversity of field soils compared to potting soils contributed to the low infection rates of barley.
Collapse
Affiliation(s)
- Nina Bziuk
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Lorrie Maccario
- Copenhagen University, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Dimitar Douchkov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Corrensstraße 3, 06466 Seeland, Germany
| | - Stefanie Lueck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Corrensstraße 3, 06466 Seeland, Germany
| | - Doreen Babin
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Søren J Sørensen
- Copenhagen University, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
25
|
Babin D, Sommermann L, Chowdhury SP, Behr JH, Sandmann M, Neumann G, Nesme J, Sørensen SJ, Schellenberg I, Rothballer M, Geistlinger J, Smalla K, Grosch R. Distinct rhizomicrobiota assemblages and plant performance in lettuce grown in soils with different agricultural management histories. FEMS Microbiol Ecol 2021; 97:fiab027. [PMID: 33571366 DOI: 10.1093/femsec/fiab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
A better understanding of factors shaping the rhizosphere microbiota is important for sustainable crop production. We hypothesized that the effect of agricultural management on the soil microbiota is reflected in the assemblage of the rhizosphere microbiota with implications for plant performance. We designed a growth chamber experiment growing the model plant lettuce under controlled conditions in soils of a long-term field experiment with contrasting histories of tillage (mouldboard plough vs cultivator tillage), fertilization intensity (intensive standard nitrogen (N) + pesticides/growth regulators vs extensive reduced N without fungicides/growth regulators), and last standing field crop (rapeseed vs winter wheat). High-throughput sequencing of bacterial and archaeal 16S rRNA genes and fungal ITS2 regions amplified from total community DNA showed that these factors shaped the soil and rhizosphere microbiota of lettuce, however, to different extents among the microbial domains. Pseudomonas and Olpidium were identified as major indicators for agricultural management in the rhizosphere of lettuce. Long-term extensive fertilization history of soils resulted in higher lettuce growth and increased expression of genes involved in plant stress responses compared to intensive fertilization. Our work adds to the increasing knowledge on how soil microbiota can be manipulated by agricultural management practices which could be harnessed for sustainable crop production.
Collapse
Affiliation(s)
- Doreen Babin
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Loreen Sommermann
- Anhalt University of Applied Sciences, Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jan H Behr
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Martin Sandmann
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Günter Neumann
- University of Hohenheim, Institute of Crop Science, Department of Nutritional Crop Physiology, Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Joseph Nesme
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Søren J Sørensen
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Ingo Schellenberg
- Anhalt University of Applied Sciences, Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Joerg Geistlinger
- Anhalt University of Applied Sciences, Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
26
|
Naamala J, Smith DL. Microbial Derived Compounds, a Step Toward Enhancing Microbial Inoculants Technology for Sustainable Agriculture. Front Microbiol 2021; 12:634807. [PMID: 33679668 PMCID: PMC7930237 DOI: 10.3389/fmicb.2021.634807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Sustainable agriculture remains a focus for many researchers, in an effort to minimize environmental degradation and climate change. The use of plant growth promoting microorganisms (PGPM) is a hopeful approach for enhancing plant growth and yield. However, the technology faces a number of challenges, especially inconsistencies in the field. The discovery, that microbial derived compounds can independently enhance plant growth, could be a step toward minimizing shortfalls related to PGPM technology. This has led many researchers to engage in research activities involving such compounds. So far, the findings are promising as compounds have been reported to enhance plant growth under stressed and non-stressed conditions in a wide range of plant species. This review compiles current knowledge on microbial derived compounds, taking a reader through a summarized protocol of their isolation and identification, their relevance in present agricultural trends, current use and limitations, with a view to giving the reader a picture of where the technology has come from, and an insight into where it could head, with some suggestions regarding the probable best ways forward.
