1
|
Koyama R, Suzuki A, Ohnishi K, Hikichi Y, Kiba A. Lipid transfer protein VAS inhibits the hypersensitive response via reactive oxygen species signaling in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1285-1299. [PMID: 39921679 PMCID: PMC11850974 DOI: 10.1093/jxb/erae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Lipid transfer proteins (LTPs) are small cysteine-rich soluble proteins that affect flower and seed development, cuticular wax deposition, and biotic and abiotic stress responses. We isolated an LTP-encoding gene homologous to LTPVAS in Nicotiana benthamiana and designated it LTP-VASCULAR TISSUE SIZE (NbLTPVAS). This gene was expressed in seeds, leaves, roots, and stems. Additionally, NbLTPVAS expression was induced by hypersensitive response (HR)-inducing agents. Cell death was accelerated and the phytopathogenic bacterial population decreased significantly in NbLTPVAS-silenced plants infected with the incompatible Ralstonia solanacearum strain 8107. The expression of HR marker gene hin1 in NbLTPVAS-silenced plants was markedly induced by R. solanacearum 8107, indicative of the acceleration of HR. HR cell death in NbLTPVAS-silenced plants was also promoted by the Agrobacterium-mediated expression of HR-inducing proteins including INF1, AvrA, and PopP1. Excessive production of reactive oxygen species (ROS) was detected in NbLTPVAS-silenced plants. The expression of NbrbohB (encoding a ROS-generating enzyme) also increased in NbLTPVAS-silenced plants, but the expression of the antioxidant enzyme-encoding genes NbSOD and NbAPX decreased. The silencing of both NbLTPVAS and NbrbohB adversely affected HR induction. Moreover, NbLTPVAS was secreted into the intercellular washing fluid. The transient expression of the full-length NbLTPVAS induced the expression of antioxidant genes, attenuated ROS production, and suppressed the induction of HR cell death. This is the first functional analysis of LTPVAS in plant-microbe interactions. Our study provides novel insights into the role of NbLTPVAS as a negative regulator of HR via ROS homeostasis in N. benthamiana.
Collapse
Affiliation(s)
- Rina Koyama
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akira Suzuki
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
2
|
Fang N, Jia C, Chen R, An J, Kang Z, Liu J. The wheat CC-NBS-LRR protein TaRGA3 confers resistance to stripe rust by suppressing ascorbate peroxidase 6 activity. PLANT PHYSIOLOGY 2024; 197:kiae603. [PMID: 39556767 DOI: 10.1093/plphys/kiae603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune receptors that activate innate immune responses upon sensing pathogen attack. However, the molecular mechanisms by which NLR proteins initiate downstream signal transduction pathways to counteract pathogen invasion remain poorly understood. In this study, we identified the wheat (Triticum aestivum) NLR protein Resistance Gene Analogs3 (TaRGA3), which was significantly upregulated during Puccinia striiformis f. sp. tritici (Pst) infection. TaRGA3 and its coiled-coil (CC) domain, localized to the cytoplasm and nucleus, can induce cell death in Nicotiana benthamiana. Virus-induced gene silencing and overexpression suggested that TaRGA3 contributed to wheat resistance to stripe rust by facilitating reactive oxygen species (ROS) accumulation. Yeast 2-hybrid, luciferase complementation imaging, and co-immunoprecipitation assays revealed that TaRGA3 interacted with wheat protein Ascorbate Peroxidase 6 (TaAPX6). Further analysis showed that TaAPX6 specifically targeted the CC domain of TaRGA3. The TaRGA3-TaAPX6 interplay led to reduced enzyme activity of TaAPX6. Notably, TaAPX6 negatively regulated wheat resistance to Pst by removing excessive ROS accompanying Pst-induced hypersensitive responses. Our findings reveal that TaRGA3 responding to Pst infection confers enhanced wheat resistance to stripe rust, possibly by suppressing TaAPX6-modulated ROS scavenging, and demonstrate that TaRGA3 can be used to engineer stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Nannan Fang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Conghui Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruolin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiarui An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Wang X, Zhang S, Xu B. Characterization of the Serine Protease TlSP1 from Trichoderma longibrachiatum T6 and Its Function in the Control of Heterodera avenae in Wheat. J Fungi (Basel) 2024; 10:569. [PMID: 39194895 DOI: 10.3390/jof10080569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Serine protease is an extracellular protease secreted by biocontrol fungi that can effectively control nematode diseases by degrading nematode eggshells and enhancing plant resistance. Trichoderma longibrachiatum T6, an important biocontrol fungus, has been demonstrated to effectively parasitize and degrade Heterodera avenae cysts, eggs, and second-stage juveniles (J2s). However, the genes that encoding serine protease and their functions in T. longibrachiatum T6 have not been thoroughly investigated. In this study, we successfully cloned and sequenced the serine protease gene TlSP1 in T. longibrachiatum T6. Our results revealed that the expression level of the TlSP1 gene was induced and significantly increased in T. longibrachiatum T6 after inoculation with H. avenae cysts. The full-length sequence of the coding region (CDS) of TlSP1 gene was 1230 bp and encoded a protein consisting of 409 amino acids. Upon the transformation of the TlSP1 gene into Pichia pastoris X33, the purified recombinant TlSP1 protein exhibited optimal activity at a temperature of 50 °C and pH 8.0. Following 4-10-day of treatment with the purified recombinant TlSP1 protein, the eggshells and content were dissolved and exuded. The number of nematodes invading wheat roots was reduced by 38.43% in the group treated with both TlSP1 and eggs on one side (P1+N) compared to the control group, while the number of nematodes invading wheat roots was reduced by 30.4% in the TlSP1 and eggs two-sided treatment group (P1/N). Furthermore, both the P1+N and P1/N treatments significantly upregulated genes associated with defense enzymes (TaPAL, TaCAT, TaSOD, and TaPOD), genes involved in the lignin synthesis pathway (TaC4H, Ta4CL2, TaCAD1, and TaCAD12), and salicylic acid (SA)-responsive genes (TaNPR1, TaPR1, and TaPR2) and led to the high expression of jasmonic acid (JA)-responsive genes (TaPR4, TaOPR3, and TaAOS2). This study has highlighted the significant role of the TlSP1 gene in facilitating H. avenae eggshells' dissolution, preventing nematode invasion in the host plant, and boosting plant resistance in wheat.
