1
|
Zhang H, Wang S, Li O, Zeng C, Liu X, Wen J, Zhao L, Fu T, Wan H, Shen J. Genome-wide identification of alcohol dehydrogenase (ADH) gene family in oilseed rape (Brassica napus L.) and BnADH36 functional verification under salt stress. BMC PLANT BIOLOGY 2024; 24:1013. [PMID: 39465389 PMCID: PMC11520067 DOI: 10.1186/s12870-024-05716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Alcohol dehydrogenase (ADH) is an enzyme that binds to zinc, facilitating the interconversion of ethanol and acetaldehyde or other corresponding alcohols/aldehydes in the pathway of ethanol fermentation. It plays a pivotal role in responding to environmental stress. However, the response of the ADH family to abiotic stress remains unknown in rapeseed. RESULT In this study, we conducted a comprehensive genome-wide investigation of the ADH family in rapeseed, encompassing analysis of their gene structure, replication patterns, conserved motifs, cis-acting elements, and response to stress. A total of 47 ADH genes were identified within the rapeseed genome. Through phylogenetic analysis, BnADHs were classified into four distinct clades (I, II, IV, V). Prediction of protein domains revealed that all BnADH members possessed a GroES-like (ADH_N) domain and a zinc-bound (ADH_zinc_N) domain. Analysis of promoter sequences demonstrated that BnADHs contained numerous cis-acting elements associated with hormone and stress responses, indicating their widespread involvement in various biological regulatory processes. Expression profiling under different concentrations of salt stress treatments (0%, 0.4%, 0.8%, 1.0% NaCl) further highlighted the significant role played by the BnADH family in abiotic stress response mechanisms. Overexpression of BnADH36 in rapeseed significantly improved the salt tolerance of rapeseed. CONCLUSION The features of the BnADH family in rapeseed was comprehensively characterized in this study, which could provide reference to the research of BnADHs in abiotic stress response.
Collapse
Affiliation(s)
- Hao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shanshan Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Ouqi Li
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Zhang Q, Zhong W, Zhu G, Cheng L, Yin C, Deng L, Yang Y, Zhang Z, Shen J, Fu T, Zhu JK, Zhao L. aChIP is an efficient and sensitive ChIP-seq technique for economically important plant organs. NATURE PLANTS 2024; 10:1317-1329. [PMID: 39179701 DOI: 10.1038/s41477-024-01743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/19/2024] [Indexed: 08/26/2024]
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is crucial for profiling histone modifications and transcription factor binding throughout the genome. However, its application in economically important plant organs (EIPOs) such as seeds, fruits and flowers is challenging due to their sturdy cell walls and complex constituents. Here we present advanced ChIP (aChIP), an optimized method that efficiently isolates chromatin from plant tissues while simultaneously removing cell walls and cellular constituents. aChIP precisely profiles histone modifications in all 14 tested EIPOs and identifies transcription factor and chromatin-modifying enzyme binding sites. In addition, aChIP enhances ChIP efficiency, revealing numerous novel modified sites compared with previous methods in vegetative tissues. aChIP reveals the histone modification landscape for rapeseed dry seeds, highlighting the intricate roles of chromatin dynamics during seed dormancy and germination. Altogether, aChIP is a powerful, efficient and sensitive approach for comprehensive chromatin profiling in virtually all plant tissues, especially in EIPOs.
Collapse
Affiliation(s)
- Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenying Zhong
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guangfeng Zhu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lulu Cheng
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Caijun Yin
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
3
|
Ping X, Ye Q, Yan M, Wang J, Zhang T, Chen S, Siddique KHM, Cowling WA, Li J, Liu L. Overexpression of BnaA10.WRKY75 Decreases Cadmium and Salt Tolerance via Increasing ROS Accumulation in Arabidopsis and Brassica napus L. Int J Mol Sci 2024; 25:8002. [PMID: 39063244 PMCID: PMC11276826 DOI: 10.3390/ijms25148002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Soil is indispensable for agricultural production but has been seriously polluted by cadmium and salt in recent years. Many crops are suffering from this, including rapeseed, the third largest global oilseed crop. However, genes simultaneously related to both cadmium and salt stress have not been extensively reported yet. In this study, BnaA10.WRKY75 was screened from previous RNA-seq data related to cadmium and salt stress and further analyses including sequence comparison, GUS staining, transformation and qRT-PCR were conducted to confirm its function. GUS staining and qRT-PCR results indicated BnaA10.WRKY75 was induced by CdCl2 and NaCl treatment. Sequence analysis suggested BnaA10.WRKY75 belongs to Group IIc of the WRKY gene family and transient expression assay showed it was a nuclear localized transcription factor. BnaA10.WRKY75-overexpressing Arabidopsis and rapeseed plants accumulated more H2O2 and O2- and were more sensitive to CdCl2 and NaCl treatment compared with untransformed plants, which may be caused by the downregulation of BnaC03.CAT2. Our study reported that BnaA10.WRKY75 increases sensitivity to cadmium and salt stress by disrupting the balance of reactive oxygen species both in Arabidopsis and rapeseed. The results support the further understanding of the mechanisms underlying cadmium and salt tolerance and provide BnaA10.WRKY75 as a valuable gene for rapeseed abiotic stress breeding.
Collapse
Affiliation(s)
- Xiaoke Ping
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Qianjun Ye
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mei Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Taiyuan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Sheng Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Wallace A. Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Chen J, Wan H, Zhao H, Dai X, Wu W, Liu J, Xu J, Yang R, Xu B, Zeng C, Zhang X. Identification and expression analysis of the Xyloglucan transglycosylase/hydrolase (XTH) gene family under abiotic stress in oilseed (Brassica napus L.). BMC PLANT BIOLOGY 2024; 24:400. [PMID: 38745278 PMCID: PMC11095021 DOI: 10.1186/s12870-024-05121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
XTH genes are key genes that regulate the hydrolysis and recombination of XG components and plays role in the structure and composition of plant cell walls. Therefore, clarifying the changes that occur in XTHs during plant defense against abiotic stresses is informative for the study of the plant stress regulatory mechanism mediated by plant cell wall signals. XTH proteins in Arabidopsis thaliana was selected as the seed sequences in combination with its protein structural domains, 80 members of the BnXTH gene family were jointly identified from the whole genome of the Brassica napus ZS11, and analyzed for their encoded protein physicochemical properties, phylogenetic relationships, covariance relationships, and interoperating miRNAs. Based on the transcriptome data, the expression patterns of BnXTHs were analyzed in response to different abiotic stress treatments. The relative expression levels of some BnXTH genes under Al, alkali, salt, and drought treatments after 0, 6, 12 and 24 h were analyzed by using qRT-PCR to explore their roles in abiotic stress tolerance in B. napus. BnXTHs showed different expression patterns in response to different abiotic stress signals, indicating that the response mechanisms of oilseed rape against different abiotic stresses are also different. This paper provides a theoretical basis for clarifying the function and molecular genetic mechanism of the BnXTH gene family in abiotic stress tolerance in rapeseed.
Collapse
Affiliation(s)
- Jingdong Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Huixia Zhao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Xigang Dai
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Wanjin Wu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Jin Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jinsong Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Rui Yang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Benbo Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China.
| | - Xuekun Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
5
|
Tang Y, Li S, Zerpa-Catanho D, Zhang Z, Yang S, Zheng X, Xue S, Kuang X, Liu M, He X, Yi Z, Xiao L. Salt tolerance evaluation and mini-core collection development in Miscanthus sacchariflorus and M. lutarioriparius. FRONTIERS IN PLANT SCIENCE 2024; 15:1364826. [PMID: 38504893 PMCID: PMC10948507 DOI: 10.3389/fpls.2024.1364826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Marginal lands, such as those with saline soils, have potential as alternative resources for cultivating dedicated biomass crops used in the production of renewable energy and chemicals. Optimum utilization of marginal lands can not only alleviate the competition for arable land use with primary food crops, but also contribute to bioenergy products and soil improvement. Miscanthus sacchariflorus and M. lutarioriparius are prominent perennial plants suitable for sustainable bioenergy production in saline soils. However, their responses to salt stress remain largely unexplored. In this study, we utilized 318 genotypes of M. sacchariflorus and M. lutarioriparius to assess their salt tolerance levels under 150 mM NaCl using 14 traits, and subsequently established a mini-core elite collection for salt tolerance. Our results revealed substantial variation in salt tolerance among the evaluated genotypes. Salt-tolerant genotypes exhibited significantly lower Na+ content, and K+ content was positively correlated with Na+ content. Interestingly, a few genotypes with higher Na+ levels in shoots showed improved shoot growth characteristics. This observation suggests that M. sacchariflorus and M. lutarioriparius adapt to salt stress by regulating ion homeostasis, primarily through enhanced K+ uptake, shoot Na+ exclusion, and Na+ sequestration in shoot vacuoles. To evaluate salt tolerance comprehensively, we developed an assessment value (D value) based on the membership function values of the 14 traits. We identified three highly salt-tolerant, 50 salt-tolerant, 127 moderately salt-tolerant, 117 salt-sensitive, and 21 highly salt-sensitive genotypes at the seedling stage by employing the D value. A mathematical evaluation model for salt tolerance was established for M. sacchariflorus and M. lutarioriparius at the seedling stage. Notably, the mini-core collection containing 64 genotypes developed using the Core Hunter algorithm effectively represented the overall variability of the entire collection. This mini-core collection serves as a valuable gene pool for future in-depth investigations of salt tolerance mechanisms in Miscanthus.
