1
|
Qi Z, Meng X, Xu M, Du Y, Yu J, Song T, Pan X, Zhang R, Cao H, Yu M, Telebanco-Yanoria MJ, Lu G, Zhou B, Liu Y. A novel Pik allele confers extended resistance to rice blast. PLANT, CELL & ENVIRONMENT 2024; 47:4800-4814. [PMID: 39087779 DOI: 10.1111/pce.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiuli Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Ming Xu
- High-throughput Genotyping Shared Laboratory, Seed Administration Department of Jiangsu Province, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | | | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Bo Zhou
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
2
|
Chen J, Zhong Y, Zou P, Ni J, Liu Y, Dai S, Zhou R. Identification of Genomic Regions Associated with Differences in Flowering Time and Inflorescence Architecture between Melastoma candidum and M. normale. Int J Mol Sci 2024; 25:10250. [PMID: 39408579 PMCID: PMC11477356 DOI: 10.3390/ijms251910250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Understanding the genetic basis of species differences in flowering time and inflorescence architecture can shed light on speciation and molecular breeding. Melastoma shows rapid speciation, with about 100 species formed in the past few million years, and, meanwhile, possesses high ornamental values. Two largely sympatric and closely related species of this genus, M. candidum and M. normale, differ markedly in flowering time and flower number per inflorescence. Here, we constructed an F2 population between M. candidum and M. normale, and used extreme bulks for flowering time and flower number per inflorescence in this population to identify genomic regions underlying the two traits. We found high differentiation on nearly the whole chromosome 7 plus a few regions on other chromosomes between the two extreme bulks for flowering time. Large chromosomal inversions on chromosome 7 between the two species, which contain flowering-related genes, can explain recombinational suppression on the chromosome. We identified 1872 genes with one or more highly differentiated SNPs between the two bulks for flowering time, including CSTF77, FY, SPA3, CDF3, AGL8, AGL15, FHY1, COL9, CIB1, FKF1 and FAR1, known to be related to flowering. We also identified 680 genes with one or more highly differentiated SNPs between the two bulks for flower number per inflorescence, including PNF, FIL and LAS, knows to play important roles in inflorescence development. These large inversions on chromosome 7 prevent us from narrowing down the genomic region(s) associated with flowering time differences between the two species. Flower number per inflorescence in Melastoma appears to be controlled by multiple genes, without any gene of major effect. Our study indicates that large chromosomal inversions can hamper the identification of the genetic basis of important traits, and the inflorescence architecture of Melastoma species may have a complex genetic basis.
Collapse
Affiliation(s)
- Jingfang Chen
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| | - Yan Zhong
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peishan Zou
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Jianzhong Ni
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Ying Liu
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Seping Dai
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Renchao Zhou
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| |
Collapse
|
3
|
Huang Q, Li X, Li Q, Zhong S, Li X, Yang J, Tan F, Ren T, Li Z, Suizhuang Y. Three novel QTLs for FHB resistance identified and mapped in spring wheat PI672538 by bulked segregant analysis of the recombinant inbred line. FRONTIERS IN PLANT SCIENCE 2024; 15:1409095. [PMID: 39135653 PMCID: PMC11317384 DOI: 10.3389/fpls.2024.1409095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Introduction Fusarium head blight (FHB) has a large influence on both the yield and quality of wheat grain worldwide. Host resistance is the most effective method for controlling FHB, but unfortunately, very few genetic resources on FHB resistance are available; therefore, identifying novel resistance genes or quantitative trait loci (QTLs) is valuable. Methods Here, a recombinant inbred line (RIL) population containing 451 lines derived from the cross L661/PI672538 was sown in four different environments (2019CZa, 2019CZb, 2021QL and 2021WJ). Results Five QTLs, consisting of two previously reported QTLs (FhbL693a and FhbL693b) and three new QTLs (FhbL693c, FhbL693d and FhbL693e), were identified. Further investigation revealed that FhbL693b, FhbL693c and FhbL693d could be detected in all four environments, and FhbL693a and FhbL693e were detected only in 2019CZb and 2021WJ, respectively. Among the QTLs, the greatest contribution (10.5%) to the phenotypic variation effect (PVE) was FhbL693d in 2021WJ, while the smallest (1.2%) was FhbL693e and FhbL693a in 2019CZb. The selection of 5Dindel-4 for FhbL693d, 4Aindel-7 for FhbL693c and 3Bindel-24 for FhbL693b decreased the number of damaged spikelets by 2.1, and a new line resistant to FHB named H140-2 was developed by marker-assisted selection (MAS). Discussion These results could help to further improve FHB resistance in the future.
Collapse
Affiliation(s)
- Qianglan Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Qing Li
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic, Fuling, Chongqing, China
| | - Shengfu Zhong
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiuying Li
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiezhi Yang
- Wheat Research Institute, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan, China
| | - Feiquan Tan
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianheng Ren
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhi Li
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Suizhuang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
4
|
Ling Y, Zhang Y, Huang M, Guo T, Yang G. Genome-Wide Profile of Mutations Induced by Carbon Ion Beam Irradiation of Dehulled Rice Seeds. Int J Mol Sci 2024; 25:5195. [PMID: 38791234 PMCID: PMC11121050 DOI: 10.3390/ijms25105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
As a physical mutagen, carbon ion beam (CIB) irradiation can induce high-frequency mutation, which is user-friendly and environment-friendly in plant breeding. In this study, we resequenced eight mutant lines which were screened out from the progeny of the CIB-irradiated dehulled rice seeds. Among these mutants, CIB induced 135,535 variations, which include single base substitutions (SBSs), and small insertion and deletion (InDels). SBSs are the most abundant mutation, and account for 88% of all variations. Single base conversion is the main type of SBS, and the average ratio of transition and transversion is 1.29, and more than half of the InDels are short-segmented mutation (1-2 bp). A total of 69.2% of the SBSs and InDels induced by CIBs occurred in intergenic regions on the genome. Surprisingly, the average mutation frequency in our study is 9.8 × 10-5/bp and much higher than that of the previous studies, which may result from the relatively high irradiation dosage and the dehulling of seeds for irradiation. By analyzing the mutation of every 1 Mb in the genome of each mutant strain, we found some unusual high-frequency (HF) mutation regions, where SBSs and InDels colocalized. This study revealed the mutation mechanism of dehulled rice seeds by CIB irradiation on the genome level, which will enrich our understanding of the mutation mechanism of CIB radiation and improve mutagenesis efficiency.
Collapse
Affiliation(s)
- Ying Ling
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
| | - Yuming Zhang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Y.Z.); (M.H.)
| |
Collapse
|
5
|
Flay C, Symonds VV, Storey R, Davy M, Datson P. Mapping QTL associated with resistance to Pseudomonas syringae pv. actinidiae in kiwifruit ( Actinidia chinensis var. chinensis). FRONTIERS IN PLANT SCIENCE 2024; 14:1255506. [PMID: 38596713 PMCID: PMC11003357 DOI: 10.3389/fpls.2023.1255506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 04/11/2024]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a bacterial pathogen of kiwifruit. This pathogen causes leaf-spotting, cane dieback, wilting, cankers (lesions), and in severe cases, plant death. Families of diploid A. chinensis seedlings grown in the field show a range of susceptibilities to the disease with up to 100% of seedlings in some families succumbing to Psa. But the effect of selection for field resistance to Psa on the alleles that remain in surviving seedlings has not been assessed. The objective of this work was to analyse, the effect of plant removal from Psa on the allele frequency of an incomplete-factorial-cross population. This population was founded using a range of genotypically distinct diploid A. chinensis var. chinensis parents to make 28 F1 families. However, because of the diversity of these families, low numbers of surviving individuals, and a lack of samples from dead individuals, standard QTL mapping approaches were unlikely to yield good results. Instead, a modified bulk segregant analysis (BSA) overcame these drawbacks while reducing the costs of sampling and sample processing, and the complexity of data analysis. Because the method was modified, part one of this work was used to determine the signal strength required for a QTL to be detected with BSA. Once QTL detection accuracy was known, part two of this work analysed the 28 families from the incomplete-factorial-cross population that had multiple individuals removed due to Psa infection. Each family was assigned to one of eight bulks based on a single parent that contributed to the families. DNA was extracted in bulk by grinding sampled leaf discs together before DNA extraction. Each sample bulk was compared against a bulk made up of WGS data from the parents contributing to the sample bulk. The deviation in allele frequency from the expected allele frequency within surviving populations using the modified BSA method was able to identify 11 QTLs for Psa that were present in at least two analyses. The identification of these Psa resistance QTL will enable marker development to selectively breed for resistance to Psa in future kiwifruit breeding programs.
Collapse
Affiliation(s)
- Casey Flay
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - V. Vaughan Symonds
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Roy Storey
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Marcus Davy
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
| | - Paul Datson
- The New Zealand Institute for Plant and Food Research Limited, Te Puke, New Zealand
- Kiwifruit Breeding Centre, Te Puke, New Zealand
| |
Collapse
|
6
|
Wang J, Wang E, Cheng S, Ma A. Identification of molecular markers and candidate regions associated with grain number per spike in Pubing3228 using SLAF-BSA. FRONTIERS IN PLANT SCIENCE 2024; 15:1361621. [PMID: 38504905 PMCID: PMC10948542 DOI: 10.3389/fpls.2024.1361621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Grain number per spike, a pivotal agronomic trait dictating wheat yield, lacks a comprehensive understanding of its underlying mechanism in Pubing3228, despite the identification of certain pertinent genes. Thus, our investigation sought to ascertain molecular markers and candidate regions associated with grain number per spike through a high-density genetic mapping approach that amalgamates site-specific amplified fragment sequencing (SLAF-seq) and bulked segregation analysis (BSA). To facilitate this, we conducted a comparative analysis of two wheat germplasms, Pubing3228 and Jing4839, known to exhibit marked discrepancies in spike shape. By leveraging this methodology, we successfully procured 2,810,474 SLAF tags, subsequently resulting in the identification of 187,489 single nucleotide polymorphisms (SNPs) between the parental strains. We subsequently employed the SNP-index association algorithm alongside the extended distribution (ED) association algorithm to detect regions associated with the trait. The former algorithm identified 24 trait-associated regions, whereas the latter yielded 70. Remarkably, the intersection of these two algorithms led to the identification of 25 trait-associated regions. Amongst these regions, we identified 399 annotated genes, including three genes harboring non-synonymous mutant SNP loci. Notably, the APETALA2 (AP2) transcription factor families, which exhibited a strong correlation with spike type, were also annotated. Given these findings, it is plausible to hypothesize that these genes play a critical role in determining spike shape. In summation, our study contributes significant insights into the genetic foundation of grain number per spike. The molecular markers and candidate regions we have identified can be readily employed for marker-assisted breeding endeavors, ultimately leading to the development of novel wheat cultivars possessing enhanced yield potential. Furthermore, conducting further functional analyses on the identified genes will undoubtedly facilitate a comprehensive elucidation of the underlying mechanisms governing spike development in wheat.