Collapse
Affiliation(s)
- Xiujuan Wang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
| | - Shuwu Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Li J, Zenda T, Liu S, Dong A, Wang Y, Liu X, Wang N, Duan H. Integrated Transcriptomic and Proteomic Analyses of Low-Nitrogen-Stress Tolerance and Function Analysis of ZmGST42 Gene in Maize. Antioxidants (Basel) 2023; 12:1831. [PMID: 37891910 PMCID: PMC10603844 DOI: 10.3390/antiox12101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Maize (Zea mays L.) is one of the major staple crops providing human food, animal feed, and raw material support for biofuel production. For its growth and development, maize requires essential macronutrients. In particular, nitrogen (N) plays an important role in determining the final yield and quality of a maize crop. However, the excessive application of N fertilizer is causing serious pollution of land area and water bodies. Therefore, cultivating high-yield and low-N-tolerant maize varieties is crucial for minimizing the nitrate pollution of land and water bodies. Here, based on the analysis of the maize leaf transcriptome and proteome at the grain filling stage, we identified 3957 differentially expressed genes (DEGs) and 329 differentially abundant proteins (DAPs) from the two maize hybrids contrasting in N stress tolerance (low-N-tolerant XY335 and low-N-sensitive HN138) and screened four sets of low-N-responsive genes and proteins through Venn diagram analysis. We identified 761 DEGs (253 up- and 508 down-regulated) specific to XY335, whereas 259 DEGs (198 up- and 61 down-regulated) were specific to HN138, and 59 DEGs (41 up- and 18 down-regulated) were shared between the two cultivars under low-N-stress conditions. Meanwhile, among the low-N-responsive DAPs, thirty were unique to XY335, thirty were specific to HN138, and three DAPs were shared between the two cultivars under low-N treatment. Key among those genes/proteins were leucine-rich repeat protein, DEAD-box ATP-dependent RNA helicase family proteins, copper transport protein, and photosynthesis-related proteins. These genes/proteins were involved in the MAPK signaling pathway, regulating membrane lipid peroxidation, and photosynthesis. Our results may suggest that XY335 better tolerates low-N stress than HN138, possibly through robust low-N-stress sensing and signaling, amplified protein phosphorylation and stress response, and increased photosynthesis efficiency, as well as the down-regulation of 'lavish' or redundant proteins to minimize N demand. Additionally, we screened glutathione transferase 42 (ZmGST42) and performed physiological and biochemical characterizations of the wild-type (B73) and gst42 mutant at the seedling stage. Resultantly, the wild-type exhibited stronger tolerance to low N than the mutant line. Our findings provide a better understanding of the molecular mechanisms underlying low-N tolerance during the maize grain filling stage and reveal key candidate genes for low-N-tolerance breeding in maize.
Collapse
Affiliation(s)
- Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou 075000, China;
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (J.L.); (T.Z.); (A.D.); (Y.W.); (X.L.)