Collapse
Affiliation(s)
- Yanmei Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shicheng Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Dessireé Zerpa-Catanho
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Zhihai Zhang
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sai Yang
- Orient Science & Technology College of Hunan Agricultural University, Changsha, Hunan, China
| | - Xuying Zheng
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Shuai Xue
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xianyan Kuang
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL, United States
| | - Mingxi Liu
- Department of Grassland Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiong He
- Hunan Heyi Crop Science Co., Ltd., Changsha, Hunan, China
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Liang Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhang Y, Guo Z, Chen X, Li X, Shi Y, Xu L, Yu C, Jing B, Li W, Xu A, Shi X, Li K, Huang Z. Identification candidate genes for salt resistance through quantitative trait loci-sequencing in Brassica napus L. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154187. [PMID: 38422630 DOI: 10.1016/j.jplph.2024.154187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Xu
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Zhou T, Wu PJ, Chen JF, Du XQ, Feng YN, Hua YP. Pectin demethylation-mediated cell wall Na + retention positively regulates salt stress tolerance in oilseed rape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:54. [PMID: 38381205 DOI: 10.1007/s00122-024-04560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Xiao-Qian Du
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Zhang H, Zhang X, Zhao H, Hu J, Wang Z, Yang G, Zhou X, Wan H. Genome-wide identification and expression analysis of phenylalanine ammonia-lyase (PAL) family in rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2023; 23:481. [PMID: 37814209 PMCID: PMC10563225 DOI: 10.1186/s12870-023-04472-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Phenylalanine ammonia-lyase (PAL), as a key enzyme in the phenylalanine metabolism pathway in plants, plays an important role in the response to environmental stress. However, the PAL family responding to abiotic stress has not been fully characterized in rapeseed. RESULTS In this study, we conducted a genome-wide study of PAL family, and analyzed their gene structure, gene duplication, conserved motifs, cis-acting elements and response to stress treatment. A total of 17 PALs were identified in the rapeseed genome. Based on phylogenetic analysis, the BnPALs were divided into four clades (I, II, IV, and V). The prediction of protein structure domain presented that all BnPAL members contained a conservative PAL domain. Promoter sequence analysis showed that the BnPALs contain many cis-acting elements related to hormone and stress responses, indicating that BnPALs are widely involved in various biological regulatory processes. The expression profile showed that the BnPALs were significantly induced under different stress treatments (NaCl, Na2CO3, AlCl3, and PEG), suggesting that BnPAL family played an important role in response to abiotic stress. CONCLUSIONS Taken together, our research results comprehensively characterized the BnPAL family, and provided a valuable reference for revealing the role of BnPALs in the regulation of abiotic stress responses in rapeseed.
Collapse
Affiliation(s)
- Haiyan Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Xiaohui Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Huixia Zhao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jin Hu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Zhaoyang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 570288, China
| | - Guangsheng Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 570288, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianming Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
- College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
9
|
Atta K, Mondal S, Gorai S, Singh AP, Kumari A, Ghosh T, Roy A, Hembram S, Gaikwad DJ, Mondal S, Bhattacharya S, Jha UC, Jespersen D. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. FRONTIERS IN PLANT SCIENCE 2023; 14:1241736. [PMID: 37780527 PMCID: PMC10540871 DOI: 10.3389/fpls.2023.1241736] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
Improper use of water resources in irrigation that contain a significant amount of salts, faulty agronomic practices such as improper fertilization, climate change etc. are gradually increasing soil salinity of arable lands across the globe. It is one of the major abiotic factors that inhibits overall plant growth through ionic imbalance, osmotic stress, oxidative stress, and reduced nutrient uptake. Plants have evolved with several adaptation strategies at morphological and molecular levels to withstand salinity stress. Among various approaches, harnessing the crop genetic variability across different genepools and developing salinity tolerant crop plants offer the most sustainable way of salt stress mitigation. Some important major genetic determinants controlling salinity tolerance have been uncovered using classical genetic approaches. However, its complex inheritance pattern makes breeding for salinity tolerance challenging. Subsequently, advances in sequence based breeding approaches and functional genomics have greatly assisted in underpinning novel genetic variants controlling salinity tolerance in plants at the whole genome level. This current review aims to shed light on physiological, biochemical, and molecular responses under salt stress, defense mechanisms of plants, underlying genetics of salt tolerance through bi-parental QTL mapping and Genome Wide Association Studies, and implication of Genomic Selection to breed salt tolerant lines.
Collapse
Affiliation(s)
- Kousik Atta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Saptarshi Mondal
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - Shouvik Gorai
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Aditya Pratap Singh
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
- School of Agriculture, GIET University, Gunupur, Rayagada, Odisha, India
| | - Amrita Kumari
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Tuhina Ghosh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arkaprava Roy
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR- National Institute of Biotic Stress Management, Raipur, India
| | - Suryakant Hembram
- WBAS (Research), Government of West Bengal, Field Crop Research Station, Burdwan, India
| | | | - Subhasis Mondal
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | | | | | - David Jespersen
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| |
Collapse
|
10
|
Abdul Aziz M, Masmoudi K. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms. Int J Mol Sci 2023; 24:9813. [PMID: 37372961 DOI: 10.3390/ijms24129813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop's salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances in transcriptomic technologies have revealed the untapped genetic diversity of CWRs that represents a practical gene pool for improving the plant's adaptability to salt stress. Thus, the present study emphasizes the transcriptomics of CWRs for salinity stress tolerance. In this review, the impacts of salt stress on the plant's physiological processes and development are overviewed, and the transcription factors (TFs) regulation of salinity stress tolerance is investigated. In addition to the molecular regulation, a brief discussion on the phytomorphological adaptation of plants under saline environments is provided. The study further highlights the availability and use of transcriptomic resources of CWR and their contribution to pangenome construction. Moreover, the utilization of CWRs' genetic resources in the molecular breeding of crops for salinity stress tolerance is explored. Several studies have shown that cytoplasmic components such as calcium and kinases, and ion transporter genes such as Salt Overly Sensitive 1 (SOS1) and High-affinity Potassium Transporters (HKTs) are involved in the signaling of salt stress, and in mediating the distribution of excess Na+ ions within the plant cells. Recent comparative analyses of transcriptomic profiling through RNA sequencing (RNA-Seq) between the crops and their wild relatives have unraveled several TFs, stress-responsive genes, and regulatory proteins for generating salinity stress tolerance. This review specifies that the use of CWRs transcriptomics in combination with modern breeding experimental approaches such as genomic editing, de novo domestication, and speed breeding can accelerate the CWRs utilization in the breeding programs for enhancing the crop's adaptability to saline conditions. The transcriptomic approaches optimize the crop genomes with the accumulation of favorable alleles that will be indispensable for designing salt-resilient crops.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
11
|
Zhang Y, Zhang Q, Wang H, Tao S, Cao H, Shi Y, Bakirov A, Xu A, Huang Z. Discovery of common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits in Brassica napus L. PLANT CELL REPORTS 2023; 42:1039-1057. [PMID: 37076701 DOI: 10.1007/s00299-023-03011-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits were identified in Brassica napus combining QTL mapping with transcriptome under salt and alkaline stresses. The yield of rapeseed (Brassica napus L.) is determined by multiple yield-related traits, which are susceptible to environmental factors. Many yield-related quantitative trait loci (QTLs) have been reported in Brassica napus; however, no studies have been conducted to investigate both salt-alkali tolerance and yield-related traits simultaneously. Here, specific-locus amplified fragment sequencing (SLAF-seq) technologies were utilized to map the QTLs for salt-alkali tolerance and yield-related traits. A total of 65 QTLs were identified, including 30 QTLs for salt-alkali tolerance traits and 35 QTLs for yield-related traits, accounting for 7.61-27.84% of the total phenotypic variations. Among these QTLs, 18 unique QTLs controlling two to four traits were identified by meta-analysis. Six novel and unique QTLs were detected for salt-alkali tolerance traits. By comparing these unique QTLs for salt-alkali tolerance traits with those previously reported QTLs for yield-related traits, seven co-localized chromosomal regions were identified on A09 and A10. Combining QTL mapping with transcriptome of two parents under salt and alkaline stresses, thirteen genes were identified as the candidates controlling both salt-alkali tolerance and yield. These findings provide useful information for future breeding of high-yield cultivars resistant to alkaline and salt stresses.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Han Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shunxian Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanming Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aldiyar Bakirov
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Chen B, Bian X, Tu M, Yu T, Jiang L, Lu Y, Chen X. Moderate Salinity Stress Increases the Seedling Biomass in Oilseed Rape ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1650. [PMID: 37111872 PMCID: PMC10144440 DOI: 10.3390/plants12081650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Oilseed rape (Brassica napus L.), an important oil crop of the world, suffers various abiotic stresses including salinity stress during the growth stage. While most of the previous studies paid attention to the adverse effects of high salinity stress on plant growth and development, as well as their underlying physiological and molecular mechanisms, less attention was paid to the effects of moderate or low salinity stress. In this study, we first tested the effects of different concentrations of NaCl solution on the seedling growth performance of two oilseed rape varieties (CH336, a semi-winter type, and Bruttor, a spring type) in pot cultures. We found that moderate salt concentrations (25 and 50 mmol L-1 NaCl) can stimulate seedling growth by a significant increase (10~20%, compared to controls) in both above- and underground biomasses, as estimated at the early flowering stage. We then performed RNA-seq analyses of shoot apical meristems (SAMs) from six-leaf-aged seedlings under control (CK), low (LS, 25 mmol L-1), and high (HS, 180 mmol L-1) salinity treatments in the two varieties. The GO and KEGG enrichment analyses of differentially expressed genes (DEGs) demonstrated that such a stimulating effect on seedling growth by low salinity stress may be caused by a more efficient capacity for photosynthesis as compensation, accompanied by a reduced energy loss for the biosynthesis of secondary metabolites and redirecting of energy to biomass formation. Our study provides a new perspective on the cultivation of oilseed rape in saline regions and new insights into the molecular mechanisms of salt tolerance in Brassica crops. The candidate genes identified in this study can serve as targets for molecular breeding selection and genetic engineering toward enhancing salt tolerance in B. napus.