Collapse
Affiliation(s)
- Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Erwei Wang
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, China
| | - Shiping Cheng
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan, China
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Aichu Ma
- Pingdingshan Academy of Agricultural Science, Pingdingshan, Henan, China
| |
Collapse
|
7
|
Zhang B, Wu Y, Li S, Ren W, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Hou X, Zhang Y. Chloroplast C-to-U editing, regulated by a PPR protein BoYgl-2, is important for chlorophyll biosynthesis in cabbage. HORTICULTURE RESEARCH 2024; 11:uhae006. [PMID: 38559470 PMCID: PMC10980974 DOI: 10.1093/hr/uhae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/30/2023] [Indexed: 04/04/2024]
Abstract
Leaf color is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata), but the detailed mechanism underlying leaf color formation remains unclear. In this study, we characterized a Brassica oleracea yellow-green leaf 2 (BoYgl-2) mutant 4036Y, which has significantly reduced chlorophyll content and abnormal chloroplasts during early leaf development. Genetic analysis revealed that the yellow-green leaf trait is controlled by a single recessive gene. Map-based cloning revealed that BoYgl-2 encodes a novel nuclear-targeted P-type PPR protein, which is absent in the 4036Y mutant. Functional complementation showed that BoYgl-2 from the normal-green leaf 4036G can rescue the yellow-green leaf phenotype of 4036Y. The C-to-U editing efficiency and expression levels of atpF, rps14, petL and ndhD were significantly reduced in 4036Y than that in 4036G, and significantly increased in BoYgl-2 overexpression lines than that in 4036Y. The expression levels of many plastid- and nuclear-encoded genes associated with chloroplast development in BoYgl-2 mutant were also significantly altered. These results suggest that BoYgl-2 participates in chloroplast C-to-U editing and development, which provides rare insight into the molecular mechanism underlying leaf color formation in cabbage.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuankang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoufan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjing Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Zhang H, Liu X, Zhou J, Strelkov SE, Fredua-Agyeman R, Zhang S, Li F, Li G, Wu J, Sun R, Hwang SF, Zhang S. Identification of Clubroot ( Plasmodiophora brassicae) Resistance Loci in Chinese Cabbage ( Brassica rapa ssp. pekinensis) with Recessive Character. Genes (Basel) 2024; 15:274. [PMID: 38540333 PMCID: PMC10970103 DOI: 10.3390/genes15030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Xitong Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jinyan Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| |
Collapse
|
9
|
Mohanty JK, Thakro V, Yadav A, Nayyar H, Dixit GP, Agarwal P, Parida SK, Jha UC. Delineation of genes for a major QTL governing heat stress tolerance in chickpea. PLANT MOLECULAR BIOLOGY 2024; 114:19. [PMID: 38363401 DOI: 10.1007/s11103-024-01421-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/08/2023] [Indexed: 02/17/2024]
Abstract
Chickpea (Cicer arietinum) is a cool season grain legume experiencing severe yield loss during heat stress due to the intensifying climate changes and its associated gradual increase of mean temperature. Hence, understanding the genetic architecture regulating heat stress tolerance has emerged as an important trait to be addressed for enhancing yield and productivity of chickpea under heat stress. The present study is intended to identify the major genomic region(s) governing heat stress tolerance in chickpea. For this, an integrated genomics-assisted breeding strategy involving NGS-based high-resolution QTL-seq assay, QTL region-specific association analysis and molecular haplotyping was deployed in a population of 206 mapping individuals and a diversity panel of 217 germplasm accessions of chickpea. This combinatorial strategy delineated a major 156.8 kb QTL genomic region, which was subsequently narrowed-down to a functional candidate gene CaHSFA5 and its natural alleles associated strongly with heat stress tolerance in chickpea. Superior natural alleles and haplotypes delineated from the CaHSFA5 gene have functional significance in regulating heat stress tolerance in chickpea. Histochemical staining, interaction studies along with differential expression profiling of CaHSFA5 and ROS scavenging genes suggest a cross talk between CaHSFA5 with ROS homeostasis pertaining to heat stress tolerance in chickpea. Heterologous gene expression followed by heat stress screening further validated the functional significance of CaHSFA5 for heat stress tolerance. The salient outcomes obtained here can have potential to accelerate multiple translational genomic analysis including marker-assisted breeding and gene editing in order to develop high-yielding heat stress tolerant chickpea varieties.
Collapse
Affiliation(s)
- Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Antima Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Girish P Dixit
- Indian Institute of Pulses Research (IIPR), Uttar Pradesh, Kanpur, 208024, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Uttar Pradesh, Kanpur, 208024, India.
| |
Collapse
|
10
|
Wang Y, Lu H, Liu X, Liu L, Zhang W, Huang Z, Li K, Xu A. Identification of Yellow Seed Color Genes Using Bulked Segregant RNA Sequencing in Brassica juncea L. Int J Mol Sci 2024; 25:1573. [PMID: 38338852 PMCID: PMC10855766 DOI: 10.3390/ijms25031573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024] Open
Abstract
Yellow seed breeding is an effective method to improve oil yield and quality in rapeseed (Brassica napus L.). However, naturally occurring yellow-seeded genotypes have not been identified in B. napus. Mustard (Brassica juncea L.) has some natural, yellow-seeded germplasms, yet the molecular mechanism underlying this trait remains unclear. In this study, a BC9 population derived from the cross of yellow seed mustard "Wuqi" and brown seed mustard "Wugong" was used to analyze the candidate genes controlling the yellow seed color of B. juncea. Subsequently, yellow-seeded (BY) and brown-seeded (BB) bulks were constructed in the BC9 population and subjected to bulked segregant RNA sequencing (BSR-Seq). A total of 511 differentially expressed genes (DEGs) were identified between the brown and yellow seed bulks. Enrichment analysis revealed that these DEGs were involved in the phenylpropanoid biosynthetic process and flavonoid biosynthetic process, including key genes such as 4CL, C4H, LDOX/TT18, PAL1, PAL2, PAL4, TT10, TT12, TT4, TT8, BAN, DFR/TT3, F3H/TT6, TT19, and CHI/TT5. In addition, 111,540 credible single-nucleotide polymorphisms (SNPs) and 86,319 INDELs were obtained and used for quantitative trait locus (QTL) identification. Subsequently, two significant QTLs on chromosome A09, namely, qSCA09-3 and qSCA09-7, were identified by G' analysis, and five DEGs (BjuA09PAL2, BjuA09TT5, BjuA09TT6, BjuA09TT4, BjuA09TT3) involved in the flavonoid pathway were identified as hub genes based on the protein-to-protein network. Among these five genes, only BjuA09PAL2 and BjuA09F3H had SNPs between BY and BB bulks. Interestingly, the majority of SNPs in BjuA09PAL2 were consistent with the SNPs identified between the high-quality assembled B. juncea reference genome "T84-66" (brown-seed) and "AU213" (yellow-seed). Therefore, BjuA09PAL2, which encodes phenylalanine lyase, was considered as the candidate gene associated with yellow seed color of B. juncea. The identification of a novel gene associated with the yellow seed coloration of B. juncea through this study may play a significant role in enhancing yellow seed breeding in rapeseed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
11
|
Shen S, Xu S, Wang M, Ma T, Chen N, Wang J, Zheng H, Yang L, Zou D, Xin W, Liu H. BSA-Seq for the Identification of Major Genes for EPN in Rice. Int J Mol Sci 2023; 24:14838. [PMID: 37834285 PMCID: PMC10573429 DOI: 10.3390/ijms241914838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Improving rice yield is one of the most important food issues internationally. It is an undeniable goal of rice breeding, and the effective panicle number (EPN) is a key factor determining rice yield. Increasing the EPN in rice is a major way to increase rice yield. Currently, the main quantitative trait locus (QTL) for EPN in rice is limited, and there is also limited research on the gene for EPN in rice. Therefore, the excavation and analysis of major genes related to EPN in rice is of great significance for molecular breeding and yield improvement. This study used japonica rice varieties Dongfu 114 and Longyang 11 to construct an F5 population consisting of 309 individual plants. Two extreme phenotypic pools were constructed by identifying the EPN of the population, and QTL-seq analysis was performed to obtain three main effective QTL intervals for EPN. This analysis also helped to screen out 34 candidate genes. Then, EPN time expression pattern analysis was performed on these 34 genes to screen out six candidate genes with higher expression levels. Using a 3K database to perform haplotype analysis on these six genes, we selected haplotypes with significant differences in EPN. Finally, five candidate genes related to EPN were obtained.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wei Xin
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.S.); (S.X.); (M.W.); (T.M.); (N.C.); (J.W.); (H.Z.); (L.Y.); (D.Z.)
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.S.); (S.X.); (M.W.); (T.M.); (N.C.); (J.W.); (H.Z.); (L.Y.); (D.Z.)
| |
Collapse
|
12
|
Song J, Liu K, Yang X, Chen Y, Xiong Y, Yang Q, Wang J, Zhang Z, Wu C, Wang J, Qiu L. QTL Mapping of Soybean ( Glycine max) Vine Growth Habit Trait. Int J Mol Sci 2023; 24:14770. [PMID: 37834218 PMCID: PMC10572949 DOI: 10.3390/ijms241914770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The vine growth habit (VGH) is a notable property of wild soybean plants that also holds a high degree of importance in domestication as it can preclude using these wild cultivars for breeding and improving domesticated soybeans. Here, a bulked segregant analysis (BSA) approach was employed to study the genetic etiology of the VGH in soybean plants by integrating linkage mapping and population sequencing approaches. To develop a recombinant inbred line (RIL) population, the cultivated Zhongdou41 (ZD41) soybean cultivar was bred with ZYD02787, a wild soybean accession. The VGH status of each line in the resultant population was assessed, ultimately leading to the identification of six and nine QTLs from the BSA sequencing of the F4 population and F6-F8 population sequence mapping, respectively. One QTL shared across these analyzed generations was detected on chromosome 19. Three other QTLs detected by BSA-seq were validated and localized to the 90.93 kb, 2.9 Mb, and 602.08 kb regions of chromosomes 6 and 13, harboring 14, 53, and 4 genes, respectively. Three consistent VGH-related QTLs located on chromosomes 2 and 19 were detected in a minimum of three environments, while an additional six loci on chromosomes 2, 10, 13, and 18 were detected in at least two environments via ICIM mapping. Of all the detected loci, five had been reported previously whereas seven represent novel QTLs. Together, these data offer new insights into the genetic basis of the VGH in soybean plants, providing a rational basis to inform the use of wild accessions in future breeding efforts.