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
5
|
Zhu F, Cao MY, Zhu PX, Zhang QP, Lam HM. Non-specific LIPID TRANSFER PROTEIN 1 enhances immunity against tobacco mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5236-5254. [PMID: 37246636 DOI: 10.1093/jxb/erad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins that play significant roles in biotic and abiotic stress responses; however, the molecular mechanism of their functions against viral infections remains unclear. In this study, we employed virus-induced gene-silencing and transgenic overexpression to functionally analyse a type-I nsLTP in Nicotiana benthamiana, NbLTP1, in the immunity response against tobacco mosaic virus (TMV). NbLTP1 was inducible by TMV infection, and its silencing increased TMV-induced oxidative damage and the production of reactive oxygen species (ROS), compromised local and systemic resistance to TMV, and inactivated the biosynthesis of salicylic acid (SA) and its downstream signaling pathway. The effects of NbLTP1-silencing were partially restored by application of exogenous SA. Overexpressing NbLTP1 activated genes related to ROS scavenging to increase cell membrane stability and maintain redox homeostasis, confirming that an early ROS burst followed by ROS suppression at the later phases of pathogenesis is essential for resistance to TMV infection. The cell-wall localization of NbLTP1 was beneficial to viral resistance. Overall, our results showed that NbLTP1 positively regulates plant immunity against viral infection through up-regulating SA biosynthesis and its downstream signaling component, NONEXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), which in turn activates pathogenesis-related genes, and by suppressing ROS accumulation at the later phases of viral pathogenesis.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Peng-Xiang Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Li Q, Zhai W, Wei J, Jia Y. Rice lipid transfer protein, OsLTPL23, controls seed germination by regulating starch-sugar conversion and ABA homeostasis. Front Genet 2023; 14:1111318. [PMID: 36726806 PMCID: PMC9885049 DOI: 10.3389/fgene.2023.1111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Seed germination is vital for ensuring the continuity of life in spermatophyte. High-quality seed germination usually represents good seedling establishment and plant production. Here, we identified OsLTPL23, a putative rice non-specific lipid transport protein, as an important regulator responsible for seed germination. Subcellular localization analysis confirmed that OsLTPL23 is present in the plasma membrane and nucleus. The knockout mutants of OsLTPL23 were generated by CRISPR/Cas9-mediated genome editing, and osltpl23 lines significantly germinated slower and lower than the Nipponbare (NIP). Starch and soluble sugar contents measurement showed that OsLTPL23 may have alpha-amylase inhibitor activity, and high soluble sugar content may be a causal agent for the delayed seed germination of osltpl23 mutants. Transcript profiles in the germinating seeds exhibited that the abscisic acid (ABA)-responsive genes, OsABI3 and OsABI5, and biosynthesis genes, OsNCED1, OsNCED2, OsNCED3 and OsNCED4, are obviously upregulated in the osltpl23 mutants compared to NIP plants, conversely, ABA metabolism genes OsABA8ox1, OsABA8ox2 and OsABA8ox3 are stepwise decreased. Further investigations found that osltpl23 mutants displays weakened early seedling growth, with elevated gene expresssion of ABA catabolism genes and repressive transcription response of defence-related genes OsWRKY45, OsEiN3, OsPR1a, OsPR1b and OsNPR1. Integrated analysis indicated that OsLTPL23 may exert an favorable effect on rice seed germination and early seedling growth via modulating endogenous ABA homeostasis. Collectively, our study provides important insights into the roles of OsLTPL23-mediated carbohydrate conversion and endogenous ABA pathway on seed germination and early seedling growth, which contributes to high-vigor seed production in rice breeding.
Collapse
Affiliation(s)
- Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yanfeng Jia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China,*Correspondence: Yanfeng Jia,
| |
Collapse
|
7
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
8
|
Li J, Zhao JY, Shi Y, Fu HY, Huang MT, Meng JY, Gao SJ. Systematic and functional analysis of non-specific lipid transfer protein family genes in sugarcane under Xanthomonas albilineans infection and salicylic acid treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1014266. [PMID: 36275567 PMCID: PMC9581186 DOI: 10.3389/fpls.2022.1014266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.
Collapse
|
9
|
Wang Q, Guo J, Jin P, Guo M, Guo J, Cheng P, Li Q, Wang B. Glutathione S-transferase interactions enhance wheat resistance to powdery mildew but not wheat stripe rust. PLANT PHYSIOLOGY 2022; 190:1418-1439. [PMID: 35876538 PMCID: PMC9516745 DOI: 10.1093/plphys/kiac326] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Wheat stripe rust and powdery mildew are important worldwide diseases of wheat (Triticum aestivum). The wheat cultivar Xingmin318 (XM318) is resistant to both wheat stripe rust and powdery mildew, which are caused by Puccinia striiformis f. sp. tritici (Pst) and Blumeria graminis f. sp. tritici (Bgt), respectively. To explore the difference between wheat defense response against Pst and Bgt, quantitative proteomic analyses of XM318 inoculated with either Pst or Bgt were performed using tandem mass tags technology. A total of 741 proteins were identified as differentially accumulated proteins (DAPs). Bioinformatics analyses indicated that some functional categories, including antioxidant activity and immune system process, exhibited obvious differences between Pst and Bgt infections. Intriguingly, only 42 DAPs responded to both Pst and Bgt infections. Twelve DAPs were randomly selected for reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, and the mRNA expression levels of 11 were consistent with their protein expression. Furthermore, gene silencing using the virus-induced gene silencing system indicated that glutathione S-transferase (TaGSTU6) has an important role in resistance to Bgt but not to Pst. TaGSTU6 interacted with the cystathionine beta-synthase (CBS) domain-containing protein (TaCBSX3) in both Pst and Bgt infections. Knockdown of TaCBSX3 expression only reduced wheat resistance to Bgt infection. Overexpression of TaGSTU6 and TaCBSX3 in Arabidopsis (Arabidopsis thaliana) promoted plant resistance to Pseudomonas syringae pv. Tomato DC3000. Our results indicate that TaGSTU6 interaction with TaCBSX3 only confers wheat resistance to Bgt, suggesting that wheat has different response mechanisms to Pst and Bgt stress.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengying Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Li
- Authors for correspondence: (B.W.); (Q.L.)