Collapse
Affiliation(s)
- Beini Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Xiaobo Bian
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Tao Yu
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Yunhai Lu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Xiaoyang Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| |
Collapse
|
13
|
Zhang G, Zhou J, Peng Y, Tan Z, Zhang Y, Zhao H, Liu D, Liu X, Li L, Yu L, Jin C, Fang S, Shi J, Geng Z, Yang S, Chen G, Liu K, Yang Q, Feng H, Guo L, Yang W. High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus. PLANT, CELL & ENVIRONMENT 2023; 46:549-566. [PMID: 36354160 DOI: 10.1111/pce.14485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 06/16/2023]
Abstract
Salt stress is a major limiting factor that severely affects the survival and growth of crops. It is important to understand the salt stress tolerance ability of Brassica napus and explore the underlying related genetic resources. We used a high-throughput phenotyping platform to quantify 2111 image-based traits (i-traits) of a natural population under three different salt stress conditions and an intervarietal substitution line (ISL) population under nine different stress conditions to monitor and evaluate the salt stress tolerance of B. napus over time. We finally identified 928 high-quality i-traits associated with the salt stress tolerance of B. napus. Moreover, we mapped the salt stress-related loci in the natural population via a genome-wide association study and performed a linkage analysis associated with the ISL population, respectively. These results revealed 234 candidate genes associated with salt stress response, and two novel candidate genes, BnCKX5 and BnERF3, were experimentally verified to regulate the salt stress tolerance of B. napus. This study demonstrates the feasibility of using high-throughput phenotyping-based quantitative trait loci mapping to accurately and comprehensively quantify i-traits associated with B. napus. The mapped loci could be used for genomics-assisted breeding to genetically improve the salt stress tolerance of B. napus.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zedong Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shanjing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoxing Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Ma M, Zhong W, Zhang Q, Deng L, Wen J, Yi B, Tu J, Fu T, Zhao L, Shen J. Genome-wide analysis of transcriptome and histone modifications in Brassica napus hybrid. FRONTIERS IN PLANT SCIENCE 2023; 14:1123729. [PMID: 36778699 PMCID: PMC9911877 DOI: 10.3389/fpls.2023.1123729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Although utilization of heterosis has largely improved the yield of many crops worldwide, the underlying molecular mechanism of heterosis, particularly for allopolyploids, remains unclear. Here, we compared epigenome and transcriptome data of an elite hybrid and its parental lines in three assessed tissues (seedling, flower bud, and silique) to explore their contribution to heterosis in allopolyploid B. napus. Transcriptome analysis illustrated that a small proportion of non-additive genes in the hybrid compared with its parents, as well as parental expression level dominance, might have a significant effect on heterosis. We identified histone modification (H3K4me3 and H3K27me3) variation between the parents and hybrid, most of which resulted from the differences between parents. H3K4me3 variations were positively correlated with gene expression differences among the hybrid and its parents. Furthermore, H3K4me3 and H3K27me3 were rather stable in hybridization and were mainly inherited additively in the B. napus hybrid. Together, our data revealed that transcriptome reprogramming and histone modification remodeling in the hybrid could serve as valuable resources for better understanding heterosis in allopolyploid crops.
Collapse
|
15
|
Genome-Wide Association Studies of Salt Tolerance at the Seed Germination Stage and Yield-Related Traits in Brassica napus L. Int J Mol Sci 2022; 23:ijms232415892. [PMID: 36555533 PMCID: PMC9785822 DOI: 10.3390/ijms232415892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Salt stress severely affects crop growth and development and reduces the yield of Brassica napus. Exploring natural genetic variations for high salt tolerance in B. napus seedlings is an effective approach to improve productivity under salt stress. Using 10,658 high-quality single nucleotide polymorphic (SNP) markers developed by specific-locus amplified fragment sequencing (SLAF-seq) technology, genome-wide association studies (GWAS) were performed to investigate the genetic basis of salt tolerance and yield-related traits of B. napus. The results revealed that 77 and 497 SNPs were significantly associated with salt tolerance and yield-related traits, of which 40 and 58 SNPs were located in previously reported QTLs/SNPs, respectively. We identified nineteen candidate genes orthologous with Arabidopsis genes known to be associated with salt tolerance and seven potential candidates controlling both salt tolerance and yield. Our study provides a novel genetic resource for the breeding of high-yield cultivars resistant to salt stress.
Collapse
|
16
|
Feng L, Dong T, Jiang P, Yang Z, Dong A, Xie SQ, Griffin CH, Wu R. An eco-evo-devo genetic network model of stress response. HORTICULTURE RESEARCH 2022; 9:uhac135. [PMID: 36061617 PMCID: PMC9433980 DOI: 10.1093/hr/uhac135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/04/2022] [Indexed: 05/23/2023]
Abstract
The capacity of plants to resist abiotic stresses is of great importance to agricultural, ecological and environmental sustainability, but little is known about its genetic underpinnings. Existing genetic tools can identify individual genetic variants mediating biochemical, physiological, and cellular defenses, but fail to chart an overall genetic atlas behind stress resistance. We view stress response as an eco-evo-devo process by which plants adaptively respond to stress through complex interactions of developmental canalization, phenotypic plasticity, and phenotypic integration. As such, we define and quantify stress response as the developmental change of adaptive traits from stress-free to stress-exposed environments. We integrate composite functional mapping and evolutionary game theory to reconstruct omnigenic, information-flow interaction networks for stress response. Using desert-adapted Euphrates poplar as an example, we infer salt resistance-related genome-wide interactome networks and trace the roadmap of how each SNP acts and interacts with any other possible SNPs to mediate salt resistance. We characterize the previously unknown regulatory mechanisms driving trait variation; i.e. the significance of a SNP may be due to the promotion of positive regulators, whereas the insignificance of a SNP may result from the inhibition of negative regulators. The regulator-regulatee interactions detected are not only experimentally validated by two complementary experiments, but also biologically interpreted by their encoded protein-protein interactions. Our eco-evo-devo model of genetic interactome networks provides an approach to interrogate the genetic architecture of stress response and informs precise gene editing for improving plants' capacity to live in stress environments.
Collapse
Affiliation(s)
| | | | | | - Zhenyu Yang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shang-Qian Xie
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou 570228, China
| | - Christopher H Griffin
- Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
17
|
Hua YP, Wang Y, Zhou T, Huang JY, Yue CP. Combined morpho-physiological, ionomic and transcriptomic analyses reveal adaptive responses of allohexaploid wheat (Triticum aestivum L.) to iron deficiency. BMC PLANT BIOLOGY 2022; 22:234. [PMID: 35534803 PMCID: PMC9088122 DOI: 10.1186/s12870-022-03627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plants worldwide are often stressed by low Fe availability around the world, especially in aerobic soils. Therefore, the plant growth, seed yield, and quality of crop species are severely inhibited under Fe deficiency. Fe metabolism in plants is controlled by a series of complex transport, storage, and regulatory mechanisms in cells. Allohexaploid wheat (Triticum aestivum L.) is a staple upland crop species that is highly sensitive to low Fe stresses. Although some studies have been previously conducted on the responses of wheat plants to Fe deficiency, the key mechanisms underlying adaptive responses are still unclear in wheat due to its large and complex genome. RESULTS Transmission electron microscopy showed that the chloroplast structure was severely damaged under Fe deficiency. Paraffin sectioning revealed that the division rates of meristematic cells were reduced, and the sizes of elongated cells were diminished. ICP-MS-assisted ionmics analysis showed that low-Fe stress significantly limited the absorption of nutrients, including N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B nutrients. High-throughput transcriptome sequencing identified 378 and 2,619 genome-wide differentially expressed genes (DEGs) were identified in the shoots and roots between high-Fe and low-Fe conditions, respectively. These DEGs were mainly involved in the Fe chelator biosynthesis, ion transport, photosynthesis, amino acid metabolism, and protein synthesis. Gene coexpression network diagrams indicated that TaIRT1b-4A, TaNAS2-6D, TaNAS1a-6A, TaNAS1-6B, and TaNAAT1b-1D might function as key regulators in the adaptive responses of wheat plants to Fe deficiency. CONCLUSIONS These results might help us fully understand the morpho-physiological and molecular responses of wheat plants to low-Fe stress, and provide elite genetic resources for the genetic modification of efficient Fe use.