Collapse
Affiliation(s)
- Jian Song
- College of Life Science, Yangtze University, Jingzhou 434025, China; (J.S.); (C.W.)
| | - Kanglin Liu
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (K.L.); (X.Y.); (Y.C.); (Y.X.); (Q.Y.); (J.W.)
| | - Xuezhen Yang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (K.L.); (X.Y.); (Y.C.); (Y.X.); (Q.Y.); (J.W.)
| | - Yijie Chen
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (K.L.); (X.Y.); (Y.C.); (Y.X.); (Q.Y.); (J.W.)
| | - Yajun Xiong
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (K.L.); (X.Y.); (Y.C.); (Y.X.); (Q.Y.); (J.W.)
| | - Qichao Yang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (K.L.); (X.Y.); (Y.C.); (Y.X.); (Q.Y.); (J.W.)
| | - Jing Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (K.L.); (X.Y.); (Y.C.); (Y.X.); (Q.Y.); (J.W.)
| | - Zhihao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Caiyu Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; (J.S.); (C.W.)
| | - Jun Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (K.L.); (X.Y.); (Y.C.); (Y.X.); (Q.Y.); (J.W.)
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
13
|
Song J, Xu R, Guo Q, Wu C, Li Y, Wang X, Wang J, Qiu LJ. An omics strategy increasingly improves the discovery of genetic loci and genes for seed-coat color formation in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:71. [PMID: 37663546 PMCID: PMC10471558 DOI: 10.1007/s11032-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01414-z.
Collapse
Affiliation(s)
- Jian Song
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Ruixin Xu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Qingyuan Guo
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Caiyu Wu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Jun Wang
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
14
|
Zheng WY, Zhu ZY, Sami A, Sun MY, Li Y, Hu J, Qian XZ, Ma JX, Wang MQ, Yu Y, Zhang FG, Zhou KJ, Zhu ZH. Mapping and candidate gene analysis of clustered bud on the main inflorescence in Brassica napus L. BMC PLANT BIOLOGY 2023; 23:348. [PMID: 37403046 PMCID: PMC10318724 DOI: 10.1186/s12870-023-04355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Breeding rapeseed varieties with more main inflorescence siliques is an idea for developing rapeseed varieties that are suitable for light and simplified cultivation. The Brassica napus exhibited cluster bud of the main inflorescence (Bnclib) gene. At the fruiting stage, the main inflorescence had more siliques, higher density, and more main inflorescences. Moreover, the top of the main inflorescence bifurcated. Genetic analysis showed that the separation ratio between Bnclib and the wild type in the F2 generation was 3:1, which indicated that the trait was a single-gene-dominant inheritance. Among the 24 candidate genes, only one gene, BnaA03g53930D, showed differential expression between the groups (False discovery rate, FDR ≤ 0.05, |log2FC|≤ 1). qPCR verification of the BnaA03g53930D gene between Huyou 17 and its Bnclib near-isogenic line showed that BnaA03g53930D was significantly differentially expressed in the stem tissue of Huyou 17 and its Bnclib near-isogenic line (Bnclib NIL). The determination of gibberellin (GA), brassinolide (BR), cytokinin (CTK), jasmonic acid (JA), growth hormone (IAA), and strigolactone (SL) content in the shoot apex of Huyou 17 by Bnclib NIL and wild type showed that all six hormones significantly differed between the Bnclib NIL and Huyou 17. It is necessary to conduct further research on the interactions between JA and the other five hormones and the main inflorescence bud clustering in B. napus.
Collapse
Affiliation(s)
- Wen Yin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhe Yi Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Abdul Sami
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meng Yuan Sun
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jian Hu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xing Zhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jin Xu Ma
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mei Qi Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yan Yu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fu Gui Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Ke Jin Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zong He Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
15
|
Jin H, Yang X, Zhao H, Song X, Tsvetkov YD, Wu Y, Gao Q, Zhang R, Zhang J. Genetic analysis of protein content and oil content in soybean by genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1182771. [PMID: 37346139 PMCID: PMC10281628 DOI: 10.3389/fpls.2023.1182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Soybean seed protein content (PC) and oil content (OC) have important economic value. Detecting the loci/gene related to PC and OC is important for the marker-assisted selection (MAS) breeding of soybean. To detect the stable and new loci for PC and OC, a total of 320 soybean accessions collected from the major soybean-growing countries were used to conduct a genome-wide association study (GWAS) by resequencing. The PC ranged from 37.8% to 46.5% with an average of 41.1% and the OC ranged from 16.7% to 22.6% with an average of 21.0%. In total, 23 and 29 loci were identified, explaining 3.4%-15.4% and 5.1%-16.3% of the phenotypic variations for PC and OC, respectively. Of these, eight and five loci for PC and OC, respectively, overlapped previously reported loci and the other 15 and 24 loci were newly identified. In addition, nine candidate genes were identified, which are known to be involved in protein and oil biosynthesis/metabolism, including lipid transport and metabolism, signal transduction, and plant development pathway. These results uncover the genetic basis of soybean protein and oil biosynthesis and could be used to accelerate the progress in enhancing soybean PC and OC.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xue Yang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haibin Zhao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xizhang Song
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yordan Dimitrov Tsvetkov
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - YuE Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiang Gao
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rui Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jumei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Yang L, Liu H, Lei L, Wang J, Zheng H, Xin W, Zou D. Combined QTL-sequencing, linkage mapping, and RNA-sequencing identify candidate genes and KASP markers for low-temperature germination in Oryza sativa L. ssp. Japonica. PLANTA 2023; 257:122. [PMID: 37202578 DOI: 10.1007/s00425-023-04155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Through QTL-seq, QTL mapping and RNA-seq, six candidate genes of qLTG9 can be used as targets for cold tolerance functional characterization, and six KASP markers can be used for marker-assisted breeding to improve the germination ability of japonica rice at low temperature. The development of direct-seeded rice at high latitudes and altitudes depends on the seed germination ability of rice under a low-temperature environment. However, the lack of regulatory genes for low-temperature germination has severely limited the application of genetics in improving the breeds. Here, we used cultivars DN430 and DF104 with significantly different low-temperature germination (LTG) and 460 F2:3 progeny derived from them to identify LTG regulators by combining QTL-sequencing, linkage mapping, and RNA-sequencing. The QTL-sequencing mapped qLTG9 within a physical interval of 3.4 Mb. In addition, we used 10 Kompetitive allele-specific PCR (KASP) markers provided by the two parents, and qLTG9 was optimized from 3.4 Mb to a physical interval of 397.9 kb and accounted for 20.4% of the phenotypic variation. RNA-sequencing identified qLTG9 as eight candidate genes with significantly different expression within the 397.9 kb interval, six of which possessed SNPs on the promoter and coding regions. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) completely validated the results of these six genes in RNA-sequencing. Subsequently, six non-synonymous SNPs were designed using variants in the coding region of these six candidates. Genotypic analysis of these SNPs in 60 individuals with extreme phenotypes indicated these SNPs determined the differences in cold tolerance between parents. The six candidate genes of qLTG9 and the six KASP markers could be used together for marker-assisted breeding to improve LTG.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Lei
- Institute of Crop Cultivation and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Honglaing Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Li D, Zhang Z, Gao X, Zhang H, Bai D, Wang Q, Zheng T, Li YH, Qiu LJ. The elite variations in germplasms for soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:37. [PMID: 37312749 PMCID: PMC10248635 DOI: 10.1007/s11032-023-01378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 06/15/2023]
Abstract
The genetic base of soybean cultivars (Glycine max (L.) Merr.) has been narrowed through selective domestication and specific breeding improvement, similar to other crops. This presents challenges in breeding new cultivars with improved yield and quality, reduced adaptability to climate change, and increased susceptibility to diseases. On the other hand, the vast collection of soybean germplasms offers a potential source of genetic variations to address those challenges, but it has yet to be fully leveraged. In recent decades, rapidly improved high-throughput genotyping technologies have accelerated the harness of elite variations in soybean germplasm and provided the important information for solving the problem of a narrowed genetic base in breeding. In this review, we will overview the situation of maintenance and utilization of soybean germplasms, various solutions provided for different needs in terms of the number of molecular markers, and the omics-based high-throughput strategies that have been used or can be used to identify elite alleles. We will also provide an overall genetic information generated from soybean germplasms in yield, quality traits, and pest resistance for molecular breeding.
Collapse
Affiliation(s)
- Delin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhengwei Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinyue Gao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hao Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dong Bai
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qi Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Tianqing Zheng
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
18
|
Tang J, Liu H, Quan Y, Yao Y, Li K, Tang G, Du D. Fine mapping and causal gene identification of a novel QTL for early flowering by QTL-seq, Target-seq and RNA-seq in spring oilseed rape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:80. [PMID: 36952057 DOI: 10.1007/s00122-023-04310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A novel quantitative trait locus for early flowering in spring oilseed rape, BnaC08cqDTF, was mapped to an 86-kb region on chromosome C08, and its causal gene, CRY2, was uncovered. Days to flowering is a very important agronomic and adaptive trait of Brassica napus oilseed rape (AACC, 2n = 38). We previously identified BnaC08cqDTF as a novel candidate quantitative trait locus (QTL) for early flowering in spring oilseed rape. Here, we present fine mapping of the locus and a study of its causal gene. Initial mapping was performed by QTL sequencing of DNA pools of BC3F2 plants with extreme flowering times derived from crosses between the spring-type cv. No. 4512 (early flowering) and cv. No. 5246 (late flowering), along with fine mapping by target sequencing of the BC3F2 and BC4F2 populations. Fine mapping narrowed down BnaC08cqDTF to an 86-kb region on chromosome C08. The region harbored fifteen genes. After comparative analyses of the DNA sequences for mutation between A and C syntenic regions and detected by RNA-seq and qRT-PCR between the two parents, we found that BnaC08G0010400ZS harbors an A/G nonsynonymous mutation in exon 3. This single nucleotide polymorphism (SNP) haplotype was also correlated with early flowering in a 256 accession panel. BnaC08G0010400ZS is a homolog of the AT1G04400 gene (CRY2) in Arabidopsis. The analyses of transgenic Arabidopsis verified that BnaC08G0010400ZS is responsible for early flowering. Our results contribute to a better understanding of the genetic control mechanism of early flowering in spring Brassica napus and will promote the breeding for early mature varieties.