| | | |
Collapse
|
10
|
Taj M, Sajjad M, Li M, Yasmeen A, Mubarik MS, Kaniganti S, He C. Potential Targets for CRISPR/Cas Knockdowns to Enhance Genetic Resistance Against Some Diseases in Wheat ( Triticum aestivum L.). Front Genet 2022; 13:926955. [PMID: 35783286 PMCID: PMC9245383 DOI: 10.3389/fgene.2022.926955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat is one of the most important food crops worldwide. Even though wheat yields have increased considerably in recent years, future wheat production is predicted to face enormous challenges due to global climate change and new versions of diseases. CRISPR/Cas technology is a clean gene technology and can be efficiently used to target genes prone to biotic stress in wheat genome. Herein, the published research papers reporting the genetic factors corresponding to stripe rust, leaf rust, stem rust, powdery mildew, fusarium head blight and some insect pests were critically reviewed to identify negative genetic factors (Susceptible, S genes) in bread wheat. Out of all reported genetic factors related to these disease, 33 genetic factors (S genes) were found as negative regulators implying that their down-regulation, deletion or silencing improved disease tolerance/resistance. The results of the published studies provided the concept of proof that these 33 genetic factors are potential targets for CRISPR/Cas knockdowns to improve genetic tolerance/resistance against these diseases in wheat. The sequences of the 33 genes were retrieved and re-mapped on the latest wheat reference genome IWGSC RefSeq v2.1. Phylogenetic analysis revealed that pathogens causing the same type of disease had some common conserved motifs and were closely related. Considering the significance of these disease on wheat yield, the S genes identified in this study are suggested to be disrupted using CRISPR/Cas system in wheat. The knockdown mutants of these S genes will add to genetic resources for improving biotic stress resistance in wheat crop.
Collapse
Affiliation(s)
- Mehwish Taj
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mingju Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Arooj Yasmeen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | | | - Sirisha Kaniganti
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Chi He
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
11
|
BS-Seq reveals major role of differential CHH methylation during leaf rust resistance in wheat (Triticum aestivum L.). Mol Genet Genomics 2022; 297:731-749. [PMID: 35305147 DOI: 10.1007/s00438-022-01879-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Epigenetic regulation of the activity of defense genes during onset of diseases or resistance against diseases in plants is an active area of research. In the present study, a pair of wheat NILs for leaf rust resistance gene Lr28 (R) in the background of an Indian cultivar HD2329 (S) was used for a study of DNA methylation mediated regulation of gene expression. Leaf samples were collected at 0 h before (S0 and R0) and 96 h after inoculation (S96 and R96). The DNA samples were subjected to BS-Seq and sequencing data were used for identification of differentially methylated/demethylated regions/genes (DMRs and DMGs). Following four pairs of comparisons were used for this purpose: S0 vs S96; S0 vs R0; R0 vs R96; S96 vs R96. Major role of CHH methylation relative to that of CG and CHG methylation was observed. Some important observations include the following: (i) abundance of CHH methylation among DMRs; (ii) predominance of DMRs in intergenic region, relative to other genomic regions (promoters, exons, introns, TSS and TTS); (iii) abundance of transposable elements (TEs) in DMRs with CHH context; (iv) demethylation mediated high expression of genes during susceptible reaction (S0 vs S96) and methylation mediated low expression of genes during resistant reaction (R0 vs R96 and S96 vs R96); (v) major genes under regulation encode proteins, which differ from those encoded by genes regulated during susceptible reaction and (vi) ~ 500 DMGs carried differential binding sites for H3K4/K27me3 marks suggesting joint involvement of DNA and H3 methylation. Thus, CHH methylation either alone or in combination with histone methylation plays a major role in regulating the expression of genes involved in wheat-leaf rust interaction.
Collapse
|
12
|
Tang J, Gu X, Liu J, He Z. Roles of small RNAs in crop disease resistance. STRESS BIOLOGY 2021; 1:6. [PMID: 37676520 PMCID: PMC10429495 DOI: 10.1007/s44154-021-00005-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Small RNAs (sRNAs) are a class of short, non-coding regulatory RNAs that have emerged as critical components of defense regulatory networks across plant kingdoms. Many sRNA-based technologies, such as host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS), virus-induced gene silencing (VIGS), artificial microRNA (amiRNA) and synthetic trans-acting siRNA (syn-tasiRNA)-mediated RNA interference (RNAi), have been developed as disease control strategies in both monocot and dicot plants, particularly in crops. This review aims to highlight our current understanding of the roles of sRNAs including miRNAs, heterochromatic siRNAs (hc-siRNAs), phased, secondary siRNAs (phasiRNAs) and natural antisense siRNAs (nat-siRNAs) in disease resistance, and sRNAs-mediated trade-offs between defense and growth in crops. In particular, we focus on the diverse functions of sRNAs in defense responses to bacterial and fungal pathogens, oomycete and virus in crops. Further, we highlight the application of sRNA-based technologies in protecting crops from pathogens. Further research perspectives are proposed to develop new sRNAs-based efficient strategies to breed non-genetically modified (GMO), disease-tolerant crops for sustainable agriculture.