Collapse
Affiliation(s)
- Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Yue Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
18
|
Zhang Y, Zhang H, Zhao H, Xia Y, Zheng X, Fan R, Tan Z, Duan C, Fu Y, Li L, Ye J, Tang S, Hu H, Xie W, Yao X, Guo L. Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biol 2022; 23:86. [PMID: 35346318 PMCID: PMC8962237 DOI: 10.1186/s13059-022-02647-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 01/01/2023] Open
Abstract
Background Brassica napus is an important vegetable oil source worldwide. Seed coat content is a complex quantitative trait that negatively correlates with the seed oil content in B. napus. Results Here we provide insights into the genetic basis of natural variation of seed coat content by transcriptome-wide association studies (TWAS) and genome-wide association studies (GWAS) using 382 B. napus accessions. By population transcriptomic analysis, we identify more than 700 genes and four gene modules that are significantly associated with seed coat content. We also characterize three reliable quantitative trait loci (QTLs) controlling seed coat content by GWAS. Combining TWAS and correlation networks of seed coat content-related gene modules, we find that BnaC07.CCR-LIKE (CCRL) and BnaTT8s play key roles in the determination of the trait by modulating lignin biosynthesis. By expression GWAS analysis, we identify a regulatory hotspot on chromosome A09, which is involved in controlling seed coat content through BnaC07.CCRL and BnaTT8s. We then predict the downstream genes regulated by BnaTT8s using multi-omics datasets. We further experimentally validate that BnaCCRL and BnaTT8 positively regulate seed coat content and lignin content. BnaCCRL represents a novel identified gene involved in seed coat development. Furthermore, we also predict the key genes regulating carbon allocation between phenylpropane compounds and oil during seed development in B. napus. Conclusions This study helps us to better understand the complex machinery of seed coat development and provides a genetic resource for genetic improvement of seed coat content in B. napus breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02647-5.
Collapse
|
19
|
Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. Construction of a Quantitative Genomic Map, Identification and Expression Analysis of Candidate Genes for Agronomic and Disease-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:862363. [PMID: 35360294 PMCID: PMC8963808 DOI: 10.3389/fpls.2022.862363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Adeleke VT, Madlala NE, Adeniyi AA, Lokhat D. Molecular Interactions Associated with Coagulation of Organic Pollutants by 2S Albumin of Plant Proteins: A Computational Approach. Molecules 2022; 27:1685. [PMID: 35268786 PMCID: PMC8912086 DOI: 10.3390/molecules27051685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
The removal of organic pollutants is a major challenge in wastewater treatment technologies. Coagulation by plant proteins is a promising technique for this purpose. The use of these proteins has been experimentally investigated and reported in the literature. However, the determination of the molecular interactions of these species is experimentally challenging and the computational approach offers a suitable alternative in gathering useful information for this system. The present study used a molecular dynamic simulation approach to predict the potentials of using Moringa oleifera (MO), Arachis hypogaea, Bertholletia excelsa, Brassica napus, and Helianthus annuus plant proteins for the coagulation of organic pollutants and the possible mechanisms of coagulation of these proteins. The results showed that the physicochemical and structural properties of the proteins are linked to their performance. Maximum coagulation of organic molecules to the proteins is between 50-100%. Among five proteins studied for coagulation, Brassica napus and Helianthus annuus performed better than the well-known MO protein. The amino acid residues interacting with the organic molecules play a significant role in the coagulation and this is peculiar with each plant protein. Hydrogen bond and π-interactions dominate throughout the protein-pollutants molecular interactions. The reusability of the proteins after coagulation derived from their structural quality analysis along with the complexes looks promising and most of them are better than that of the MO. The results showed that the seed proteins studied have good prediction potentials to be used for the coagulation of organic pollutants from the environment, as well as the insights into their molecular activities for bioremediation.
Collapse
Affiliation(s)
- Victoria T. Adeleke
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa; (N.E.M.); (D.L.)
| | - Nkosinathi E. Madlala
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa; (N.E.M.); (D.L.)
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa;
- Department of Industrial Chemistry, Federal University, Oye Ekiti 370111, Nigeria
| | - David Lokhat
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa; (N.E.M.); (D.L.)
| |
Collapse
|
21
|
Xu K, Song J, Wu Y, Zhuo C, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. Brassica evolution of essential BnaFtsH1 genes involved in the PSII repair cycle and loss of FtsH5. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111128. [PMID: 35067298 DOI: 10.1016/j.plantsci.2021.111128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/23/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
The PSII repair cycle is an important part of photosynthesis and is essential for high photosynthetic efficiency. The study of essential genes in Brassica napus provides significant potential for the improvement of gene editing technology and molecular breeding design. Previously, we identified a B. napus lethal mutant (7-521Y), which was controlled by two recessive genes (cyd1 and cyd2). BnaC06.FtsH1 was identified as a CYD1 target gene through functional verification. In the present study, we employed fine-mapping, genetic complementation, and CRISPR/Cas9 experiments to identify BnaA07.FtsH1 as the target gene of CYD2, functioning similarly to BnaC06.FtsH1. By analyzing CRISPR/Cas9 T1 generation plants of the Westar variety, we found that the copy number of FtsH1 was positively correlated with its biomass accumulation. Transcriptome analysis of cotyledons revealed differences in the expression of photosynthesis antenna and structural proteins between the mutant and complementary seedlings. Phylogenetic and chromosome linear analyses, based on 15 sequenced cruciferous species, revealed that Brassica alone had lost FtsH5 during evolution. This may be related to the fact that FtsH5 was located at the end of chromosome ABK8 in the ancestor species. Cloning and identification of BnaFtsH1s provide a deeper understanding of PSII repair cycle mechanisms and offer new insights for the improvement of photosynthetic efficiency and molecular breeding design in B. napus.
Collapse
Affiliation(s)
- Kai Xu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jurong Song
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yujin Wu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chenjian Zhuo
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Zhang G, Peng Y, Zhou J, Tan Z, Jin C, Fang S, Zhong S, Jin C, Wang R, Wen X, Li B, Lu S, Zhou G, Fu T, Guo L, Yao X. Genome-Wide Association Studies of Salt-Alkali Tolerance at Seedling and Mature Stages in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:857149. [PMID: 35574128 PMCID: PMC9094488 DOI: 10.3389/fpls.2022.857149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 05/19/2023]
Abstract
Most plants are sensitive to salt-alkali stress, and the degree of tolerance to salt-alkali stress varies from different species and varieties. In order to explore the salt-alkali stress adaptability of Brassica napus, we collected the phenotypic data of 505 B. napus accessions at seedling and mature stages under control, low and high salt-alkali soil stress conditions in Inner Mongolia of China. Six resistant and 5 sensitive materials, respectively, have been identified both in Inner Mongolia and Xinjiang Uygur Autonomous Region of China. Genome-wide association studies (GWAS) for 15 absolute values and 10 tolerance coefficients (TCs) of growth and agronomic traits were applied to investigate the genetic basis of salt-alkali tolerance of B. napus. We finally mapped 9 significant QTLs related to salt-alkali stress response and predicted 20 candidate genes related to salt-alkali stress tolerance. Some important candidate genes, including BnABA4, BnBBX14, BnVTI12, BnPYL8, and BnCRR1, were identified by combining sequence variation annotation and expression differences. The identified valuable loci and germplasms could be useful for breeding salt-alkali-tolerant B.napus varieties. This study laid a foundation for understanding molecular mechanism of salt-alkali stress adaptation and provides rich genetic resources for the large-scale production of B. napus on salt-alkali land in the future.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shengzhu Zhong
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Cunwang Jin
- Green Industry Development Center, Inner Mongolia, China
| | - Ruizhen Wang
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Xiaoliang Wen
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Binrui Li
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guangsheng Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Xuan Yao
| |
Collapse
|
23
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
24
|
Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, Mora-Poblete F. Advances and Challenges for QTL Analysis and GWAS in the Plant-Breeding of High-Yielding: A Focus on Rapeseed. Biomolecules 2021; 11:1516. [PMID: 34680149 PMCID: PMC8533950 DOI: 10.3390/biom11101516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Yield is one of the most important agronomic traits for the breeding of rapeseed (Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Muhammad Hafeez Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| | - Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raheel Shahzad
- Department of Biotechnology, Faculty of Science & Technology, Universitas Muhammadiyah Bandung, Bandung 40614, Indonesia;
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| |
Collapse
|
25
|
Wei X, Zhou H, Xie D, Li J, Yang M, Chang T, Wang D, Hu L, Xie G, Wang J, Wang L. Genome-Wide Association Study in Rice Revealed a Novel Gene in Determining Plant Height and Stem Development, by Encoding a WRKY Transcription Factor. Int J Mol Sci 2021; 22:ijms22158192. [PMID: 34360958 PMCID: PMC8347446 DOI: 10.3390/ijms22158192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 11/27/2022] Open
Abstract
Semi-dwarfism is a main agronomic trait in crop breeding. In this study, we performed genome-wide association study (GWAS) and identified a new quantitative trait nucleotide (QTN) for rice shoot length. The peak QTN (C/T) was located in the first coding region of a group III WRKY transcription factor OsWRKY21 (LOC_Os01g60640). Interestingly, further haplotype analysis showed that C/T difference only existed in the indica group but not in the japonica group, resulting in significant differences in plant height among the different indica rice varieties. OsWRKY21 was expressed in embryo, radicle, shoots, leaves, and stems. Most notably, overexpressing OsWRKY21 resulted in the semi-dwarf phenotype, early heading date and short internodes compared to the wild type, while the knockout mutant plants by CRISPR/Cas9 technology yielded the opposite. The overexpressing lines exhibited the decreased length of the cells near sclerenchyma epidermis, accompanied with the lower levels of indole-3-acetic acid (IAA) and gibberellin 3 (GA3), but increased levels of the abscisic acid (ABA) and salicylic acid (SA) in the internodes at heading stage. Moreover, the semi-dwarf phenotype could be fully rescued by exogenous GA3 application at seedling stage. The RNA-seq and qRT-PCR analysis confirmed the differential expression levels of genes in development and the stress responses in rice, including GA metabolism (GA20ox2, GA2ox6, and YABY1) and cell wall biosynthesis (CesA4, 7, and 9) and regulation (MYB103L). These data suggest the essential role of OsWRKY21 in regulation of internode elongation and plant height in rice.