Collapse
Affiliation(s)
- Judith Naamala
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| | - Donald L Smith
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| |
Collapse
|
27
|
Hartmann A, Klink S, Rothballer M. Plant Growth Promotion and Induction of Systemic Tolerance to Drought and Salt Stress of Plants by Quorum Sensing Auto-Inducers of the N-acyl-homoserine Lactone Type: Recent Developments. FRONTIERS IN PLANT SCIENCE 2021; 12:683546. [PMID: 34135932 PMCID: PMC8200625 DOI: 10.3389/fpls.2021.683546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/06/2021] [Indexed: 05/12/2023]
Affiliation(s)
- Anton Hartmann
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
- *Correspondence: Anton Hartmann,
| | - Sophia Klink
- Institute of Network Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
28
|
Shrestha A, Schikora A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol 2020; 96:5957528. [DOI: 10.1093/femsec/fiaa226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
ABSTRACTBacteria communicate with each other through quorum sensing (QS) molecules. N-acyl homoserine lactones (AHL) are one of the most extensively studied groups of QS molecules. The role of AHL molecules is not limited to interactions between bacteria; they also mediate inter-kingdom interaction with eukaryotes. The perception mechanism of AHL is well-known in bacteria and several proteins have been proposed as putative receptors in mammalian cells. However, not much is known about the perception of AHL in plants. Plants generally respond to short-chained AHL with modification in growth, while long-chained AHL induce AHL-priming for enhanced resistance. Since plants may host several AHL-producing bacteria and encounter multiple AHL at once, a coordinated response is required. The effect of the AHL combination showed relatively low impact on growth but enhanced resistance. Microbial consortium of bacterial strains that produce different AHL could therefore be an interesting approach in sustainable agriculture. Here, we review the molecular and genetical basis required for AHL perception. We highlight recent advances in the field of AHL-priming. We also discuss the recent discoveries on the impact of combination(s) of multiple AHL on crop plants and the possible use of this knowledge in sustainable agriculture.
Collapse
Affiliation(s)
- Abhishek Shrestha
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
29
|
Pazarlar S, Cetinkaya N, Bor M, Kara RS. N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6638-6654. [PMID: 32822478 DOI: 10.1093/jxb/eraa384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
N-acyl-homoserine lactones (AHLs), a well-described group of quorum sensing molecules, may modulate plant defense responses and plant growth. However, there is limited knowledge regarding the defense responses of non-model crops to AHLs and the mechanism of action responsible for the modulation of defense responses against microbial pathogens. In the present study, long-chain N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) was shown to have a distinct potential to prime cucumber for enhanced defense responses against the biotrophic oomycete pathogen Pseudoperonospora cubensis and the hemibiotrophic bacterium Pseudomonas syringae pv. lachrymans. We provide evidence that AHL-mediated enhanced defense against downy mildew disease is based on cell wall reinforcement by lignin and callose deposition, the activation of defense-related enzymes (peroxidase, β-1,3-glucanase, phenylalanine ammonia-lyase), and the accumulation of reactive oxygen species (hydrogen peroxide, superoxide) and phenolic compounds. Quantitative analysis of salicylic acid and jasmonic acid, and transcriptional analysis of several of genes associated with these phytohormones, revealed that defense priming with oxo-C14-HSL is commonly regulated by the salicylic acid signaling pathway. We also show that treatment with short- (N-hexanoyl-l-homoserine lactone) and medium-chain (N-3-oxo-decanoyl-l-homoserine lactone) AHLs promoted primary root elongation and modified root architecture, respectively, resulting in enhanced plant growth.