Collapse
Affiliation(s)
- Jun Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueting Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
13
|
Bhosle SM, Makandar R. Comparative transcriptome of compatible and incompatible interaction of Erysiphe pisi and garden pea reveals putative defense and pathogenicity factors. FEMS Microbiol Ecol 2021; 97:fiab006. [PMID: 33476382 DOI: 10.1093/femsec/fiab006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative transcriptome analysis of Erysiphe pisi-infected pea (Pisum sativum) genotypes JI-2480 (resistant) and Arkel (susceptible) at 72 hours post-inoculation (hpi) was carried to detect molecular components involved in compatible and incompatible interactions. Differential gene expression was observed in Arkel and JI-2480 genotype at 72 hpi with E. pisi isolate (Ep01) using EdgeR software. Out of 32 217 transcripts, 2755 transcripts showed significantly altered gene expression in case of plants while 530 were related to E. pisi (P < 0.05). The higher transcript number of differentially expressed genes demonstrated peak activity of pathogenicity genes in plants at 72 hpi. Glycolysis was observed to be the major pathway for energy source during fungal growth. Differential gene expression of plant transcripts revealed significant expression of putative receptor and regulatory sequences involved in defense in the resistant, JI-2480 compared to susceptible, Arkel genotype. Expression of genes involved in defense and hormonal signaling, genes related to hypersensitive response, reactive oxygen species and phenylpropanoid pathway in JI-2480 indicated their crucial role in disease resistance against E. pisi. Down-regulation of transcription factors like-WRKY-28 and up-regulation of several putative pattern recognition receptors in JI-2480 compared to Arkel also suggested activation of host-mediated defense responses against E. pisi in pea.
Collapse
Affiliation(s)
- Sheetal M Bhosle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Ragiba Makandar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
14
|
Hu Y, Zhong S, Zhang M, Liang Y, Gong G, Chang X, Tan F, Yang H, Qiu X, Luo L, Luo P. Potential Role of Photosynthesis in the Regulation of Reactive Oxygen Species and Defence Responses to Blumeria graminis f. sp. tritici in Wheat. Int J Mol Sci 2020; 21:ijms21165767. [PMID: 32796723 PMCID: PMC7460852 DOI: 10.3390/ijms21165767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
Photosynthesis is not only a primary generator of reactive oxygen species (ROS) but also a component of plant defence. To determine the relationships among photosynthesis, ROS, and defence responses to powdery mildew in wheat, we compared the responses of the Pm40-expressing wheat line L658 and its susceptible sister line L958 at 0, 6, 12, 24, 48, and 72 h post-inoculation (hpi) with powdery mildew via analyses of transcriptomes, cytology, antioxidant activities, photosynthesis, and chlorophyll fluorescence parameters. The results showed that H2O2 accumulation in L658 was significantly greater than that in L958 at 6 and 48 hpi, and the enzymes activity and transcripts expression of peroxidase and catalase were suppressed in L658 compared with L958. In addition, the inhibition of photosynthesis in L658 paralleled the global downregulation of photosynthesis-related genes. Furthermore, the expression of the salicylic acid-related genes non-expressor of pathogenesis related genes 1 (NPR1), pathogenesis-related 1 (PR1), and pathogenesis-related 5 (PR5) was upregulated, while the expression of jasmonic acid- and ethylene-related genes was inhibited in L658 compared with L958. In conclusion, the downregulation of photosynthesis-related genes likely led to a decline in photosynthesis, which may be combined with the inhibition of peroxidase (POD) and catalase (CAT) to generate two stages of H2O2 accumulation. The high level of H2O2, salicylic acid and PR1 and PR5 in L658 possible initiated the hypersensitive response.
Collapse
Affiliation(s)
- Yuting Hu
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (X.Q.); (L.L.)
| | - Shengfu Zhong
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Min Zhang
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (X.Q.); (L.L.)
- Correspondence: (M.Z.); (P.L.)
| | - Yinping Liang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Guoshu Gong
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Xiaoli Chang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Feiquan Tan
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Huai Yang
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
| | - Xiaoyan Qiu
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (X.Q.); (L.L.)
| | - Liya Luo
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (X.Q.); (L.L.)
| | - Peigao Luo
- Provincial Key Laboratory of Plant Breeding and Genetics, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.H.); (S.Z.); (Y.L.); (G.G.); (X.C.); (F.T.); (H.Y.)
- Correspondence: (M.Z.); (P.L.)