Collapse
Affiliation(s)
- Xiaoshuang Wei
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
| | - Hailian Zhou
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
| | - Deying Xie
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (G.X.)
| | - Jianguo Li
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (G.X.)
| | - Mingchong Yang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
| | - Tianli Chang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
| | - Dongxin Wang
- College of Life Science & Technology, Guangxi University, Nanning 530004, China; (D.W.); (L.H.)
| | - Lihua Hu
- College of Life Science & Technology, Guangxi University, Nanning 530004, China; (D.W.); (L.H.)
| | - Guosheng Xie
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (G.X.)
| | - Jihong Wang
- Department of Life Science, Tangshan Normal University, Tangshan 063000, China;
| | - Lingqiang Wang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (X.W.); (H.Z.); (J.L.); (M.Y.); (T.C.)
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (G.X.)
- Correspondence:
| |
Collapse
|
26
|
Zhang Q, Guan P, Zhao L, Ma M, Xie L, Li Y, Zheng R, Ouyang W, Wang S, Li H, Zhang Y, Peng Y, Cao Z, Zhang W, Xiao Q, Xiao Y, Fu T, Li G, Li X, Shen J. Asymmetric epigenome maps of subgenomes reveal imbalanced transcription and distinct evolutionary trends in Brassica napus. MOLECULAR PLANT 2021; 14:604-619. [PMID: 33387675 DOI: 10.1016/j.molp.2020.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/28/2020] [Accepted: 12/28/2020] [Indexed: 05/20/2023]
Abstract
The complexity of the epigenome landscape and transcriptional regulation is significantly increased during plant polyploidization, which drives genome evolution and contributes to the increased adaptability to diverse environments. However, a comprehensive epigenome map of Brassica napus is still unavailable. In this study, we performed integrative analysis of five histone modifications, RNA polymerase II occupancy, DNA methylation, and transcriptomes in two B. napus lines (2063A and B409), and established global maps of regulatory elements, chromatin states, and their dynamics for the whole genome (including the An and Cn subgenomes) in four tissue types (young leaf, flower bud, silique, and root) of these two lines. Approximately 65.8% of the genome was annotated with different epigenomic signals. Compared with the Cn subgenome, the An subgenome possesses a higher level of active epigenetic marks and lower level of repressive epigenetic marks. Genes from subgenome-unique regions contribute to the major differences between the An and Cn subgenomes. Asymmetric histone modifications between homeologous gene pairs reflect their biased expression patterns. We identified a novel bivalent chromatin state (with H3K4me1 and H3K27me3) in B. napus that is associated with tissue-specific gene expression. Furthermore, we observed that different types of duplicated genes have discrepant patterns of histone modification and DNA methylation levels. Collectively, our findings provide a valuable epigenetic resource for allopolyploid plants.
Collapse
Affiliation(s)
- Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengpeng Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqin Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shunyao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmeijuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanling Xiao
- National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed ( Brassica napus L.). PLANTS 2021; 10:plants10030426. [PMID: 33668258 PMCID: PMC7996214 DOI: 10.3390/plants10030426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Low temperature inhibits rapid germination and successful seedling establishment of rapeseed (Brassica napus L.), leading to significant productivity losses. Little is known about the genetic diversity for seed vigor under low-temperature conditions in rapeseed, which motivated our investigation of 13 seed germination- and emergence-related traits under normal and low-temperature conditions for 442 diverse rapeseed accessions. The stress tolerance index was calculated for each trait based on performance under non-stress and low-temperature stress conditions. Principal component analysis of the low-temperature stress tolerance indices identified five principal components that captured 100% of the seedling response to low temperature. A genome-wide association study using ~8 million SNP (single-nucleotide polymorphism) markers identified from genome resequencing was undertaken to uncover the genetic basis of seed vigor related traits in rapeseed. We detected 22 quantitative trait loci (QTLs) significantly associated with stress tolerance indices regarding seed vigor under low-temperature stress. Scrutiny of the genes in these QTL regions identified 62 candidate genes related to specific stress tolerance indices of seed vigor, and the majority were involved in DNA repair, RNA translation, mitochondrial activation and energy generation, ubiquitination and degradation of protein reserve, antioxidant system, and plant hormone and signal transduction. The high effect variation and haplotype-based effect of these candidate genes were evaluated, and high priority could be given to the candidate genes BnaA03g40290D, BnaA06g07530D, BnaA09g06240D, BnaA09g06250D, and BnaC02g10720D in further study. These findings should be useful for marker-assisted breeding and genomic selection of rapeseed to increase seed vigor under low-temperature stress.
Collapse
|
28
|
Raza A, Razzaq A, Mehmood SS, Hussain MA, Wei S, He H, Zaman QU, Xuekun Z, Hasanuzzaman M. Omics: The way forward to enhance abiotic stress tolerance in Brassica napus L. GM CROPS & FOOD 2021; 12:251-281. [PMID: 33464960 PMCID: PMC7833762 DOI: 10.1080/21645698.2020.1859898] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant abiotic stresses negative affects growth and development, causing a massive reduction in global agricultural production. Rapeseed (Brassica napus L.) is a major oilseed crop because of its economic value and oilseed production. However, its productivity has been reduced by many environmental adversities. Therefore, it is a prime need to grow rapeseed cultivars, which can withstand numerous abiotic stresses. To understand the various molecular and cellular mechanisms underlying the abiotic stress tolerance and improvement in rapeseed, omics approaches have been extensively employed in recent years. This review summarized the recent advancement in genomics, transcriptomics, proteomics, metabolomics, and their imploration in abiotic stress regulation in rapeseed. Some persisting bottlenecks have been highlighted, demanding proper attention to fully explore the omics tools. Further, the potential prospects of the CRISPR/Cas9 system for genome editing to assist molecular breeding in developing abiotic stress-tolerant rapeseed genotypes have also been explained. In short, the combination of integrated omics, genome editing, and speed breeding can alter rapeseed production worldwide.
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture , Faisalabad, Pakistan
| | - Sundas Saher Mehmood
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Muhammad Azhar Hussain
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Su Wei
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Huang He
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Qamar U Zaman
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Wuhan, China
| | - Zhang Xuekun
- College of Agriculture, Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University Jingzhou , China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University , Dhaka, Bangladesh
| |
Collapse
|
29
|
Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Mol Genet Genomics 2021; 296:391-408. [DOI: 10.1007/s00438-020-01749-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
|
30
|
Zhang G, Zhou J, Peng Y, Tan Z, Li L, Yu L, Jin C, Fang S, Lu S, Guo L, Yao X. Genome-Wide Association Studies of Salt Tolerance at Seed Germination and Seedling Stages in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:772708. [PMID: 35069628 PMCID: PMC8766642 DOI: 10.3389/fpls.2021.772708] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 05/19/2023]
Abstract
Most crops are sensitive to salt stress, but their degree of susceptibility varies among species and cultivars. In order to understand the salt stress adaptability of Brassica napus to salt stress, we collected the phenotypic data of 505 B. napus accessions at the germination stage under 150 or 215 mM sodium chloride (NaCl) and at the seedling stage under 215 mM NaCl. Genome-wide association studies (GWAS) of 16 salt tolerance coefficients (STCs) were applied to investigate the genetic basis of salt stress tolerance of B. napus. In this study, we mapped 31 salts stress-related QTLs and identified 177 and 228 candidate genes related to salt stress tolerance were detected at germination and seedling stages, respectively. Overexpression of two candidate genes, BnCKX5 and BnERF3 overexpression, were found to increase the sensitivity to salt and mannitol stresses at the germination stage. This study demonstrated that it is a feasible method to dissect the genetic basis of salt stress tolerance at germination and seedling stages in B. napus by GWAS, which provides valuable loci for improving the salt stress tolerance of B. napus. Moreover, these candidate genes are rich genetic resources for the following exploration of molecular mechanisms in adaptation to salt stress in B. napus.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Xuan Yao,
| |
Collapse
|
31
|
Feng YN, Cui JQ, Zhou T, Liu Y, Yue CP, Huang JY, Hua YP. Comprehensive dissection into morpho-physiologic responses, ionomic homeostasis, and transcriptomic profiling reveals the systematic resistance of allotetraploid rapeseed to salinity. BMC PLANT BIOLOGY 2020; 20:534. [PMID: 33228523 PMCID: PMC7685620 DOI: 10.1186/s12870-020-02734-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/09/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Salinity severely inhibit crop growth, yield, and quality worldwide. Allotetraploid rapeseed (Brassica napus L.), a major glycophyte oil crop, is susceptible to salinity. Understanding the physiological and molecular strategies of rapeseed salinity resistance is a promising and cost-effective strategy for developing highly resistant cultivars. RESULTS First, early leaf senescence was identified and root system growth was inhibited in rapeseed plants under severe salinity conditions. Electron microscopic analysis revealed that 200 mM NaCl induced fewer leaf trichomes and stoma, cell plasmolysis, and chloroplast degradation. Primary and secondary metabolite assays showed that salinity led to an obviously increased anthocyanin, osmoregulatory substances, abscisic acid, jasmonic acid, pectin, cellulose, reactive oxygen species, and antioxidant activity, and resulted in markedly decreased photosynthetic pigments, indoleacetic acid, cytokinin, gibberellin, and lignin. ICP-MS assisted ionomics showed that salinity significantly constrained the absorption of essential elements, including the nitrogen, phosphorus, potassium, calcium, magnesium, iron, mangnese, copper, zinc, and boron nutrients, and induced the increase in the sodium/potassium ratio. Genome-wide transcriptomics revealed that the differentially expressed genes were involved mainly in photosynthesis, stimulus response, hormone signal biosynthesis/transduction, and nutrient transport under salinity. CONCLUSIONS The high-resolution salt-responsive gene expression profiling helped the efficient characterization of central members regulating plant salinity resistance. These findings might enhance integrated comprehensive understanding of the morpho-physiologic and molecular responses to salinity and provide elite genetic resources for the genetic modification of salinity-resistant crop species.