Collapse
Affiliation(s)
- Sercan Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Nedim Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Melike Bor
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Recep Serdar Kara
- Department of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
30
|
Nawaz MS, Arshad A, Rajput L, Fatima K, Ullah S, Ahmad M, Imran A. Growth-Stimulatory Effect of Quorum Sensing Signal Molecule N-Acyl-Homoserine Lactone-Producing Multi-Trait Aeromonas spp. on Wheat Genotypes Under Salt Stress. Front Microbiol 2020; 11:553621. [PMID: 33117303 PMCID: PMC7550764 DOI: 10.3389/fmicb.2020.553621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023] Open
Abstract
Salinity is one of the major threats to agricultural productivity worldwide. Soil and plant management practices, along with inoculation with plant-beneficial bacteria, play a key role in the plant’s tolerance toward salinity stress. The present study demonstrates the potential of acyl homoserine lactone (AHL)-producing plant growth promoting rhizobacteria (PGPR) strains of Aeromonas sp., namely, SAL-17 (accession no. HG763857) and SAL-21 (accession no. HG763858), for growth promotion of two wheat genotypes inherently different for salt tolerance potential. AHLs are the bacterial signal molecules that regulate the expression of various genes in bacteria and plants. Both Aeromonas spp., along with innate plant-growth-promoting (PGP) and salt tolerance traits, showed AHL production which was identified on tandem mass spectrometry as C6-HSL, 3-OH-C5-HSL, 3-OH-C6-HSL, 3-oxo-C7-HSL C10-HSL, 3-oxo-C10-HSL, 3-OH-C10-HSL, 3-oxo-C12-HSL and C6-HSL, and 3-oxo-C10-HSL. The exogenous application of purified AHLs (mix) significantly improved various root parameters at 200 mM NaCl in both salt-sensitive (SSG) and salt-tolerant (STG) genotypes, where the highest increase (≈80%) was observed where a mixture of both strains of AHLs was used. Confocal microscopic observations and root overlay assay revealed a strong root colonization potential of the two strains under salt stress. The inoculation response of both STG and SSG genotypes was evaluated with two AHL-producing strains (SAL-17 and SAL-21) and compared to non-AHL-producing Aeromonas sp. SAL-12 (accession no. HG763856) in saline (EC = 7.63 ms/cm2) and non-saline soil. The data reveal that plants inoculated with the bacterial consortium (SAL-21 + SAL-17) showed a maximum increase in leaf proline content, nitrate reductase activity, chlorophyll a/b, stomatal conductance, transpiration rate, root length, shoot length, and grain weight over non-inoculated plants grown in saline soil. Both STG and SSG showed relative effectiveness toward inoculation (percent increase for STG: 165–16%; SSG: 283–14%) and showed a positive correlation of grain yield with proline and nitrate reductase activity. Furthermore, principal component analysis (PCA) and categorical PCA analysis clearly showed an inoculation response in both genotypes, revealing the effectiveness of AHL-producing Aeromonas spp. than the non-AHL-producing strain. The present study documents that the consortium of salt-tolerant AHL-producing Aeromonas spp. is equally effective for sustaining the growth of STG as well as SSG wheat genotypes in saline soil, but biosafety should be fully ensured before field release.
Collapse
Affiliation(s)
- Muhammad Shoib Nawaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Ayesha Arshad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Lubna Rajput
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Plant Physiology and Biotechnology Institute, Agriculture Research Centre, Tandojam, Pakistan
| | - Kaneez Fatima
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sami Ullah
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Botany, Women University of Azad Jammu & Kashmir, Bagh, Bagh, Pakistan
| | - Muhammad Ahmad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
31
|
Viswanath G, Sekar J, Ramalingam PV. Detection of Diverse N-Acyl Homoserine Lactone Signalling Molecules Among Bacteria Associated with Rice Rhizosphere. Curr Microbiol 2020; 77:3480-3491. [PMID: 32918570 DOI: 10.1007/s00284-020-02183-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/25/2020] [Indexed: 11/27/2022]
Abstract
Bacterial communities communicate, regulate and coordinate their cooperative activities and physiological process by releasing, sensing and responding to small diffusible signal molecules such as acyl homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer-2, a process referred to as Quorum sensing (QS). The QS mediated communication in rhizosphere associated bacterial communities significantly influence traits governing plant-microbe interactions. This study aimed to identify AHL-mediated QS signals in bacterial communities associated with rice rhizosphere using two AHL biosensors reporter strains Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NTL4 (pZLR4). Approximately 375 bacterial isolates isolated from rice rhizosphere and screened using both the biosensors, detected 49 (13%) AHL positive isolates. The BOX-Polymerase Chain reaction (BOX-PCR) fingerprinting profiles of the 49 AHL positive isolates represented 11 distinct cluster groups. Subsequent 16S rRNA gene sequence analysis identified 11 different species affiliated to two different phyla; predominantly γ-proteobacteria, representing 5 genera and 1 genus in α-proteobacteria. Thin-layer chromatography (TLC) analysis detected diverse AHL profiles among the 11 AHL positive isolates with both substituted and unsubstituted acyl side chains of C4, C6 and C8 carbon. Further, AHL production in Acinetobacter lactucae, Aeromonas popoffii, Serratia oryzae, and Rhizobium wuzhouense is being reported for the first time. Detection of diverse AHLs from different groups of rhizobacteria associated with rice indicates that these signalling molecules may be involved in the regulation of rhizobacterial behaviour and symbiotic plant-microbe interactions. Future research on the role of AHLs in trans-kingdom communication particularly plant-microbe interaction using synthetic microbial community will enable in evaluating and developing potential plant specific bioproducts.