| |
Collapse
|
15
|
Zhao J, Wang S, Qin J, Sun C, Liu F. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:756-769. [PMID: 31469486 PMCID: PMC7004919 DOI: 10.1111/pbi.13243] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 05/11/2023]
Abstract
Nonspecific lipid transfer proteins (nsLTPs) play critical roles in plant development and response to abiotic stresses. Here, we found that a rice lipid transfer protein, OsLTPL159, was associated with cold tolerance at the early seedling stage. Overexpression of an OsLTPL159IL112 allele from the cold-tolerant introgression line IL112 in either the japonica variety Zhonghua17 (ZH17) or the indica variety Teqing background dramatically enhanced cold tolerance. In addition, down-regulation of the expression of OsLTPL159 in the japonica variety ZH17 by RNA interference (RNAi) significantly decreased cold tolerance. Further transcriptomic, physiological and histological analysis showed that the OsLTPL159IL112 allele likely enhanced the cold tolerance of rice at the early seedling stage by decreasing the toxic effect of reactive oxygen species, enhancing cellulose deposition in the cell wall and promoting osmolyte accumulation, thereby maintaining the integrity of the chloroplasts. Notably, overexpression of another allele, OsLTPL159GC2 , from the recipient parent Guichao 2 (GC2), an indica variety, did not improve cold tolerance, indicating that the variations in the OsLTPL159 coding region of GC2 might disrupt its function for cold tolerance. Further sequence comparison found that all 22 japonica varieties surveyed had an OsLTPL159 haplotype identical to IL112 and were more cold-tolerant than the surveyed indica varieties, implying that the variations in OsLTPL159 might be associated with differential cold tolerance of japonica and indica rice. Therefore, our findings suggest that the OsLTPL159 allele of japonica rice could be used to improve cold tolerance of indica rice through a molecular breeding strategy.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Shanshan Wang
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jingjing Qin
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
16
|
Huai B, Yang Q, Wei X, Pan Q, Kang Z, Liu J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC PLANT BIOLOGY 2020; 20:49. [PMID: 32000681 PMCID: PMC6993525 DOI: 10.1186/s12870-020-2248-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Biotrophic fungi make intimate contact with host cells to access nutrients. Sugar is considered as the main carbon sources absorbed from host cells by pathogens. Partition, exchanges and competition for sugar at plant-pathogen interfaces are controlled by sugar transporters. Previous studies have indicated that the leaf rust resistance (Lr) gene Lr67, a natural mutation of TaSTP13 encoding a wheat sugar transport protein, confers partial resistance to all three wheat rust species and powdery mildew possibly due to weakened sugar transport activity of TaSTP13 by heterodimerization. However, one major problem that remains unresolved concerns whether TaSTP13 participates in wheat susceptibility to rust and mildew. RESULTS In this study, expression of TaSTP13 was highly induced in wheat leaves challenged by Puccinia striiformis f. sp. tritici (Pst) and certain abiotic treatments. TaSTP13 was localized in the plasma membrane and functioned as homooligomers. In addition, a functional domain for its transport activity was identified in yeast. Suppression of TaSTP13 reduced wheat susceptibility to Pst by barley stripe mosaic virus-induced gene silencing (VIGS). While overexpression of TaSTP13 promoted Arabidopsis susceptibility to powdery mildew and led to increased glucose accumulation in the leaves. CONCLUSIONS These results indicate that TaSTP13 is transcriptionally induced and contributes to wheat susceptibility to stripe rust, possibly by promoting cytoplasmic hexose accumulation for fungal sugar acquisition in wheat-Pst interactions.
Collapse
Affiliation(s)
- Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaobo Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qinglin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
17
|
Huai B, Yang Q, Wei X, Pan Q, Kang Z, Liu J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC PLANT BIOLOGY 2020; 20:49. [PMID: 32000681 DOI: 10.1186/s12870-020-2248-2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Biotrophic fungi make intimate contact with host cells to access nutrients. Sugar is considered as the main carbon sources absorbed from host cells by pathogens. Partition, exchanges and competition for sugar at plant-pathogen interfaces are controlled by sugar transporters. Previous studies have indicated that the leaf rust resistance (Lr) gene Lr67, a natural mutation of TaSTP13 encoding a wheat sugar transport protein, confers partial resistance to all three wheat rust species and powdery mildew possibly due to weakened sugar transport activity of TaSTP13 by heterodimerization. However, one major problem that remains unresolved concerns whether TaSTP13 participates in wheat susceptibility to rust and mildew. RESULTS In this study, expression of TaSTP13 was highly induced in wheat leaves challenged by Puccinia striiformis f. sp. tritici (Pst) and certain abiotic treatments. TaSTP13 was localized in the plasma membrane and functioned as homooligomers. In addition, a functional domain for its transport activity was identified in yeast. Suppression of TaSTP13 reduced wheat susceptibility to Pst by barley stripe mosaic virus-induced gene silencing (VIGS). While overexpression of TaSTP13 promoted Arabidopsis susceptibility to powdery mildew and led to increased glucose accumulation in the leaves. CONCLUSIONS These results indicate that TaSTP13 is transcriptionally induced and contributes to wheat susceptibility to stripe rust, possibly by promoting cytoplasmic hexose accumulation for fungal sugar acquisition in wheat-Pst interactions.
Collapse
Affiliation(s)
- Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaobo Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qinglin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
18
|
Complex relationship between DNA methylation and gene expression due to Lr28 in wheat-leaf rust pathosystem. Mol Biol Rep 2019; 47:1339-1360. [DOI: 10.1007/s11033-019-05236-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/08/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022]
|
19
|
Non-Specific Lipid Transfer Proteins in Triticum kiharae Dorof. et Migush.: Identification, Characterization and Expression Profiling in Response to Pathogens and Resistance Inducers. Pathogens 2019; 8:pathogens8040221. [PMID: 31694319 PMCID: PMC6963497 DOI: 10.3390/pathogens8040221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 01/14/2023] Open
Abstract
Non-specific lipid-transfer proteins (nsLTPs) represent a family of plant antimicrobial peptides (AMPs) implicated in diverse physiological processes. However, their role in induced resistance (IR) triggered by non-pathogenic fungal strains and their metabolites is poorly understood. In this work, using RNA-seq data and our AMP search pipeline, we analyzed the repertoire of nsLTP genes in the wheat Triticum kiharae and studied their expression in response to Fusarium oxysporum infection and treatment with the intracellular metabolites of Fusarium sambucinum FS-94. A total of 243 putative nsLTPs were identified, which were classified into five structural types and characterized. Expression analysis showed that 121 TkLTPs including sets of paralogs with identical mature peptides displayed specific expression patters in response to different treatments pointing to their diverse roles in resistance development. We speculate that upregulated nsLTP genes are involved in protection due to their antimicrobial activity or signaling functions. Furthermore, we discovered that in IR-displaying plants, a vast majority of nsLTP genes were downregulated, suggesting their role as negative regulators of immune mechanisms activated by the FS-94 elicitors. The results obtained add to our knowledge of the role of nsLTPs in IR and provide candidate molecules for genetic engineering of crops to enhance disease resistance.