Collapse
Affiliation(s)
- Jie Tang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Crop Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Haidong Liu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Youjuan Quan
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Yanmei Yao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Kaixiang Li
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Guoyong Tang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
19
|
Pannak S, Wanchana S, Aesomnuk W, Pitaloka MK, Jamboonsri W, Siangliw M, Meyers BC, Toojinda T, Arikit S. Functional Bph14 from Rathu Heenati promotes resistance to BPH at the early seedling stage of rice (Oryza sativa L.) as revealed by QTL-seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:25. [PMID: 36781491 DOI: 10.1007/s00122-023-04318-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A QTL associated with BPH resistance at the early seedling stage was identified on chromosome 3. Functional Bph14 in Rathu Heenati was associated with BPH resistance at the early seedling stage. Brown planthopper (BPH; Nilaparvata lugens Stål) is considered the most important rice pest in many Asian countries. Several BPH resistance genes have previously been identified. However, there are few reports of genes specific for BPH resistance at the early seedling stage, a crucial stage for direct-seeding cultivation. In this study, we performed a QTL-seq analysis using two bulks (20 F2 lines in each bulk) of the F2 population (n = 300) derived from a cross of Rathu Heenati (RH) × HCS-1 to identify QTL/genes associated with BPH resistance at the early seedling stage. An important QTL was identified on chromosome 3 and Bph14 was identified as a potential candidate gene based on the differences in gene expression and sequence variation when compared with the two parents. All plants in the resistant bulks possessed the functional Bph14 from RH and all plants in the susceptible bulk and HCS-1 contained a large deletion (2703 bp) in Bph14. The functional Bph14 gene of RH appears to be important for BPH resistance at the early seedling stage of rice and could be used in conjunction with other BPH resistance genes in rice breeding programs that confer resistance to BPH at the early and later growth stages.
Collapse
Affiliation(s)
- Sarinthip Pannak
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Mutiara K Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Watchareewan Jamboonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
20
|
Gao Q, Wang H, Yin X, Wang F, Hu S, Liu W, Chen L, Dai X, Liang M. Identification of Salt Tolerance Related Candidate Genes in 'Sea Rice 86' at the Seedling and Reproductive Stages Using QTL-Seq and BSA-Seq. Genes (Basel) 2023; 14:458. [PMID: 36833384 PMCID: PMC9956910 DOI: 10.3390/genes14020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Salt stress seriously affects plant growth and development and reduces the yield of rice. Therefore, the development of salt-tolerant high-yielding rice cultivars through quantitative trait locus (QTL) identification and bulked segregant analysis (BSA) is the main focus of molecular breeding projects. In this study, sea rice (SR86) showed greater salt tolerance than conventional rice. Under salt stress, the cell membrane and chlorophyll were more stable and the antioxidant enzyme activity was higher in SR86 than in conventional rice. Thirty extremely salt-tolerant plants and thirty extremely salt-sensitive plants were selected from the F2 progenies of SR86 × Nipponbare (Nip) and SR86 × 9311 crosses during the whole vegetative and reproductive growth period and mixed bulks were generated. Eleven salt tolerance related candidate genes were located using QTL-seq together with BSA. Real time quantitative PCR (RT-qPCR) analysis showed that LOC_Os04g03320.1 and BGIOSGA019540 were expressed at higher levels in the SR86 plants than in Nip and 9311 plants, suggesting that these genes are critical for the salt tolerance of SR86. The QTLs identified using this method could be effectively utilized in future salt tolerance breeding programs, providing important theoretical significance and application value for rice salt tolerance breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
21
|
Yan P, Li W, Zhou E, Xing Y, Li B, Liu J, Zhang Z, Ding D, Fu Z, Xie H, Tang J. Integrating BSA-Seq with RNA-Seq Reveals a Novel Fasciated Ear5 Mutant in Maize. Int J Mol Sci 2023; 24:ijms24021182. [PMID: 36674701 PMCID: PMC9867142 DOI: 10.3390/ijms24021182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Increasing grain yield is required to meet the rapidly expanding demands for food, feed, and fuel. Inflorescence meristems are central to plant growth and development. However, the question concerning whether inflorescence development can be regulated to improve grain yield remains unclear. Here, we describe a naturally occurring single recessive mutation called fea5 that can increase grain yield in maize. Using bulk segregant analysis sequencing (BSA-seq), the candidate region was initially mapped to a large region on chromosome 4 (4.68 Mb-11.26 Mb). Transcriptome sequencing (RNA-seq) revealed a total of 1246 differentially expressed genes (DEGs), of which 835 were up-regulated and 411 were down-regulated. Further analysis revealed the enrichment of DEGs in phytohormone signal transduction. Consistently, phytohormone profiling indicated that auxin (IAA), jasmonic acid (JA), ethylene (ETH), and cytokinin (CK) levels increased significantly, whereas the gibberellin (GA) level decreased significantly in fea5. By integrating BSA-seq with RNA-seq, we identified Zm00001d048841 as the most likely candidate gene. Our results provide valuable insight into this new germplasm resource and the molecular mechanism underlying fasciated ears that produce a higher kernel row number in maize.
Collapse
Affiliation(s)
- Pengshuai Yan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (W.L.); (J.T.); Tel.: +86-371-56990188 (W.L.); +86-371-56990336 (J.T.)
| | - Enxiang Zhou
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ye Xing
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (W.L.); (J.T.); Tel.: +86-371-56990188 (W.L.); +86-371-56990336 (J.T.)
| |
Collapse
|
22
|
Zhang J, Ng C, Jiang Y, Wang X, Wang S, Wang S. Genome-wide identification and analysis of LOX genes in soybean cultivar “Zhonghuang 13”. Front Genet 2022; 13:1020554. [PMID: 36276975 PMCID: PMC9585170 DOI: 10.3389/fgene.2022.1020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Lipoxygenases (LOXs; EC1.13.11.12) are a family of iron- or manganese-containing dioxygenases that catalyze the oxygenation of polyunsaturated fatty acids (PUFAs) and play important roles in plant growth, development, and stress response. In this study, a total of 36 LOX gene family members were identified and annotated in Zhonghuang 13, a soybean cultivar bred by Chinese scientists in 2001. Sanger sequencing of the GmLOX1-coding sequence and colorimetric assays for the GmLOX1 protein showed that Zhonghuang 13 possessed the GmLOX1 gene. These LOX genes are divided into three subfamilies: 9-LOX, type Ⅰ 13-LOX and type II 13-LOX. In the 13-LOX group, the number of GmLOX members was the highest. These GmLOX genes are unevenly distributed on chromosomes 3, 7, 8, 10, 11, 12, 13, 15, 16, 19, and 20. Most of the 13-LOX genes exist in the form of gene clusters, indicating that these genes may originate from tandem duplications. The analysis of duplicated gene pairs showed that GmLOX genes underwent purifying selective pressure during evolution. The gene structures and conserved functional domains of these genes are quite similar. Compared to the orthologous gene pairs of LOX genes between wild soybean (Glycine soja W05) and Zhonghuang 13, the sequences of most gene pairs are relatively conserved. Many cis-elements are present in the promoter region and are involved in stress response, growth and development, hormone response and light response. The tissue-specific gene expression of GmLOX genes was evaluated. Represented by GmLOX1, GmLOX2, and GmLOX3, which were expressed at extremely high levels in seeds, they showed the characteristics of specific expression. This study provides detailed information on soybean lipoxygenase gene family members in Zhonghuang 13, which lays a foundation for further research.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Cheungchuk Ng
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yan Jiang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xianxu Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Shaodong Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- *Correspondence: Shaodong Wang, ; Sui Wang,
| | - Sui Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Shaodong Wang, ; Sui Wang,
| |
Collapse
|
23
|
Toth JA, Stack GM, Carlson CH, Smart LB. Identification and mapping of major-effect flowering time loci Autoflower1 and Early1 in Cannabis sativa L. FRONTIERS IN PLANT SCIENCE 2022; 13:991680. [PMID: 36212374 PMCID: PMC9533707 DOI: 10.3389/fpls.2022.991680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Flowering time is an important trait for all major market classes of hemp (Cannabis sativa), affecting yields and quality of grain, fiber, and cannabinoids. C. sativa is usually considered a short-day plant, flowering once night length reaches a critical threshold. Variations in flowering time within and across cultivars in outdoor grown populations have been previously identified, likely corresponding to genetic differences in this critical night length. Further, some C. sativa are photoperiod insensitive, colloquially referred to as "autoflowering." This trait has anecdotally been described as a simple recessive trait with major impacts on phenology and yield. In this work, the locus responsible for the "autoflower" trait (Autoflower1), as well as a major-effect flowering time locus, Early1, were mapped using bulked segregant analysis. Breeder-friendly high-throughput molecular marker assays were subsequently developed for both loci. Also detailed are the flowering responses of diverse cultivars grown in continuous light and the result of crossing two photoperiod insensitive cultivars of differing pedigree.
Collapse
|
24
|
Majeed A, Johar P, Raina A, Salgotra RK, Feng X, Bhat JA. Harnessing the potential of bulk segregant analysis sequencing and its related approaches in crop breeding. Front Genet 2022; 13:944501. [PMID: 36003337 PMCID: PMC9393495 DOI: 10.3389/fgene.2022.944501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/26/2022] Open
Abstract
Most plant traits are governed by polygenes including both major and minor genes. Linkage mapping and positional cloning have contributed greatly to mapping genomic loci controlling important traits in crop species. However, they are low-throughput, time-consuming, and have low resolution due to which their efficiency in crop breeding is reduced. In this regard, the bulk segregant analysis sequencing (BSA-seq) and its related approaches, viz., quantitative trait locus (QTL)-seq, bulk segregant RNA-Seq (BSR)-seq, and MutMap, have emerged as efficient methods to identify the genomic loci/QTLs controlling specific traits at high resolution, accuracy, reduced time span, and in a high-throughput manner. These approaches combine BSA with next-generation sequencing (NGS) and enable the rapid identification of genetic loci for qualitative and quantitative assessments. Many previous studies have shown the successful identification of the genetic loci for different plant traits using BSA-seq and its related approaches, as discussed in the text with details. However, the efficiency and accuracy of the BSA-seq depend upon factors like sequencing depth and coverage, which enhance the sequencing cost. Recently, the rapid reduction in the cost of NGS together with the expected cost reduction of third-generation sequencing in the future has further increased the accuracy and commercial applicability of these approaches in crop improvement programs. This review article provides an overview of BSA-seq and its related approaches in crop breeding together with their merits and challenges in trait mapping.
Collapse
Affiliation(s)
- Aasim Majeed
- School of Agricultural Biotechnology, Punjab Agriculture University (PAU), Ludhiana, India
| | - Prerna Johar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aamir Raina
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - R. K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | | | - Javaid Akhter Bhat
- Zhejiang Lab, Hangzhou, China
- International Genome Center, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Shaibu AS, Zhang S, Ma J, Feng Y, Huai Y, Qi J, Li J, Abdelghany AM, Azam M, Htway HTP, Sun J, Li B. The GmSNAP11 Contributes to Resistance to Soybean Cyst Nematode Race 4 in Glycine max. FRONTIERS IN PLANT SCIENCE 2022; 13:939763. [PMID: 35860531 PMCID: PMC9289622 DOI: 10.3389/fpls.2022.939763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Soybean cyst nematode (SCN) has devastating effects on soybean production, making it crucial to identify genes conferring SCN resistance. Here we employed next-generation sequencing-based bulked segregant analysis (BSA) to discover genomic regions, candidate genes, and diagnostic markers for resistance to SCN race 4 (SCN4) in soybean. Phenotypic analysis revealed highly significant differences among the reactions of 145 recombinant inbred lines (RILs) to SCN4. In combination with euclidean distance (ED) and Δsingle-nucleotide polymorphism (SNP)-index analyses, we identified a genomic region on Gm11 (designated as rhg1-paralog) associated with SCN4 resistance. Overexpression and RNA interference analyzes of the two candidate genes identified in this region (GmPLAC8 and GmSNAP11) revealed that only GmSNAP11 significantly contributes to SCN4 resistance. We developed a diagnostic marker for GmSNAP11. Using this marker, together with previously developed markers for SCN-resistant loci, rhg1 and Rhg4, we evaluated the relationship between genotypes and SCN4 resistance in 145 RILs and 30 soybean accessions. The results showed that all the SCN4-resistant lines harbored all the three loci, however, some lines harboring the three loci were still susceptible to SCN4. This suggests that these three loci are necessary for the resistance to SCN4, but they alone cannot confer full resistance. The GmSNAP11 and the diagnostic markers developed could be used in genomic-assisted breeding to develop soybean varieties with increased resistance to SCN4.