Collapse
Affiliation(s)
- Ying-na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jia-qian Cui
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
32
|
Saidi A, Hajibarat Z. Application of Next Generation Sequencing, GWAS, RNA seq, WGRS, for genetic improvement of potato (Solanum tuberosum L.) under drought stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Yang S, Gill RA, Zaman QU, Ulhassan Z, Zhou W. Insights on SNP types, detection methods and their utilization in Brassica species: Recent progress and future perspectives. J Biotechnol 2020; 324:11-20. [PMID: 32979432 DOI: 10.1016/j.jbiotec.2020.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
The genus Brassica, family Brassicaceae (Cruciferae), comprises many important species of oil crops, vegetables and medicinal plants including B. rapa, B. oleracea, B. nigra, B. napus, B. juncea, B. carinata. Genomic researches in Brassica species is constrained by polyploidization, mainly due to its complicated genomic structure. However, rapid development of methods for detecting single nucleotide polymorphisms (SNP), such as next generation sequencing and SNP microarray, has accelerated release of reference Brassica species genomes as well as discovery of large numbers and genome-wide SNPs, thus intensifying forward genetics in this genus. In this review, we summarize biological characteristics, classification and various methods for detecting SNPs, focusing on high-throughput techniques. Moreover, we describe the pivotal roles of SNPs in genetic diversity, linkage map construction and QTL mapping, comparative genomics, linkage disequilibrium and genome-wide association studies. These insights are expected to deepen our understanding and guide further advancements in Brassica species research.
Collapse
Affiliation(s)
- Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Rafaqat Ali Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China.
| | - Qamar U Zaman
- Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan 430062, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Gubaev R, Gorlova L, Boldyrev S, Goryunova S, Goruynov D, Mazin P, Chernova A, Martynova E, Demurin Y, Khaitovich P. Genetic Characterization of Russian Rapeseed Collection and Association Mapping of Novel Loci Affecting Glucosinolate Content. Genes (Basel) 2020; 11:genes11080926. [PMID: 32806588 PMCID: PMC7465703 DOI: 10.3390/genes11080926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Rapeseed is the second most common oilseed crop worldwide. While the start of rapeseed breeding in Russia dates back to the middle of the 20th century, its widespread cultivation began only recently. In contrast to the world’s rapeseed genetic variation, the genetic composition of Russian rapeseed lines remained unexplored. We have addressed this question by performing genome-wide genotyping of 90 advanced rapeseed accessions provided by the All-Russian Research Institute of Oil Crops (VNIIMK). Genome-wide genetic analysis demonstrated a clear difference between Russian rapeseed varieties and the rapeseed varieties from the rest of the world, including the European ones, indicating that rapeseed breeding in Russia proceeded in its own independent direction. Hence, genetic determinants of agronomical traits might also be different in Russian rapeseed lines. To assess it, we collected the glucosinolate content data for the same 90 genotyped accessions obtained during three years and performed an association mapping of this trait. We indeed found that the loci significantly associated with glucosinolate content variation in the Russian rapeseed collection differ from those previously reported for the non-Russian rapeseed lines.
Collapse
Affiliation(s)
- Rim Gubaev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Lyudmila Gorlova
- Pustovoit All-Russia Research Institute of Oil Crops, Krasnodar 350038, Russia; (L.G.); (Y.D.)
| | - Stepan Boldyrev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Svetlana Goryunova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
- Institute of General Genetics, Russian Academy of Science, Moscow 119333, Russia
- FSBSI Lorch Potato Research Institute, Kraskovo 140051, Russia
| | - Denis Goruynov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Pavel Mazin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Alina Chernova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Elena Martynova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oil Crops, Krasnodar 350038, Russia; (L.G.); (Y.D.)
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
- Correspondence: ; Tel.: +7-916-690-6088
| |
Collapse
|
35
|
Zhang F, Xiao X, Xu K, Cheng X, Xie T, Hu J, Wu X. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics 2020; 21:139. [PMID: 32041524 PMCID: PMC7011513 DOI: 10.1186/s12864-020-6558-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lead (Pb) pollution in soil has become one of the major environmental threats to plant growth and human health. Safe utilization of Pb contaminated soil by phytoremediation require Pb-tolerant rapeseed (Brassica napus L.) accessions. However, breeding of new B. napus cultivars tolerance to Pb stress has been restricted by limited knowledge on molecular mechanisms involved in Pb tolerance. This work was carried out to identify genetic loci related to Pb tolerance during seedling establishment in rapeseed. RESULTS Pb tolerance, which was assessed by quantifying radicle length (RL) under 0 or 100 mg/L Pb stress condition, shown an extensive variation in 472 worldwide-collected rapeseed accessions. Based on the criterion of relative RL > 80%, six Pb-tolerant genotypes were selected. Four quantitative trait loci (QTLs) associated with Pb tolerance were identified by Genome-wide association study. The expression level of nine promising candidate genes, including GSTUs, BCATs, UBP13, TBR and HIPP01, located in these four QTL regions, were significantly higher or induced by Pb in Pb-tolerant accessions in comparison to Pb-sensitive accessions. CONCLUSION To our knowledge, this is the first study on Pb-tolerant germplasms and genomic loci in B. napus. The findings can provide valuable genetic resources for the breeding of Pb-tolerant B. napus cultivars and understanding of Pb tolerance mechanism in Brassica species.
Collapse
Affiliation(s)
- Fugui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Xin Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Xi Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Ting Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Jihong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China.
| |
Collapse
|
36
|
Tan X, Long W, Zeng L, Ding X, Cheng Y, Zhang X, Zou X. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress. Int J Mol Sci 2019; 20:ijms20215355. [PMID: 31661818 PMCID: PMC6862158 DOI: 10.3390/ijms20215355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Salt stress inhibits the production of all crop species, including rapeseed (Brassica napus L.), the second most widely planted oil crop species. Although melatonin was confirmed to alleviate salt stress in rapeseed seedlings recently, the mechanism governing the expression levels remains unknown. Therefore, the melatonin-induced transcriptome variation of salt-stressed seedlings was explored. In this study, the transcriptomes of leaves and roots under control (CK), salt (125 mM NaCl, ST) and melatonin (125 mM NaCl plus 50 µM melatonin, MS) treatments were evaluated by using next-generation sequencing techniques. After conducting comparisons of gene expression in the roots and leaves between MS and ST, the differentially expressed gene (DEG) pools were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the significant pathways, which were mainly related to plant hormone synthesis and signal transduction, lignin and fatty acid metabolism. The functional genes in the objective KEGG pathways were identified. Furthermore, members of several transcription factor (TF) families participated in the response process. Combined with the hormone (campesterol (CS), jasmonic acid (JA), and gibberellic acid 3 (GA3)) contents measured in the seedlings, it could be concluded that melatonin induced changes in the intrinsic hormone metabolic network, which promoted seedling growth. Thus, this study identified new candidate genes and pathways active during the interactions between melatonin and salt stress, which provide clues for disclosing melatonin’s function in resistance to salt injury. Our results contribute to developing a practical method for sustainable agriculture on saline lands.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China.
| | - Weihua Long
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China.
| | - Liu Zeng
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiaoyu Ding
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yong Cheng
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xuekun Zhang
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Xiling Zou
- Key Lab of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
37
|
Perera I, Fukushima A, Akabane T, Horiguchi G, Seneweera S, Hirotsu N. Expression regulation of myo-inositol 3-phosphate synthase 1 (INO1) in determination of phytic acid accumulation in rice grain. Sci Rep 2019; 9:14866. [PMID: 31619750 PMCID: PMC6795888 DOI: 10.1038/s41598-019-51485-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/02/2019] [Indexed: 01/07/2023] Open
Abstract
Phytic acid (PA) is the primary phosphorus (P) storage compound in the seeds of cereals and legumes. Low PA crops, which are considered an effective way to improve grain nutrient availability and combat environmental issues relating to seed P have been developed using mutational and reverse genetics approaches. Here, we identify molecular mechanism regulating PA content among natural rice variants. First, we performed genome-wide association (GWA) mapping of world rice core collection (WRC) accessions to understand the genetic determinants underlying PA trait in rice. Further, a comparative study was undertaken to identify the differences in PA accumulation, protein profiles, and gene expression in low (WRC 5) and high PA (WRC 6) accessions. GWA results identified myo-inositol 3-phosphate synthase 1 (INO1) as being closely localized to a significant single nucleotide polymorphism. We found high rates of PA accumulation 10 days after flowering, and our results indicate that INO1 expression was significantly higher in WRC 6 than in WRC 5. Seed proteome assays found that the expression of INO1 was significantly higher in WRC 6. These results suggest that not only the gene itself but regulation of INO1 gene expression at early developmental stages is important in determining PA content in rice.