Collapse
|
20
|
Huai B, Yang Q, Qian Y, Qian W, Kang Z, Liu J. ABA-Induced Sugar Transporter TaSTP6 Promotes Wheat Susceptibility to Stripe Rust. PLANT PHYSIOLOGY 2019; 181:1328-1343. [PMID: 31540949 PMCID: PMC6836835 DOI: 10.1104/pp.19.00632] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/10/2019] [Indexed: 05/18/2023]
Abstract
Biotrophic pathogens, such as wheat rust fungi, survive on nutrients derived from host cells. Sugar appears to be the major carbon source transferred from host cells to various fungal pathogens; however, the molecular mechanism by which host sugar transporters are manipulated by fungal pathogens for nutrient uptake is poorly understood. TaSTP6, a sugar transporter protein in wheat (Triticum aestivum), was previously shown to exhibit enhanced expression in leaves upon infection by Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. In this study, we found that Pst infection caused increased accumulation of abscisic acid (ABA) and that application of exogenous ABA significantly enhanced TaSTP6 expression. Moreover, knockdown of TaSTP6 expression by barley stripe mosaic virus-induced gene silencing reduced wheat susceptibility to the Pst pathotype CYR31, suggesting that TaSTP6 expression upregulation contributes to Pst host sugar acquisition. Consistent with this, TaSTP6 overexpression in Arabidopsis (Arabidopsis thaliana) promoted plant susceptibility to powdery mildew and led to increased Glc accumulation in the leaves. Functional complementation assays in Saccharomyces cerevisiae showed that TaSTP6 has broad substrate specificity, indicating that TaSTP6 is an active sugar transporter. Subcellular localization analysis indicated that TaSTP6 localizes to the plasma membrane. Yeast two-hybrid and bimolecular fluorescence complementation experiments revealed that TaSTP6 undergoes oligomerization. Taken together, our results suggest that Pst stimulates ABA biosynthesis in host cells and thereby upregulates TaSTP6 expression, which increases sugar supply and promotes fungal infection.
Collapse
Affiliation(s)
- Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingrui Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenhao Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Lenk M, Wenig M, Bauer K, Hug F, Knappe C, Lange B, Häußler F, Mengel F, Dey S, Schäffner A, Vlot AC. Pipecolic Acid Is Induced in Barley upon Infection and Triggers Immune Responses Associated with Elevated Nitric Oxide Accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1303-1313. [PMID: 31194615 DOI: 10.1094/mpmi-01-19-0013-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pipecolic acid (Pip) is an essential component of systemic acquired resistance, priming resistance in Arabidopsis thaliana against (hemi)biotrophic pathogens. Here, we studied the potential role of Pip in bacteria-induced systemic immunity in barley. Exudates of barley leaves infected with the systemic immunity-inducing pathogen Pseudomonas syringae pv. japonica induced immune responses in A. thaliana. The same leaf exudates contained elevated Pip levels compared with those of mock-treated barley leaves. Exogenous application of Pip induced resistance in barley against the hemibiotrophic bacterial pathogen Xanthomonas translucens pv. cerealis. Furthermore, both a systemic immunity-inducing infection and exogenous application of Pip enhanced the resistance of barley against the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei. In contrast to a systemic immunity-inducing infection, Pip application did not influence lesion formation by a systemically applied inoculum of the necrotrophic fungus Pyrenophora teres. Nitric oxide (NO) levels in barley leaves increased after Pip application. Furthermore, X. translucens pv. cerealis induced the accumulation of superoxide anion radicals and this response was stronger in Pip-pretreated compared with mock-pretreated plants. Thus, the data suggest that Pip induces barley innate immune responses by triggering NO and priming reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Miriam Lenk
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Kornelia Bauer
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Florian Hug
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Birgit Lange
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Finni Häußler
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Felicitas Mengel
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sanjukta Dey
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Anton Schäffner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
22
|
Jiang J, Zhao J, Duan W, Tian S, Wang X, Zhuang H, Fu J, Kang Z. TaAMT2;3a, a wheat AMT2-type ammonium transporter, facilitates the infection of stripe rust fungus on wheat. BMC PLANT BIOLOGY 2019; 19:239. [PMID: 31170918 PMCID: PMC6554902 DOI: 10.1186/s12870-019-1841-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/21/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ammonium transporters (AMTs), a family of proteins transporting ammonium salt and its analogues, have been studied in many aspects. Although numerous studies have found that ammonium affects the interaction between plants and pathogens, the role of AMTs remains largely unknown, especially that of the AMT2-type AMTs. RESULTS In the present study, we found that the concentration of ammonium in wheat leaves decreased after infection with Puccinia striiformis f. sp. tritici (Pst), the causal agent of stripe rust. Then, an AMT2-type ammonium transporter gene induced by Pst was identified and designated as TaAMT2;3a. Transient expression assays indicated that TaAMT2;3a was located to the cell and nuclear membranes. TaAMT2;3a successfully complemented the function of a yeast mutant defective in NH4+ transport, indicating its ammonium transport capacity. Function of TaAMT2;3a in wheat-Pst interaction was further analyzed by barley stripe mosaic virus (BSMV)-induced gene silencing. Pst growth was significantly retarded in TaAMT2;3a-knockdown plants, in which ammonium in leaves were shown to be induced at the early stage of infection. Histological observation showed that the hyphal length, the number of hyphal branches and haustorial mother cells decreased in the TaAMT2;3a knockdown plants, leading to the impeded growth of rust pathogens. CONCLUSIONS The results clearly indicate that the induction of AMT2-type ammonium transporter gene TaAMT2;3a may facilitates the nitrogen uptake from wheat leaves by Pst, thereby contribute to the infection of rust fungi.