Collapse
Affiliation(s)
- Ganga Viswanath
- Microbiology Lab, M.S. Swaminathan Research Foundation, 3rd Cross Institutional Area, Taramani, Chennai, 600 113, India
| | - Jegan Sekar
- Microbiology Lab, M.S. Swaminathan Research Foundation, 3rd Cross Institutional Area, Taramani, Chennai, 600 113, India
| | | |
Collapse
|
32
|
Zytynska SE, Eicher M, Rothballer M, Weisser WW. Microbial-Mediated Plant Growth Promotion and Pest Suppression Varies Under Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:573578. [PMID: 33013998 PMCID: PMC7511531 DOI: 10.3389/fpls.2020.573578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/21/2020] [Indexed: 05/22/2023]
Abstract
Climate change is altering the dynamics of crop pests and diseases resulting in reduced crop yields. Using beneficial soil bacterial to increase crop health is a quickly developing area in sustainable agriculture, but it is unknown if climate change or interactions with other species could alter their effect. The plant growth-promoting rhizobacterium Acidovorax radicis N35 is known to increase barley (Hordeum vulgare) plant growth under laboratory conditions, and we tested the stability of the plant-bacterial interactions when exposed to elevated carbon dioxide (CO2) and ozone (O3) levels while infesting the aboveground leaves with cereal aphids (Sitobion avenae) and the soil with beneficial earthworms. Acidovorax radicis N35 increased plant growth and reduced insect growth - with greatest effect in a high-stress elevated O3 environment, but reduced effects under elevated CO2. Earthworms promoted both plant and insect growth, but inoculation with A. radicis N35 alleviated some of the earthworm-mediated increase in pest abundance, particularly in the ambient environment. The consistency of these beneficial effects highlights the potential of exploiting local species interactions for predicting and mitigating climate change effects in managed systems. We conclude that microbial bioprotectants have high potential for benefiting agriculture via plant-growth promotion and pest suppression.
Collapse
Affiliation(s)
- Sharon E. Zytynska
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Sharon E. Zytynska,
| | - Moritz Eicher
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
33
|
Hartmann A, Fischer D, Kinzel L, Chowdhury SP, Hofmann A, Baldani JI, Rothballer M. Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges - A review. J Adv Res 2019; 19:3-13. [PMID: 31341665 PMCID: PMC6629839 DOI: 10.1016/j.jare.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
Analyses of the spatial localization and the functions of bacteria in host plant habitats through in situ identification by immunological and molecular genetic techniques combined with high resolving microscopic tools and 3D-image analysis contributed substantially to a better understanding of the functional interplay of the microbiota in plants. Among the molecular genetic methods, 16S-rRNA genes were of central importance to reconstruct the phylogeny of newly isolated bacteria and to localize them in situ. However, they usually do not allow resolution for phylogenetic affiliations below genus level. Especially, the separation of opportunistic human pathogens from plant beneficial strains, currently allocated to the same species, needs genome-based resolving techniques. Whole bacterial genome sequences allow to discriminate phylogenetically closely related strains. In addition, complete genome sequences enable strain-specific monitoring for biotechnologically relevant strains. In this mini-review we present high resolving approaches for analysis of the composition and key functions of plant microbiota, focusing on interactions of diazotrophic plant growth promoting bacteria, like Azospirillum brasilense, with non-legume host plants. Combining high resolving microscopic analyses with specific immunological detection methods and molecular genetic tools, including especially transcriptome analyses of both the bacterial and plant partners, enables new insights into key traits of beneficial bacteria-plant interactions in holobiontic systems.