Collapse
Affiliation(s)
- Ishara Perera
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193, Japan
- Grain Legumes and Oil Crops Research and Development Centre, Department of Agriculture, Angunakolapelessa, Sri Lanka
| | - Ayaka Fukushima
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193, Japan
| | - Tatsuki Akabane
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193, Japan
| | - Genki Horiguchi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193, Japan
| | - Saman Seneweera
- National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193, Japan.
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193, Japan.
| |
Collapse
|
38
|
Dossa K, Li D, Zhou R, Yu J, Wang L, Zhang Y, You J, Liu A, Mmadi MA, Fonceka D, Diouf D, Cissé N, Wei X, Zhang X. The genetic basis of drought tolerance in the high oil crop Sesamum indicum. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1788-1803. [PMID: 30801874 PMCID: PMC6686131 DOI: 10.1111/pbi.13100] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 05/18/2023]
Abstract
Unlike most of the important food crops, sesame can survive drought but severe and repeated drought episodes, especially occurring during the reproductive stage, significantly curtail the productivity of this high oil crop. Genome-wide association study was conducted for traits related to drought tolerance using 400 diverse sesame accessions, including landraces and modern cultivars. Ten stable QTLs explaining more than 40% of the phenotypic variation and located on four linkage groups were significantly associated with drought tolerance related traits. Accessions from the tropical area harboured higher numbers of drought tolerance alleles at the peak loci and were found to be more tolerant than those from the northern area, indicating a long-term genetic adaptation to drought-prone environments. We found that sesame has already fixed important alleles conferring survival to drought which may explain its relative high drought tolerance. However, most of the alleles crucial for productivity and yield maintenance under drought conditions are far from been fixed. This study also revealed that pyramiding the favourable alleles observed at the peak loci is of high potential for enhancing drought tolerance in sesame. In addition, our results highlighted two important pleiotropic QTLs harbouring known and unreported drought tolerance genes such as SiABI4, SiTTM3, SiGOLS1, SiNIMIN1 and SiSAM. By integrating candidate gene association study, gene expression and transgenic experiments, we demonstrated that SiSAM confers drought tolerance by modulating polyamine levels and ROS homeostasis, and a missense mutation in the coding region partly contributes to the natural variation of drought tolerance in sesame.
Collapse
Affiliation(s)
- Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| | - Marie A. Mmadi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Daniel Fonceka
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies VégétalesDépartement de Biologie VégétaleFaculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSénégal
| | - Ndiaga Cissé
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSénégal
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanHubeiChina
| |
Collapse
|
39
|
Kang Y, Torres‐Jerez I, An Z, Greve V, Huhman D, Krom N, Cui Y, Udvardi M. Genome-wide association analysis of salinity responsive traits in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2019; 42:1513-1531. [PMID: 30593671 PMCID: PMC6850670 DOI: 10.1111/pce.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/16/2018] [Indexed: 05/19/2023]
Abstract
Salinity stress is an important cause of crop yield loss in many parts of the world. Here, we performed genome-wide association studies of salinity-stress responsive traits in 132 HapMap genotypes of the model legume Medicago truncatula. Plants grown in soil were subjected to a step-wise increase in NaCl concentration, from 0 through 0.5% and 1.0% to 1.5%, and the following traits were measured: vigor, shoot biomass, shoot water content, leaf chlorophyll content, leaf size, and leaf and root concentrations of proline and major ions (Na+ , Cl- , K+ , Ca2+ , etc.). Genome-wide association studies were carried out using 2.5 million single nucleotide polymorphisms, and 12 genomic regions associated with at least four traits each were identified. Transcript-level analysis of the top eight candidate genes in five extreme genotypes revealed association between salinity tolerance and transcript-level changes for seven of the genes, encoding a vacuolar H+ -ATPase, two transcription factors, two proteins involved in vesicle trafficking, one peroxidase, and a protein of unknown function. Earlier functional studies on putative orthologues of two of the top eight genes (a vacuolar H+ -ATPase and a peroxidase) demonstrated their involvement in plant salinity tolerance.
Collapse
Affiliation(s)
- Yun Kang
- Noble Research InstituteArdmoreOklahoma73401
| | | | - Zewei An
- State Center for Rubber Breeding and Rubber Research InstituteDanzhouHainan571700China
| | - Veronica Greve
- College of Biological SciencesUniversity of MinnesotaHuntsvilleAlabama35806
| | | | | | - Yuehua Cui
- Department of Statistics and ProbabilityMichigan State UniversityEast LansingMichigan48824
| | | |
Collapse
|
40
|
Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. PLANTS (BASEL, SWITZERLAND) 2019; 8:E34. [PMID: 30704089 PMCID: PMC6409995 DOI: 10.3390/plants8020034] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022]
Abstract
Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO₂ or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan.
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xuekun Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
41
|
Morton MJL, Awlia M, Al‐Tamimi N, Saade S, Pailles Y, Negrão S, Tester M. Salt stress under the scalpel - dissecting the genetics of salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:148-163. [PMID: 30548719 PMCID: PMC6850516 DOI: 10.1111/tpj.14189] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 05/08/2023]
Abstract
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high-throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.
Collapse
Affiliation(s)
- Mitchell J. L. Morton
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Mariam Awlia
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Nadia Al‐Tamimi
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Stephanie Saade
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Yveline Pailles
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Mark Tester
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Lin HA, Chen SY, Chang FY, Tung CW, Chen YC, Shen WC, Chen RS, Wu CW, Chung CL. Genome-wide association study of rice genes and loci conferring resistance to Magnaporthe oryzae isolates from Taiwan. BOTANICAL STUDIES 2018; 59:32. [PMID: 30578469 PMCID: PMC6303224 DOI: 10.1186/s40529-018-0248-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/12/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rice blast, caused by Magnaporthe oryzae, is an important rice disease occurring in all rice-growing areas. To manage blast disease effectively and in an environmentally friendly way, it is important to continually discover diverse resistant resources for breeding. In this study, genome-wide association study (GWAS) was used to map genes/loci resistant to rice blast in the open-access rice diversity panel 1 (RDP1), previously genotyped with a 44K single-nucleotide polymorphism array. Two geographically and genetically different M. oryzae isolates from Taiwan, D41-2 and 12YL-DL3-2, were used to challenge RDP1. Infected leaves were visually rated for lesion type (LT) and evaluated for proportion of diseased leaf area (%DLA) by image analysis software. RESULTS A total of 32 quantitative trait loci (QTLs) were identified, including 6 from LT, 30 from DLA, and 4 from both LT and DLA. In all, 22 regions co-localized with previously reported resistance (R) genes and/or QTLs, including two cloned R genes, Pita and Ptr; 19 mapped R loci, and 20 QTLs. We identified 100 candidate genes encoding leucine-rich repeat-containing proteins, transcription factors, ubiquitination-related proteins, and peroxidases, among others, in the QTL intervals. Putative resistance and susceptibility haplotypes of the 32 QTL regions for each tested rice accessions were also determined. CONCLUSIONS By using Taiwanese M. oryzae isolates and image-based phenotyping for detailed GWAS, this study offers insights into the genetics underlying the natural variation of blast resistance in RDP1. The results can help facilitate the selection of desirable donors for gene/QTL validation and blast resistance breeding.