Collapse
Affiliation(s)
- Abdulwahab S. Shaibu
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Agronomy, Bayero University Kano, Kano, Nigeria
| | - Shengrui Zhang
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junkui Ma
- Institute of Industrial Crop Research, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Yue Feng
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Huai
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Qi
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Li
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ahmed M. Abdelghany
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Azam
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honey Thet Paing Htway
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junming Sun
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Li
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Ghosh S, Zhang S, Azam M, Agyenim-Boateng KG, Qi J, Feng Y, Li Y, Li J, Li B, Sun J. Identification of Genomic Loci and Candidate Genes Related to Seed Tocopherol Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:1703. [PMID: 35807655 PMCID: PMC9269242 DOI: 10.3390/plants11131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Soybean seeds are primary sources of natural tocopherols used by the food and pharmaceutical industries, owing to their beneficial impacts on human health. Selection for higher tocopherol contents in seeds along with other desirable traits is an important goal in soybean breeding. In order to identify the genomic loci and candidate genes controlling tocopherol content in soybean seeds, the bulked-segregant analysis technique was performed using a natural population of soybean consisting of 1525 accessions. We constructed the bulked-segregant analysis based on 98 soybean accessions that showed extreme phenotypic variation for the target trait, consisting of 49 accessions with extremely-high and 49 accessions with extremely-low tocopherol content. A total of 144 variant sites and 109 predicted genes related to tocopherol content were identified, in which a total of 83 genes were annotated by the gene ontology functions. Furthermore, 13 enriched terms (p < 0.05) were detected, with four of them found to be highly enriched: response to lipid, response to abscisic acid, transition metal ion transmembrane transporter activity, and double-stranded DNA binding. Especially, six candidate genes were detected at 41.8−41.9 Mb genomic hotspots on chromosome 5 based on ANNOtate VARiation analysis. Among the genes, only Glyma.05G243400 carried a non-synonymous mutation that encodes a “translation elongation factor EF1A or initiation factor IF2gamma family protein” was identified. The haplotype analysis confirmed that Glyma.05G243400 exhibited highly significant variations in terms of tocopherol content across multiple experimental locations, suggesting that it can be the key candidate gene regulating soybean seed tocopherols. The present findings provide novel gene resources related to seed tocopherols for further validation by genome editing, functional characterization, and genetic improvement targeting enhanced tocopherol composition in soybean molecular breeding.
Collapse
Affiliation(s)
- Suprio Ghosh
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Shengrui Zhang
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Muhammad Azam
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Jie Qi
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Yue Feng
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Yecheng Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Jing Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Bin Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| | - Junming Sun
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (K.G.A.-B.); (J.Q.); (Y.F.); (Y.L.); (J.L.)
| |
Collapse
|
27
|
Lu Y, Zhang J, Guo X, Chen J, Chang R, Guan R, Qiu L. Identification of Genomic Regions Associated with Vine Growth and Plant Height of Soybean. Int J Mol Sci 2022; 23:5823. [PMID: 35628633 PMCID: PMC9146324 DOI: 10.3390/ijms23105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Vining growth (VG) and high plant height (PH) are the physiological traits of wild soybean that preclude their utilization for domesticated soybean breeding and improvement. To identify VG- and PH-related quantitative trait loci (QTLs) in different genetic resources, two populations of recombinant inbred lines (RILs) were developed by crossing a cultivated soybean, Zhonghuang39 (ZH39), with two wild soybean accessions, NY27-38 and NY36-87. Each line from the two crosses was evaluated for VG and PH. Three QTLs for VG and three for PH, detected in the ZH39 × NY27-38 population of the RILs, co-located on chromosomes 2, 17 and 19. The VG- and PH-related QTL in the ZH39 × NY36-87 population co-located on chromosome 19. A common QTL shared by the two populations was located on chromosome 19, suggesting that this major QTL was consistently selected for in different genetic backgrounds. The results suggest that different loci are involved in the domestication or adaptations of soybean of various genetic backgrounds. The molecular markers presented here would benefit the fine mapping and cloning of candidate genes underlying the VG and PH co-localized regions and thus facilitate the utilization of wild resources in breeding by avoiding undesirable traits.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxia Guan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (J.Z.); (X.G.); (J.C.); (R.C.)
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (J.Z.); (X.G.); (J.C.); (R.C.)
| |
Collapse
|
28
|
Altensell J, Wartenberg R, Haferkamp I, Hassler S, Scherer V, Steensma P, Fitzpatrick TB, Sharma A, Sandoval-Ibañez O, Pribil M, Lehmann M, Leister D, Kleine T, Neuhaus HE. Loss of a pyridoxal-phosphate phosphatase rescues Arabidopsis lacking an endoplasmic reticulum ATP carrier. PLANT PHYSIOLOGY 2022; 189:49-65. [PMID: 35139220 PMCID: PMC9070803 DOI: 10.1093/plphys/kiac048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 05/31/2023]
Abstract
The endoplasmic reticulum (ER)-located ATP/ADP-antiporter (ER-ANT1) occurs specifically in vascular plants. Structurally different transporters mediate energy provision to the ER, but the cellular function of ER-ANT1 is still unknown. Arabidopsis (Arabidopsis thaliana) mutants lacking ER-ANT1 (er-ant1 plants) exhibit a photorespiratory phenotype accompanied by high glycine levels and stunted growth, pointing to an inhibition of glycine decarboxylase (GDC). To reveal whether it is possible to suppress this marked phenotype, we exploited the power of a forward genetic screen. Absence of a so far uncharacterized member of the HaloAcid Dehalogenase (HAD)-like hydrolase family strongly suppressed the dwarf phenotype of er-ant1 plants. Localization studies suggested that the corresponding protein locates to chloroplasts, and activity assays showed that the enzyme dephosphorylates, with high substrate affinity, the B6 vitamer pyridoxal 5'-phosphate (PLP). Additional physiological experiments identified imbalances in vitamin B6 homeostasis in er-ant1 mutants. Our data suggest that impaired chloroplast metabolism, but not decreased GDC activity, causes the er-ant1 mutant dwarf phenotype. We present a hypothesis, setting transport of PLP by ER-ANT1 and chloroplastic PLP dephosphorylation in the cellular context. With the identification of this HAD-type PLP phosphatase, we also provide insight into B6 vitamer homeostasis.
Collapse
Affiliation(s)
- Jacqueline Altensell
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Ruth Wartenberg
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Ilka Haferkamp
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Sebastian Hassler
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Vanessa Scherer
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Priscille Steensma
- Department of Botany and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Anurag Sharma
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Omar Sandoval-Ibañez
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Martin Lehmann
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - Dario Leister
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - Tatjana Kleine
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| |
Collapse
|
29
|
Shen R, Messer PW. Predicting the genomic resolution of bulk segregant analysis. G3 (BETHESDA, MD.) 2022; 12:6523970. [PMID: 35137024 PMCID: PMC8895995 DOI: 10.1093/g3journal/jkac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
Bulk segregant analysis is a technique for identifying the genetic loci that underlie phenotypic trait differences. The basic approach is to compare two pools of individuals from the opposing tails of the phenotypic distribution, sampled from an interbred population. Each pool is sequenced and scanned for alleles that show divergent frequencies between the pools, indicating potential association with the observed trait differences. Bulk segregant analysis has already been successfully applied to the mapping of various quantitative trait loci in organisms ranging from yeast to maize. However, these studies have typically suffered from rather low mapping resolution, and we still lack a detailed understanding of how this resolution is affected by experimental parameters. Here, we use coalescence theory to calculate the expected genomic resolution of bulk segregant analysis for a simple monogenic trait. We first show that in an idealized interbreeding population of infinite size, the expected length of the mapped region is inversely proportional to the recombination rate, the number of generations of interbreeding, and the number of genomes sampled, as intuitively expected. In a finite population, coalescence events in the genealogy of the sample reduce the number of potentially informative recombination events during interbreeding, thereby increasing the length of the mapped region. This is incorporated into our model by an effective population size parameter that specifies the pairwise coalescence rate of the interbreeding population. The mapping resolution predicted by our calculations closely matches numerical simulations and is surprisingly robust to moderate levels of contamination of the segregant pools with alternative alleles. Furthermore, we show that the approach can easily be extended to modifications of the crossing scheme. Our framework will allow researchers to predict the expected power of their mapping experiments, and to evaluate how their experimental design could be tuned to optimize mapping resolution.
Collapse
Affiliation(s)
- Runxi Shen
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Hu Z, Shi X, Chen X, Zheng J, Zhang A, Wang H, Fu Q. Fine-mapping and identification of a candidate gene controlling seed coat color in melon (Cucumis melo L. var. chinensis Pangalo). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:803-815. [PMID: 34825925 DOI: 10.1007/s00122-021-03999-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
MELO3C019554 encoding a homeobox protein (PHD transcription factor) is a candidate gene that involved in the formation of seed coat color in melon. Seed coat color is related to flavonoid content which is closely related to seed dormancy. According to the genetic analysis of a six-generation population derived from two parents (IC2508 with a yellow seed coat and IC2518 with a brown seed coat), we discovered that the yellow seed coat trait in melon is controlled by a single dominant gene, named CmBS-1. Bulked segregant analysis sequencing (BSA-Seq) revealed that the gene is located at 11,860,000-15,890,000 bp (4.03 Mb) on Chr 6. The F2 population was genotyped using insertion-deletions (InDels), from which cleaved amplified polymorphic sequence (dCAPS) markers were derived to construct a genetic map. The gene was then fine-mapped to a 233.98 kb region containing 12 genes. Based on gene sequence analysis with two parents, we found that the MELO3C019554 gene encoding a homeobox protein (PHD transcription factor) had a nonsynonymous single nucleotide polymorphism (SNP) mutation in the coding sequence (CDS), and the SNP mutation resulted in the conversion of an amino acid (A → T) at residue 534. In addition, MELO3C019554 exhibited lower relative expression levels in the yellow seed coat than in the brown seed coat. Furthermore, we found that MELO3C019554 is related to 12 flavonoid metabolites. Thus, we predicted that MELO3C019554 is a candidate gene controlling seed coat color in melon. The study lays a foundation for further cloning projects and functional analysis of this gene, as well as marker-assisted selection breeding.