Collapse
Affiliation(s)
- Anton Hartmann
- Ludwig-Maximilians-Universität (LMU) München, Faculty of Biology, Host-Microbe interactions, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Doreen Fischer
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Linda Kinzel
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Andreas Hofmann
- EMBRAPA-Agrobiologia, Br 465, Km 07, Seropédica–RJ–CEP 23891-000, Brazil
| | - Jose Ivo Baldani
- EMBRAPA-Agrobiologia, Br 465, Km 07, Seropédica–RJ–CEP 23891-000, Brazil
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| |
Collapse
|
34
|
Ortiz-Castro R, López-Bucio J. Review: Phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:135-142. [PMID: 31084866 DOI: 10.1016/j.plantsci.2019.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 05/05/2023]
Abstract
Bacteria rely on chemical communication to sense the environment and to retrieve information on their population densities. Accordingly, a vast repertoire of molecules is released, which synchronizes expression of genes, coordinates behavior through a process termed quorum-sensing (QS), and determines the relationships with eukaryotic species. Already identified QS molecules from Gram negative bacteria can be grouped into two main classes, N-acyl-L-homoserine lactones (AHLs) and cyclodipeptides (CDPs), with roles in biofilm formation, bacterial virulence or symbiotic interactions. Noteworthy, plants detect each of these molecules, change their own gene expression programs, re-configurate root architecture, and activate defense responses, improving in this manner their adaptation to natural and agricultural ecosystems. AHLs may act as alarm signals, pathogen and/or microbe-associated molecular patterns, whereas CDPs function as hormonal mimics for plants via their putative interactions with the auxin receptor Transport Inhibitor Response1 (TIR1). A major challenge is to identify the molecular pathways of QS-mediated crosstalk and the plant receptors and interacting proteins for AHLs, CDPs and related signals.
Collapse
Affiliation(s)
- Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, C. P. 91070 Xalapa, Veracruz, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
35
|
Wen ZL, Yang MK, Du MH, Zhong ZZ, Lu YT, Wang GH, Hua XM, Fazal A, Mu CH, Yan SF, Zhen Y, Yang RW, Qi JL, Hong Z, Lu GH, Yang YH. Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Front Microbiol 2019; 10:1335. [PMID: 31275269 PMCID: PMC6591461 DOI: 10.3389/fmicb.2019.01335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
During the past decades, the effects of the transgenic crops on soil microbial communities have aroused widespread interest of scientists, which was mainly related to the health and growth of plants. In this study, the maize root-associated bacterial communities of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgenic glyphosate-tolerant (GT) maize line CC-2 (CC2) and its recipient variety Zhengdan958 (Z958) were compared at the tasseling and flowering stages by high-throughput sequencing of V3-V4 hypervariable regions of 16S rRNA gene (16S rDNA) amplicons via Illumina MiSeq. In addition, real-time quantitative PCR (qPCR) was also performed to analyze the nifH gene abundance between CC2 and Z958. Our results showed no significant difference in alpha/beta diversity of root-associated bacterial communities at the tasseling or flowering stage between CC2 and Z958 under field growth conditions. The relative abundances of the genera Bradyrhizobium and Bacillus including species B. cereus and B. muralis were significantly lower in the roots of CC2 than that of Z985 under field conditions. Both these species are regarded as plant growth promoting bacteria (PGPB), as they belong to both nitrogen-fixing and phosphate-solubilizing bacterial genera. The comparison of the relative abundance of nitrogen-fixing/phosphate-solubilizing bacteria at the class, order or family levels indicated that only one class Bacilli, one order Bacillales and one family Bacillaceae were found to be significantly lower in the roots of CC2 than that of Z985. These bacteria were also enriched in the roots and rhizospheric soil than in the surrounding soil at both two stages. Furthermore, the class Betaproteobacteria, the order Burkholderiales, the family Comamonadaceae, and the genus Acidovorax were significantly higher in the roots of CC2 than that of Z985 at the tasseling stage, meanwhile the order Burkholderiales and the family Comamonadaceae were also enriched in the roots than in the rhizospheric soil at both stages. Additionally, the nifH gene abundance at the tasseling stage in the rhizosphere soil also showed significant difference. The relative abundance of nifH gene was higher in the root samples and lower in the surrounding soil, which implicated that the roots of maize tend to be enriched in nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Zhong-Ling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Min-Kai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mei-Hang Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhao-Zhao Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Yun-Ting Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Gu-Hao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Xiao-Mei Hua