Collapse
Affiliation(s)
- Heng-An Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Szu-Yu Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Fang-Yu Chang
- Kaohsiung District Agricultural Research and Extension Station, No. 2-6, Dehe Rd., Pingtung County, 90846 Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Yi-Chia Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004 Taiwan
| | - Chih-Wen Wu
- Kaohsiung District Agricultural Research and Extension Station, No. 2-6, Dehe Rd., Pingtung County, 90846 Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617 Taiwan
| |
Collapse
|
43
|
Gabur I, Chawla HS, Liu X, Kumar V, Faure S, von Tiedemann A, Jestin C, Dryzska E, Volkmann S, Breuer F, Delourme R, Snowdon R, Obermeier C. Finding invisible quantitative trait loci with missing data. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2102-2112. [PMID: 29729219 PMCID: PMC6230954 DOI: 10.1111/pbi.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 05/21/2023]
Abstract
Evolutionary processes during plant polyploidization and speciation have led to extensive presence-absence variation (PAV) in crop genomes, and there is increasing evidence that PAV associates with important traits. Today, high-resolution genetic analysis in major crops frequently implements simple, cost-effective, high-throughput genotyping from single nucleotide polymorphism (SNP) hybridization arrays; however, these are normally not designed to distinguish PAV from failed SNP calls caused by hybridization artefacts. Here, we describe a strategy to recover valuable information from single nucleotide absence polymorphisms (SNaPs) by population-based quality filtering of SNP hybridization data to distinguish patterns associated with genuine deletions from those caused by technical failures. We reveal that including SNaPs in genetic analyses elucidate segregation of small to large-scale structural variants in nested association mapping populations of oilseed rape (Brassica napus), a recent polyploid crop with widespread structural variation. Including SNaP markers in genomewide association studies identified numerous quantitative trait loci, invisible using SNP markers alone, for resistance to two major fungal diseases of oilseed rape, Sclerotinia stem rot and blackleg disease. Our results indicate that PAV has a strong influence on quantitative disease resistance in B. napus and that SNaP analysis using cost-effective SNP array data can provide extensive added value from 'missing data'. This strategy might also be applicable for improving the precision of genetic mapping in many important crop species.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | | | - Xiwei Liu
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | - Vinod Kumar
- IGEPP, INRA, AGROCAMPUS OUESTUniv RennesLe RheuFrance
| | | | - Andreas von Tiedemann
- Section of General Plant Pathology and Crop ProtectionGeorg August UniversityGöttingenGermany
| | | | | | | | | | | | - Rod Snowdon
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | | |
Collapse
|
44
|
Yuan Y, Wang X, Wang L, Xing H, Wang Q, Saeed M, Tao J, Feng W, Zhang G, Song XL, Sun XZ. Genome-Wide Association Study Identifies Candidate Genes Related to Seed Oil Composition and Protein Content in Gossypium hirsutum L. FRONTIERS IN PLANT SCIENCE 2018; 9:1359. [PMID: 30405645 PMCID: PMC6204537 DOI: 10.3389/fpls.2018.01359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/28/2018] [Indexed: 05/05/2023]
Abstract
Cotton (Gossypium spp.) is a leading natural fiber crop and an important source of vegetable protein and oil for humans and livestock. To investigate the genetic architecture of seed nutrients in upland cotton, a genome-wide association study (GWAS) was conducted in a panel of 196 germplasm resources under three environments using a CottonSNP80K chip of 77,774 loci. Relatively high genetic diversity (average gene diversity being 0.331) and phenotypic variation (coefficient of variation, CV, exceeding 3.9%) were detected in this panel. Correlation analysis revealed that the well-documented negative association between seed protein (PR) and oil may be to some extent attributable to the negative correlation between oleic acid (OA) and PR. Linkage disequilibrium (LD) was unevenly distributed among chromosomes and subgenomes. It ranged from 0.10-0.20 Mb (Chr19) to 5.65-5.75 Mb (Chr25) among the chromosomes and the range of Dt-subgenomes LD decay distances was smaller than At-subgenomes. This panel was divided into two subpopulations based on the information of 41,815 polymorphic single-nucleotide polymorphism (SNP) markers. The mixed linear model considering both Q-matrix and K-matrix [MLM(Q+K)] was employed to estimate the association between the SNP markers and the seed nutrients, considering the false positives caused by population structure and the kinship. A total of 47 SNP markers and 28 candidate quantitative trait loci (QTLs) regions were found to be significantly associated with seven cottonseed nutrients, including protein, total fatty acid, and five main fatty acid compositions. In addition, the candidate genes in these regions were analyzed, which included three genes, Gh_D12G1161, Gh_D12G1162, and Gh_D12G1165 that were most likely involved in the control of cottonseed protein concentration. These results improved our understanding of the genetic control of cottonseed nutrients and provided potential molecular tools to develop cultivars with high protein and improved fatty acid compositions in cotton breeding programs through marker-assisted selection.
Collapse
Affiliation(s)
- Yanchao Yuan
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Xianlin Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Liyuan Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Huixian Xing
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Qingkang Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Muhammad Saeed
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Jincai Tao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Wei Feng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Guihua Zhang
- Heze Academy of Agricultural Sciences, Heze, China
| | - Xian-Liang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| | - Xue-Zhen Sun
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, China
| |
Collapse
|
45
|
Ahmad P, Abd Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KHM. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate-glutathione cycle and secondary metabolites. Sci Rep 2018; 8:13515. [PMID: 30201952 PMCID: PMC6131545 DOI: 10.1038/s41598-018-31917-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023] Open
Abstract
The present study tested the efficacy of 24-epibrassinolide (EBL) and calcium (Ca) for mediating salinity tolerance in tomato. Salinity stress affected the morphological parameters of tomato as well as leaf relative water content (LRWC), photosynthetic and accessory pigments, leaf gas exchange parameters, chlorophyll fluorescence and the uptake of essential macronutrients. The salt (NaCl) treatment induced oxidative stress in the form of increased Na+ ion concentration by 146%, electrolyte leakage (EL) by 61.11%, lipid peroxidation (MDA) 167% and hydrogen peroxide (H2O2) content by 175%. Salt stress also enhanced antioxidant enzyme activities including those in the ascorbate-glutathione cycle. Plants treated with EBL or Ca after salt exposure mitigated the ill effects of salt stress, including oxidative stress, by reducing the uptake of Na+ ions by 52%. The combined dose of EBL + Ca reversed the salt-induced changes through an elevated pool of enzymes in the ascorbate-glutathione cycle, other antioxidants (superoxide dismutase, catalase), and osmoprotectants (proline, glycine betaine). Exogenously applied EBL and Ca help to optimize mineral nutrient status and enable tomato plants to tolerate salt toxicity. The ability of tomato plants to tolerate salt stress when supplemented with EBL and Ca was attributed to modifications to enzymatic and non-enzymatic antioxidants, osmolytes and metabolites.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| |
Collapse
|
46
|
Chen L, Wan H, Qian J, Guo J, Sun C, Wen J, Yi B, Ma C, Tu J, Song L, Fu T, Shen J. Genome-Wide Association Study of Cadmium Accumulation at the Seedling Stage in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2018; 9:375. [PMID: 29725340 PMCID: PMC5917214 DOI: 10.3389/fpls.2018.00375] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/06/2018] [Indexed: 05/26/2023]
Abstract
Cadmium is a potentially toxic heavy metal to human health. Rapeseed (Brassica napus L.), a vegetable and oilseed crop, might also be a Cd hyperaccumulator, but there is little information on this trait in rapeseed. We evaluated Cd accumulation in different oilseed accessions and employed a genome-wide association study to identify quantitative trait loci (QTLs) related to Cd accumulation. A total of 419 B. napus accessions and inbred lines were genotyped with a 60K Illumina Infinium SNP array of Brassica. Wide genotypic variations in Cd concentration and translocation were found. Twenty-five QTLs integrated with 98 single-nucleotide polymorphisms (SNPs) located at 15 chromosomes were associated with Cd accumulation traits. These QTLs explained 3.49-7.57% of the phenotypic variation observed. Thirty-two candidate genes were identified in these genomic regions, and they were 0.33-497.97 kb away from the SNPs. We found orthologs of Arabidopsis thaliana located near the significant SNPs on the B. napus genome, including NRAMP6 (natural resistance-associated macrophage protein 6), IRT1 (iron-regulated transporter 1), CAD1 (cadmium-sensitive 1), and PCS2 (phytochelatin synthase 2). Of them, four candidate genes were verified by qRT-PCR, the expression levels of which were significantly higher after exposure to Cd than in the controls. Our results might facilitate the study of the genetic basis of Cd accumulation and the cloning of candidate Cd accumulation genes, which could be used to help reduce Cd levels in edible plant parts and/or create more efficient hyperaccumulators.
Collapse
Affiliation(s)
- Lunlin Chen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Heping Wan
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiali Qian
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianbin Guo
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengming Sun
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Laiqiang Song
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Bao B, Chao H, Wang H, Zhao W, Zhang L, Raboanatahiry N, Wang X, Wang B, Jia H, Li M. Stable, Environmental Specific and Novel QTL Identification as Well as Genetic Dissection of Fatty Acid Metabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2018; 9:1018. [PMID: 30065738 PMCID: PMC6057442 DOI: 10.3389/fpls.2018.01018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/22/2018] [Indexed: 05/05/2023]
Abstract
Fatty acid (FA) composition is the typical quantitative trait in oil seed crops, of which study is not only closely related to oil content, but is also more critical for the quality improvement of seed oil. The double haploid (DH) population named KN with a high density SNP linkage map was applied for quantitative trait loci (QTL) analysis of FA composition in this study. A total of 406 identified QTL were detected for eight FA components with an average confidence interval (CI) of 2.92 cM, the explained phenotypic variation (PV) value ranged from 1.49 to 45.05%. Totally, 204 consensus and 91 unique QTL were further obtained via meta-analysis method for the purpose of detecting multiple environment expressed and pleiotropic QTL, respectively. Of which, 74 stable expressed and 22 environmental specific QTL were also revealed, respectively. In order to make clear the genetic mechanism of FA metabolism at individual QTL level, conditional QTL analysis was also conducted and more than two thousand conditional QTL which could not be detected under the unconditional mapping were detected, which indicated the complex interrelationship of the QTL controlling FA content in rapeseed. Through comparative genomic analysis and homologous gene annotation, 61 candidates related to acyl lipid metabolism were identified underlying the CI of FA QTL. To further visualize the genetic mechanism of FA metabolism, an intuitive and meticulous network about acyl lipid metabolism was constructed and some closely related candidates were positioned. This study provided a more accurate localization for stable and pleiotropic QTL, and a deeper dissection of the molecular regulatory mechanism of FA metabolism in rapeseed.
Collapse
Affiliation(s)
- Binghao Bao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Weiguo Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Lina Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nadia Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Wang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haibo Jia
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Haibo Jia
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
- Maoteng Li
| |
Collapse
|