Collapse
Affiliation(s)
- Zhicheng Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyin Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuemiao Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aiai Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huaisong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qiushi Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
31
|
Tetreault HM, Gries T, Liu S, Toy J, Xin Z, Vermerris W, Ralph J, Funnell-Harris DL, Sattler SE. The Sorghum ( Sorghum bicolor) Brown Midrib 30 Gene Encodes a Chalcone Isomerase Required for Cell Wall Lignification. FRONTIERS IN PLANT SCIENCE 2021; 12:732307. [PMID: 34925394 PMCID: PMC8674566 DOI: 10.3389/fpls.2021.732307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
In sorghum (Sorghum bicolor) and other C4 grasses, brown midrib (bmr) mutants have long been associated with plants impaired in their ability to synthesize lignin. The brown midrib 30 (Bmr30) gene, identified using a bulk segregant analysis and next-generation sequencing, was determined to encode a chalcone isomerase (CHI). Two independent mutations within this gene confirmed that loss of its function was responsible for the brown leaf midrib phenotype and reduced lignin concentration. Loss of the Bmr30 gene function, as shown by histochemical staining of leaf midrib and stalk sections, resulted in altered cell wall composition. In the bmr30 mutants, CHI activity was drastically reduced, and the accumulation of total flavonoids and total anthocyanins was impaired, which is consistent with its function in flavonoid biosynthesis. The level of the flavone lignin monomer tricin was reduced 20-fold in the stem relative to wild type, and to undetectable levels in the leaf tissue of the mutants. The bmr30 mutant, therefore, harbors a mutation in a phenylpropanoid biosynthetic gene that is key to the interconnection between flavonoids and monolignols, both of which are utilized for lignin synthesis in the grasses.
Collapse
Affiliation(s)
- Hannah M. Tetreault
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Tammy Gries
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Sarah Liu
- Department of Biochemistry, The DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - John Toy
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Agricultural Research Service, United States Department of Agriculture, Lubbock, TX, United States
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - John Ralph
- Department of Biochemistry, The DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - Deanna L. Funnell-Harris
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Scott E. Sattler
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| |
Collapse
|
32
|
Murphy BP, Beffa R, Tranel PJ. Genetic architecture underlying HPPD-inhibitor resistance in a Nebraska Amaranthus tuberculatus population. PEST MANAGEMENT SCIENCE 2021; 77:4884-4891. [PMID: 34272808 DOI: 10.1002/ps.6560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Amaranthus tuberculatus is a problematic weed species in Midwest USA agricultural systems. Inhibitors of 4-hydroxyphenylpyruvate dioxygenase (HPPD) are an important chemistry for weed management in numerous cropping systems. Here, we characterize the genetic architecture underlying the HPPD-inhibitor resistance trait in an A. tuberculatus population (NEB). RESULTS Dose-response studies of an F1 generation identified HPPD-inhibitor resistance as a dominant trait with a resistance factor of 15.0-21.1 based on dose required for 50% growth reduction. Segregation analysis in a pseudo-F2 generation determined the trait is moderately heritable (H2 = 0.556) and complex. Bulk segregant analysis and validation with molecular markers identified two quantitative trait loci (QTL), one on each of Scaffold 4 and 12. CONCLUSIONS Resistance to HPPD inhibitors is a complex, largely dominant trait within the NEB population. Two large-effect QTL were identified controlling HPPD-inhibitor resistance in A. tuberculatus. This is the first QTL mapping study to characterize herbicide resistance in a weedy species.
Collapse
Affiliation(s)
- Brent P Murphy
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Division of Crop Science, Bayer AG, Frankfurt, Germany
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
33
|
Thianthavon T, Aesomnuk W, Pitaloka MK, Sattayachiti W, Sonsom Y, Nubankoh P, Malichan S, Riangwong K, Ruanjaichon V, Toojinda T, Wanchana S, Arikit S. Identification and Validation of a QTL for Bacterial Leaf Streak Resistance in Rice ( Oryza sativa L.) against Thai Xoc Strains. Genes (Basel) 2021; 12:1587. [PMID: 34680982 PMCID: PMC8535723 DOI: 10.3390/genes12101587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Rice is one of the most important food crops in the world and is of vital importance to many countries. Various diseases caused by fungi, bacteria and viruses constantly threaten rice plants and cause yield losses. Bacterial leaf streak disease (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most devastating rice diseases. However, most modern rice varieties are susceptible to BLS. In this study, we applied the QTL-seq approach using an F2 population derived from the cross between IR62266 and Homcholasit (HSC) to rapidly identify the quantitative trait loci (QTL) that confers resistance to BLS caused by a Thai Xoc isolate, SP7-5. The results showed that a single genomic region at the beginning of chromosome 5 was highly associated with resistance to BLS. The gene xa5 was considered a potential candidate gene in this region since most associated single nucleotide polymorphisms (SNPs) were within this gene. A Kompetitive Allele-Specific PCR (KASP) marker was developed based on two consecutive functional SNPs in xa5 and validated in six F2 populations inoculated with another Thai Xoc isolate, 2NY2-2. The phenotypic variance explained by this marker (PVE) ranged from 59.04% to 70.84% in the six populations. These findings indicate that xa5 is a viable candidate gene for BLS resistance and may help in breeding programs for BLS resistance.
Collapse
Affiliation(s)
- Tripop Thianthavon
- Plant Breeding Program, Faculty of Agriculture at Kamphaeng Saen, Kesetsart University, Nakhon Pathom 73140, Thailand;
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Mutiara K. Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Wannapa Sattayachiti
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Yupin Sonsom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Phakchana Nubankoh
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Kanamon Riangwong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom 73000, Thailand;
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand; (W.A.); (W.S.); (Y.S.); (P.N.); (V.R.); (T.T.)
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
34
|
Zhang B, Chen W, Li X, Ren W, Chen L, Han F, Fang Z, Yang L, Zhuang M, Lv H, Wang Y, Zhang Y. Map-based cloning and promoter variation analysis of the lobed leaf gene BoLMI1a in ornamental kale (Brassica oleracea L. var. acephala). BMC PLANT BIOLOGY 2021; 21:456. [PMID: 34615469 PMCID: PMC8496080 DOI: 10.1186/s12870-021-03223-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/22/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Leaf shape is an important agronomic trait in ornamental kale (Brassica oleracea L. var. acephala). Although some leaf shape-related genes have been reported in ornamental kale, the detailed mechanism underlying leaf shape formation is still unclear. Here, we report a lobed-leaf trait in ornamental kale, aiming to analyze its inheritance and identify the strong candidate gene. RESULTS Genetic analysis of F2 and BC1 populations demonstrate that the lobed-leaf trait in ornamental kale is controlled by a single dominant gene, termed BoLl-1 (Brassica oleracea lobed-leaf). By performing whole-genome resequencing and linkage analyses, the BoLl-1 gene was finely mapped to a 127-kb interval on chromosome C09 flanked by SNP markers SL4 and SL6, with genetic distances of 0.6 cM and 0.6 cM, respectively. Based on annotations of the genes within this interval, Bo9g181710, an orthologous gene of LATE MERISTEM IDENTITY 1 (LMI1) in Arabidopsis, was predicted as the candidate for BoLl-1, and was renamed BoLMI1a. The expression level of BoLMI1a in lobed-leaf parent 18Q2513 was significantly higher compared with unlobed-leaf parent 18Q2515. Sequence analysis of the parental alleles revealed no sequence variations in the coding sequence of BoLMI1a, whereas a 1737-bp deletion, a 92-bp insertion and an SNP were identified within the BoLMI1a promoter region of parent 18Q2513. Verification analyses with BoLMI1a-specific markers corresponding to the promoter variations revealed that the variations were present only in the lobed-leaf ornamental kale inbred lines. CONCLUSIONS This study identified a lobed-leaf gene BoLMI1a, which was fine-mapped to a 127-kb fragment. Three variations were identified in the promoter region of BoLMI1a. The transcription level of BoLMI1a between the two parents exhibited great difference, providing new insight into the molecular mechanism underlying leaf shape formation in ornamental kale.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Wendi Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Xing Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Wenjing Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Li Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Fengqing Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
35
|
Wang J, Mao L, Zeng Z, Yu X, Lian J, Feng J, Yang W, An J, Wu H, Zhang M, Liu L. Genetic mapping high protein content QTL from soybean 'Nanxiadou 25' and candidate gene analysis. BMC PLANT BIOLOGY 2021; 21:388. [PMID: 34416870 PMCID: PMC8377855 DOI: 10.1186/s12870-021-03176-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein content (SPC) is a valuable quality trait controlled by multiple genes in soybean. RESULTS In this study, we performed quantitative trait loci (QTL) mapping, QTL-seq, and RNA sequencing (RNA-seq) to reveal the genes controlling protein content in the soybean by using the high protein content variety Nanxiadou 25. A total of 50 QTL for SPC distributed on 14 chromosomes except chromosomes 4, 12, 14, 17, 18, and 19 were identified by QTL mapping using 178 recombinant inbred lines (RILs). Among these QTL, the major QTL qSPC_20-1 and qSPC_20-2 on chromosome 20 were repeatedly detected across six tested environments, corresponding to the location of the major QTL detected using whole-genome sequencing-based QTL-seq. 329 candidate DEGs were obtained within the QTL region of qSPC_20-1 and qSPC_20-2 via gene expression profile analysis. Nine of which were associated with SPC, potentially representing candidate genes. Clone sequencing results showed that different single nucleotide polymorphisms (SNPs) and indels between high and low protein genotypes in Glyma.20G088000 and Glyma.16G066600 may be the cause of changes in this trait. CONCLUSIONS These results provide the basis for research on candidate genes and marker-assisted selection (MAS) in soybean breeding for seed protein content.