- Research Center for Soil Pollution Prevention and Control, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Chun-Hua Mu
- Shandong Academy of Agriculture Sciences, Jinan, China
| | - Shu-Feng Yan
- Henan Academy of Agriculture Sciences, Zhengzhou, China
| | - Yan Zhen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
36
|
Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems Biology of Plant-Microbiome Interactions. MOLECULAR PLANT 2019; 12:804-821. [PMID: 31128275 DOI: 10.1016/j.molp.2019.05.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 05/02/2023]
Abstract
In natural environments, plants are exposed to diverse microbiota that they interact with in complex ways. While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants, many microbes and microbial communities can have substantial beneficial effects on their plant host. Such beneficial effects include improved acquisition of nutrients, accelerated growth, resilience against pathogens, and improved resistance against abiotic stress conditions such as heat, drought, and salinity. However, the beneficial effects of bacterial strains or consortia on their host are often cultivar and species specific, posing an obstacle to their general application. Remarkably, many of the signals that trigger plant immune responses are molecularly highly similar and often identical in pathogenic and beneficial microbes. Thus, it is unclear what determines the outcome of a particular microbe-host interaction and which factors enable plants to distinguish beneficials from pathogens. To unravel the complex network of genetic, microbial, and metabolic interactions, including the signaling events mediating microbe-host interactions, comprehensive quantitative systems biology approaches will be needed.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Rothballer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Institute of Environmental Medicine (IEM), UNIKA-T, Technical University of Munich, Augsburg, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Science Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.
| |
Collapse
|
37
|
Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The Chemistry of Plant-Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:112. [PMID: 29479360 PMCID: PMC5811519 DOI: 10.3389/fpls.2018.00112] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Plant roots communicate with microbes in a sophisticated manner through chemical communication within the rhizosphere, thereby leading to biofilm formation of beneficial microbes and, in the case of plant growth-promoting rhizomicrobes/-bacteria (PGPR), resulting in priming of defense, or induced resistance in the plant host. The knowledge of plant-plant and plant-microbe interactions have been greatly extended over recent years; however, the chemical communication leading to priming is far from being well understood. Furthermore, linkage between below- and above-ground plant physiological processes adds to the complexity. In metabolomics studies, the main aim is to profile and annotate all exo- and endo-metabolites in a biological system that drive and participate in physiological processes. Recent advances in this field has enabled researchers to analyze 100s of compounds in one sample over a short time period. Here, from a metabolomics viewpoint, we review the interactions within the rhizosphere and subsequent above-ground 'signalomics', and emphasize the contributions that mass spectrometric-based metabolomic approaches can bring to the study of plant-beneficial - and priming events.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
38
|
Yang L, Danzberger J, Schöler A, Schröder P, Schloter M, Radl V. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome. FRONTIERS IN PLANT SCIENCE 2017; 8:1005. [PMID: 28663753 PMCID: PMC5471333 DOI: 10.3389/fpls.2017.01005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/26/2017] [Indexed: 05/19/2023]
Abstract
Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium, Paenibacillus, and Trabusiella. Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings.
Collapse
|