Collapse
Affiliation(s)
- Junpeng Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Wanlu Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Song Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Hua Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Jing Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
| |
Collapse
|
23
|
Zhou D, Li Y, Wang X, Xie F, Chen D, Ma B, Li Y. Mesorhizobium huakuii HtpG Interaction with nsLTP AsE246 Is Required for Symbiotic Nitrogen Fixation. PLANT PHYSIOLOGY 2019; 180:509-528. [PMID: 30765481 PMCID: PMC6501076 DOI: 10.1104/pp.18.00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/04/2019] [Indexed: 05/06/2023]
Abstract
Plant nonspecific lipid transfer proteins (nsLTPs) are involved in a number of biological processes including root nodule symbiosis. However, the role of nsLTPs in legume-rhizobium symbiosis remains poorly understood, and no rhizobia proteins that interact with nsLTPs have been reported to date. In this study, we used a bacteria two-hybrid system and identified the high temperature protein G (HtpG) from Mesorhizobium huakuii that interacts with the nsLTP AsE246. The interaction between HtpG and AsE246 was confirmed by far-Western blotting and bimolecular fluorescence complementation. Our results indicated that the heat shock protein 90 (HSP90) domain of HtpG mediates the HtpG-AsE246 interaction. Immunofluorescence assay showed that HtpG was colocalized with AsE246 in infected nodule cells and symbiosome membranes. Expression of the htpG gene was relatively higher in young nodules and was highly expressed in the infection zones. Further investigation showed that htpG expression affects lipid abundance and profiles in root nodules and plays an essential role in nodule development and nitrogen fixation. Our findings provide further insights into the functional mechanisms behind the transport of symbiosome lipids via nsLTPs in root nodules.
Collapse
Affiliation(s)
- Donglai Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuting Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuli Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binguang Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Arabidopsis thaliana Immunity-Related Compounds Modulate Disease Susceptibility in Barley. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plants are exposed to numerous pathogens and fend off many of these with different phytohormone signalling pathways. Much is known about defence signalling in the dicotyledonous model plant Arabidopsisthaliana, but it is unclear to which extent knowledge from model systems can be transferred to monocotyledonous plants, including cereal crops. Here, we investigated the defence-inducing potential of Arabidopsis resistance-inducing compounds in the cereal crop barley. Salicylic acid (SA), folic acid (Fol), and azelaic acid (AzA), each inducing defence against (hemi-)biotrophic pathogens in Arabidopsis, were applied to barley leaves and the treated and systemic leaves were subsequently inoculated with Xanthomonastranslucens pv. cerealis (Xtc), Blumeria graminis f. sp. hordei (powdery mildew, Bgh), or Pyrenophora teres. Fol and SA reduced Bgh propagation locally and/or systemically, whereas Fol enhanced Xtc growth in barley. AzA reduced Bgh propagation systemically and enhanced Xtc growth locally. Neither SA, Fol, nor AzA influenced lesion sizes caused by the necrotrophic fungus P. teres, suggesting that the tested compounds exclusively affected growth of (hemi-)biotrophic pathogens in barley. In addition to SA, Fol and AzA might thus act as resistance-inducing compounds in barley against Bgh, although adverse effects on the growth of pathogenic bacteria, such as Xtc, are possible.
Collapse
|
25
|
Zou B, Ding Y, Liu H, Hua J. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew. MOLECULAR PLANT PATHOLOGY 2018; 19:1343-1352. [PMID: 28941084 PMCID: PMC6638117 DOI: 10.1111/mpp.12617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/01/2017] [Accepted: 09/20/2017] [Indexed: 05/09/2023]
Abstract
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat.
Collapse
Affiliation(s)
- Baohong Zou
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing 210095China
| | - Yuan Ding
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing 210095China
| | - He Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing 210095China
| | - Jian Hua
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing 210095China
- Plant Biology Section, School of Integrated Plant ScienceCornell UniversityIthacaNY 14853USA
| |
Collapse
|