Collapse
Affiliation(s)
- Jia Wang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
- Southwest University, Chongqing, 400715, China.
| | - Lin Mao
- Southwest University, Chongqing, 400715, China
| | - Zhaoqiong Zeng
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Xiaobo Yu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jianqiu Lian
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jun Feng
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Wenying Yang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jiangang An
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Haiying Wu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Mingrong Zhang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
| | - Liezhao Liu
- Southwest University, Chongqing, 400715, China.
| |
Collapse
|
36
|
Yang L, Wang J, Han Z, Lei L, Liu HL, Zheng H, Xin W, Zou D. Combining QTL-seq and linkage mapping to fine map a candidate gene in qCTS6 for cold tolerance at the seedling stage in rice. BMC PLANT BIOLOGY 2021; 21:278. [PMID: 34147069 PMCID: PMC8214256 DOI: 10.1186/s12870-021-03076-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/27/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cold stress caused by low temperatures is an important factor restricting rice production. Identification of cold-tolerance genes that can stably express in cold environments is crucial for molecular rice breeding. RESULTS In this study, we employed high-throughput quantitative trait locus sequencing (QTL-seq) analyses in a 460-individual F2:3 mapping population to identify major QTL genomic regions governing cold tolerance at the seedling stage in rice. A novel major QTL (qCTS6) controlling the survival rate (SR) under low-temperature conditions of 9°C/10 days was mapped on the 2.60-Mb interval on chromosome 6. Twenty-seven single-nucleotide polymorphism (SNP) markers were designed for the qCST6 region based on re-sequencing data, and local QTL mapping was conducted using traditional linkage analysis. Eventually, we mapped qCTS6 to a 96.6-kb region containing 13 annotated genes, of which seven predicted genes contained 13 non-synonymous SNP loci. Quantitative reverse transcription PCR analysis revealed that only Os06g0719500, an OsbZIP54 transcription factor, was strongly induced by cold stress. Haplotype analysis confirmed that +376 bp (T>A) in the OsbZIP54 coding region played a key role in regulating cold tolerance in rice. CONCLUSION We identified OsbZIP54 as a novel regulatory gene associated with rice cold-responsive traits, with its Dongfu-104 allele showing specific cold-induction expression serving as an important molecular variation for rice improvement. This result is expected to further exploration of the genetic mechanism of rice cold tolerance at the seedling stage and improve cold tolerance in rice varieties by marker-assisted selection.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Zhenghong Han
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Lei
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Long Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
37
|
Investigation of genetic markers for intramuscular fat in the hybrid Wagyu cattle with bulked segregant analysis. Sci Rep 2021; 11:11530. [PMID: 34075159 PMCID: PMC8169923 DOI: 10.1038/s41598-021-91101-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/20/2021] [Indexed: 11/08/2022] Open
Abstract
ulked Segregant Analysis (BSA) is a rapid strategy for identifying genetic markers in specific regions of the phenotypical population and it has been widely used for QTLs mapping in smaller mixed F2 and F3 populations. We applied a modified BSA method to assessed genome-wide homozygous and heterozygous linkage patterns in the Chinese Wagyu Beef Cattle F2/F3 mixed population. Two overlapped regions from F2 and F3 populations on autosomes were found with high-density heterozygote alleles between high and low intramuscular fat groups. Regions from 24.8 M ~ 29.6 M of chromosome 23 were identified as most significantly correlated to the intramuscular fat in our samples. We also identified other 4 potential loci on chromosomes 5, 9, 15, and 21 correlated with Intramuscular fat. This study provided a novel low-cost method for QTLs mapping and identify molecular markers of phenotypical changes in a small mixed population.
Collapse
|
38
|
Zhang R, Ren Y, Wu H, Yang Y, Yuan M, Liang H, Zhang C. Mapping of Genetic Locus for Leaf Trichome Formation in Chinese Cabbage Based on Bulked Segregant Analysis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040771. [PMID: 33919922 PMCID: PMC8070908 DOI: 10.3390/plants10040771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Chinese cabbage is a leafy vegetable, and its leaves are the main edible organs. The formation of trichomes on the leaves can significantly affect its taste, so studying this phenomenon is of great significance for improving the quality of Chinese cabbage. In this study, two varieties of Chinese cabbage, W30 with trichome leaves and 082 with glabrous leaves, were crossed to generate F1 and F1 plants, which were self-fertilized to develop segregating populations with trichome or glabrous morphotypes. The two bulks of the different segregating populations were used to conduct bulked segregant analysis (BSA). A total of 293.4 M clean reads were generated from the samples, and plants from the trichome leaves (AL) bulk and glabrous leaves (GL) bulk were identified. Between the two DNA pools generated from the trichome and glabrous plants, 55,048 SNPs and 272 indels were generated. In this study, three regions (on chromosomes 6, 10 and scaffold000100) were identified, and the annotation revealed three candidate genes that may participate in the formation of leaf trichomes. These findings suggest that the three genes-Bra025087 encoding a cyclin family protein, Bra035000 encoding an ATP-binding protein/kinase/protein kinase/protein serine/threonine kinase and Bra033370 encoding a WD-40 repeat family protein-influence the formation of trichomes by participating in trichome morphogenesis (GO: 0010090). These results demonstrate that BSA can be used to map genes associated with traits and provide new insights into the molecular mechanism of leafy trichome formation in Chinese cabbage.
Collapse
|
39
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
40
|
Yang L, Lei L, Li P, Wang J, Wang C, Yang F, Chen J, Liu H, Zheng H, Xin W, Zou D. Identification of Candidate Genes Conferring Cold Tolerance to Rice ( Oryza sativa L.) at the Bud-Bursting Stage Using Bulk Segregant Analysis Sequencing and Linkage Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:647239. [PMID: 33790929 PMCID: PMC8006307 DOI: 10.3389/fpls.2021.647239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/29/2023]
Abstract
Low-temperature tolerance during the bud-bursting stage is an important characteristic of direct-seeded rice. The identification of cold-tolerance quantitative trait loci (QTL) in species that can stably tolerate cold environments is crucial for the molecular breeding of rice with such traits. In our study, high-throughput QTL-sequencing analyses were performed in a 460-individual F2 : 3 mapping population to identify the major QTL genomic regions governing cold tolerance at the bud-bursting (CTBB) stage in rice. A novel major QTL, qCTBB9, which controls seed survival rate (SR) under low-temperature conditions of 5°C/9 days, was mapped on the 5.40-Mb interval on chromosome 9. Twenty-six non-synonymous single-nucleotide polymorphism (nSNP) markers were designed for the qCTBB9 region based on re-sequencing data and local QTL mapping conducted using traditional linkage analysis. We mapped qCTBB9 to a 483.87-kb region containing 58 annotated genes, among which six predicted genes contained nine nSNP loci. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that only Os09g0444200 was strongly induced by cold stress. Haplotype analysis further confirmed that the SNP 1,654,225 bp in the Os09g0444200 coding region plays a key role in regulating the cold tolerance of rice. These results suggest that Os09g0444200 is a potential candidate for qCTBB9. Our results are of great significance to explore the genetic mechanism of rice CTBB and to improve the cold tolerance of rice varieties by marker-assisted selection.
Collapse
|
41
|
Li X, Xiang F, Zhang W, Yan J, Li X, Zhong M, Yang P, Chen C, Liu X, Mao D, Zhao X. Characterization and fine mapping of a new dwarf mutant in Brassica napus. BMC PLANT BIOLOGY 2021; 21:117. [PMID: 33637037 PMCID: PMC7908660 DOI: 10.1186/s12870-021-02885-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant height is an important plant characteristic closely related to yield performance of many crops. Reasonable reduction of plant height of crops is beneficial for improving yield and enhancing lodging resistance. RESULTS In the present study, we described the Brassica napus dwarf mutant bnd2 that was isolated using ethyl methanesulfonate (EMS) mutagenesis. Compared to wild type (WT), bnd2 exhibited reduced height and shorter hypocotyl and petiole leaves. By crossing the bnd2 mutant with the WT strain, we found that the ratio of the mutant to the WT in the F2 population was close to 1:3, indicating that bnd2 is a recessive mutation of a single locus. Following bulked segregant analysis (BSA) by resequencing, BND2 was found to be located in the 13.77-18.08 Mb interval of chromosome A08, with a length of 4.31 Mb. After fine mapping with single nucleotide polymorphism (SNP) and insertion/deletion (InDel) markers, the gene was narrowed to a 140-Kb interval ranging from 15.62 Mb to 15.76 Mb. According to reference genome annotation, there were 27 genes in the interval, of which BnaA08g20960D had an SNP type variation in the intron between the mutant and its parent, which may be the candidate gene corresponding to BND2. The hybrid line derived from a cross between the mutant bnd2 and the commercial cultivar L329 had similar plant height but higher grain yield compared to the commercial cultivar, suggesting that the allele bnd2 is beneficial for hybrid breeding of lodging resistant and high yield rapeseed. CONCLUSION In this study, we identified a novel dwarf mutant of rapeseed with a new locus, which may be useful for functional analyses of genetic mechanisms of plant architecture and grain yield in rapeseed.
Collapse
Affiliation(s)
- Xin Li
- College of Biology, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Fujiang Xiang
- College of Biology, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Wei Zhang
- College of Agronnomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jindong Yan
- College of Biology, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xinmei Li
- College of Biology, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Ming Zhong
- College of Biology, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Piao Yang
- College of Biology, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xuanming Liu
- College of Biology, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China.
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China.
| |
Collapse
|
42
|
Cao Y, Diao Q, Chen Y, Jin H, Zhang Y, Zhang H. Development of KASP Markers and Identification of a QTL Underlying Powdery Mildew Resistance in Melon ( Cucumis melo L.) by Bulked Segregant Analysis and RNA-Seq. FRONTIERS IN PLANT SCIENCE 2021; 11:593207. [PMID: 33613580 PMCID: PMC7893098 DOI: 10.3389/fpls.2020.593207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/28/2020] [Indexed: 05/27/2023]
Abstract
Powdery mildew (PM), caused by Podosphaera xanthii (Px), is one of the most devastating fungal diseases of melon worldwide. The use of resistant cultivars is considered to be the best and most effective approach to control this disease. In this study, an F2 segregating population derived from a cross between a resistant (wm-6) and a susceptible cultivar (12D-1) of melon was used to map major powdery mildew resistance genes using bulked segregant analysis (BSA), in combination with next-generation sequencing (NGS). A novel quantitative trait locus (QTL) named qCmPMR-12 for resistance to PM on chromosome 12 was identified, which ranged from 22.0 Mb to 22.9 Mb. RNA-Seq analysis indicated that the MELO3C002434 gene encoding an ankyrin repeat-containing protein was considered to be the most likely candidate gene that was associated with resistance to PM. Moreover, 15 polymorphic SNPs around the target area were successfully converted to Kompetitive Allele-Specific PCR (KASP) markers (P < 0.0001). The novel QTL and candidate gene identified from this study provide insights into the genetic mechanism of PM resistance in melon, and the tightly linked KASP markers developed in this research can be used for marker-assisted selection (MAS) to improve powdery mildew resistance in melon breeding programs.
Collapse
|
43
|
Thudi M, Palakurthi R, Schnable JC, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi CT, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Kaila S, Nguyen H, Sivasankar S, Jackson SA, Close TJ, Shubo W, Varshney RK. Genomic resources in plant breeding for sustainable agriculture. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153351. [PMID: 33412425 PMCID: PMC7903322 DOI: 10.1016/j.jplph.2020.153351] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; University of Southern Queensland, Toowoomba, Australia
| | - Ramesh Palakurthi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Emma Mace
- Agri-Science Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C Tara Satyavathi
- Indian Council of Agricultural Research (ICAR)- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Damaris Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | | | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yan Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Vikas K Singh
- South Asia Hub, International Rice Research Institute (IRRI), Hyderabad, India
| | - Guowei Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CYMMIT), Mexico DF, Mexico; Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sanjay Kaila
- Department of Biotechnology, Ministry of Science and Technology, Government of India, India
| | - Henry Nguyen
- National Centre for Soybean Research, University of Missouri, Columbia, USA
| | - Sobhana Sivasankar
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | | | - Wan Shubo
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
44
|
Cytological Observations and Bulked-Segregant Analysis Coupled Global Genome Sequencing Reveal Two Genes Associated with Pollen Fertility in Tetraploid Rice. Int J Mol Sci 2021; 22:ijms22020841. [PMID: 33467721 PMCID: PMC7830325 DOI: 10.3390/ijms22020841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Neo-tetraploid rice with high fertility is a useful germplasm for polyploid rice breeding, which was developed from the crossing of different autotetraploid rice lines. However, little information is available on the molecular mechanism underlying the fertility of neo-tetraploid rice. Here, two contrasting populations of tetraploid rice, including one with high fertility (hereafter referred to as JG) and another with low fertility (hereafter referred to as JD), were generated by crossing Huaduo 3 (H3), a high fertility neo-tetraploid rice that was developed by crossing Jackson-4x with 96025-4x, and Huajingxian74-4x (T452), a low fertility autotetraploid rice parent. Cytological, global genome sequencing-based bulked-segregant (BSA-seq) and CRISPR/Cas9 technology were employed to study the genes associated with pollen fertility in neo-tetraploid rice. The embryo sacs of JG and JD lines were normal; however, pollen fertility was low in JD, which led to scarce fertilization and low seed setting. Cytological observations displayed low pollen fertility (25.1%) and approximately 31.3 and 27.2% chromosome lagging at metaphase I and II, and 28.8 and 24.8% chromosome straggling at anaphase I and II in JD, respectively. BSA-seq of F2–3 generations and RNA-seq of F4 generation detected a common fragment, i.e., 18,915,234–19,500,000, at chromosome 7, which was comprised of 78 genes associated with fertility. Among 78 genes, 9 genes had been known to be involved in meiosis and pollen development. Two mutants ny1 (LOC_Os07g32406) and ny2 (LOC_Os07g32040) were generated by CRISPR/Cas9 knockout in neo-tetraploid rice, and which exhibited low pollen fertility and abnormal chromosome behavior. Our study revealed that two unknown genes, LOC_Os07g32406 (NY1) and LOC_Os07g32040 (NY2) play an important role in pollen development of neo-tetraploid rice and provides a new perspective about the genetic mechanisms of fertility in polyploid rice.
Collapse
|
45
|
Physical mapping and InDel marker development for the restorer gene Rf 2 in cytoplasmic male sterile CMS-D8 cotton. BMC Genomics 2021; 22:24. [PMID: 33407111 PMCID: PMC7789476 DOI: 10.1186/s12864-020-07342-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background Cytoplasmic male sterile (CMS) with cytoplasm from Gossypium Trilobum (D8) fails to produce functional pollen. It is useful for commercial hybrid cotton seed production. The restore line of CMS-D8 containing Rf2 gene can restore the fertility of the corresponding sterile line. This study combined the whole genome resequencing bulked segregant analysis (BSA) with high-throughput SNP genotyping to accelerate the physical mapping of Rf2 locus in CMS-D8 cotton. Methods The fertility of backcross population ((sterile line×restorer line)×maintainer line) comprising of 1623 individuals was investigated in the field. The fertile pool (100 plants with fertile phenotypes, F-pool) and the sterile pool (100 plants with sterile phenotypes, S-pool) were constructed for BSA resequencing. The selection of 24 single nucleotide polymorphisms (SNP) through high-throughput genotyping and the development insertion and deletion (InDel) markers were conducted to narrow down the candidate interval. The pentapeptide repeat (PPR) family genes and upregulated genes in restore line in the candidate interval were analysed by qRT-PCR. Results The fertility investigation results showed that fertile and sterile separation ratio was consistent with 1:1. BSA resequencing technology, high-throughput SNP genotyping, and InDel markers were used to identify Rf2 locus on candidate interval of 1.48 Mb on chromosome D05. Furthermore, it was quantified in this experiment that InDel markers co-segregated with Rf2 enhanced the selection of the restorer line. The qRT-PCR analysis revealed PPR family gene Gh_D05G3391 located in candidate interval had significantly lower expression than sterile and maintainer lines. In addition, utilization of anther RNA-Seq data of CMS-D8 identified that the expression level of Gh_D05G3374 encoding NB-ARC domain-containing disease resistance protein in restorer lines was significantly higher than that in sterile and maintainer lines. Conclusions This study not only enabled us to precisely locate the restore gene Rf2 but also evaluated the utilization of InDel markers for marker assisted selection in the CMS-D8 Rf2 cotton breeding line. The results of this study provide an important foundation for further studies on the mapping and cloning of restorer genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07342-y.
Collapse
|
46
|
Cui Y, Ge Q, Zhao P, Chen W, Sang X, Zhao Y, Chen Q, Wang H. Rapid Mining of Candidate Genes for Verticillium Wilt Resistance in Cotton Based on BSA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:703011. [PMID: 34691091 PMCID: PMC8531640 DOI: 10.3389/fpls.2021.703011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 05/05/2023]
Abstract
Cotton is a globally important cash crop. Verticillium wilt (VW) is commonly known as "cancer" of cotton and causes serious loss of yield and fiber quality in cotton production around the world. Here, we performed a BSA-seq analysis using an F2:3 segregation population to identify the candidate loci involved in VW resistance. Two QTLs (qvw-D05-1 and qvw-D05-2) related to VW resistance in cotton were identified using two resistant/susceptible bulks from the F2 segregation population constructed by crossing the resistant cultivar ZZM2 with the susceptible cultivar J11. A total of 30stop-lost SNPs and 42 stop-gained SNPs, which included 17 genes, were screened in the qvw-D05-2 region by SnpEff analysis. Further analysis of the transcriptome data and qRT-PCR revealed that the expression level of Ghir_D05G037630 (designated as GhDRP) varied significantly at certain time points after infection with V. dahliae. The virus-induced gene silencing of GhDRP resulted in higher susceptibility of the plants to V. dahliae than the control, suggesting that GhDRP is involved in the resistance to V. dahlia infection. This study provides a method for rapid mining of quantitative trait loci and screening of candidate genes, as well as enriches the genomic information and gene resources for the molecular breeding of disease resistance in cotton.
Collapse
Affiliation(s)
- Yanli Cui
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Yunlei Zhao,
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- Quanjia Chen,
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hongmei Wang,
| |
Collapse
|
47
|
Bohra A, Chand Jha U, Godwin ID, Kumar Varshney R. Genomic interventions for sustainable agriculture. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2388-2405. [PMID: 32875704 PMCID: PMC7680532 DOI: 10.1111/pbi.13472] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/21/2020] [Accepted: 08/16/2020] [Indexed: 05/05/2023]
Abstract
Agricultural production faces a Herculean challenge to feed the increasing global population. Food production systems need to deliver more with finite land and water resources while exerting the least negative influence on the ecosystem. The unpredictability of climate change and consequent changes in pests/pathogens dynamics aggravate the enormity of the challenge. Crop improvement has made significant contributions towards food security, and breeding climate-smart cultivars are considered the most sustainable way to accelerate food production. However, a fundamental change is needed in the conventional breeding framework in order to respond adequately to the growing food demands. Progress in genomics has provided new concepts and tools that hold promise to make plant breeding procedures more precise and efficient. For instance, reference genome assemblies in combination with germplasm sequencing delineate breeding targets that could contribute to securing future food supply. In this review, we highlight key breakthroughs in plant genome sequencing and explain how the presence of these genome resources in combination with gene editing techniques has revolutionized the procedures of trait discovery and manipulation. Adoption of new approaches such as speed breeding, genomic selection and haplotype-based breeding could overcome several limitations of conventional breeding. We advocate that strengthening varietal release and seed distribution systems will play a more determining role in delivering genetic gains at farmer's field. A holistic approach outlined here would be crucial to deliver steady stream of climate-smart crop cultivars for sustainable agriculture.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR‐Indian Institute of Pulses Research (IIPR)KanpurIndia
| | - Uday Chand Jha
- ICAR‐Indian Institute of Pulses Research (IIPR)KanpurIndia
| | - Ian D. Godwin
- Centre for Crop ScienceQueensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandBrisbaneQldAustralia
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- The UWA Institute of AgricultureThe University of Western AustraliaPerthAustralia
| |
Collapse
|
48
|
Guo Z, Cai L, Chen Z, Wang R, Zhang L, Guan S, Zhang S, Ma W, Liu C, Pan G. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201081. [PMID: 33391797 PMCID: PMC7735347 DOI: 10.1098/rsos.201081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Rice is sensitive to low temperatures, specifically at the booting stage. Chilling tolerance of rice is a quantitative trait loci that is governed by multiple genes, and thus, its precise identification through the conventional methods is an arduous task. In this study, we investigated the candidate genes related to chilling tolerance at the booting stage of rice. The F2 population was derived from Longjing25 (chilling-tolerant) and Longjing11 (chilling-sensitive) cross. Two bulked segregant analysis pools were constructed. A 0.82 Mb region containing 98 annotated genes on chromosomes 6 and 9 was recognized as the candidate region associated with chilling tolerance of rice at the booting stage. Transcriptomic analysis of Longjing25 and Longjing11 revealed 50 differentially expressed genes (DEGs) on the candidate intervals. KEGG pathway enrichment analysis of DEGs was performed. Nine pathways were found to be enriched, which contained 10 DEGs. A total of four genes had different expression patterns or levels between Longjing25 and Longjing11. Four out of the 10 DEGs were considered as potential candidate genes for chilling tolerance. This study will assist in the cloning of the candidate genes responsible for chilling tolerance and molecular breeding of rice for the development of chilling-tolerant rice varieties.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, People's Republic of China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ruiying Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Lanming Zhang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Shiwu Guan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Shuhua Zhang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| |
Collapse
|
49
|
Comparisons of sampling methods for assessing intra- and inter-accession genetic diversity in three rice species using genotyping by sequencing. Sci Rep 2020; 10:13995. [PMID: 32814806 PMCID: PMC7438528 DOI: 10.1038/s41598-020-70842-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
To minimize the cost of sample preparation and genotyping, most genebank genomics studies in self-pollinating species are conducted on a single individual to represent an accession, which may be heterogeneous with larger than expected intra-accession genetic variation. Here, we compared various population genetics parameters among six DNA (leaf) sampling methods on 90 accessions representing a wild species (O. barthii), cultivated and landraces (O. glaberrima, O. sativa), and improved varieties derived through interspecific hybridizations. A total of 1,527 DNA samples were genotyped with 46,818 polymorphic single nucleotide polymorphisms (SNPs) using DArTseq. Various statistical analyses were performed on eleven datasets corresponding to 5 plants per accession individually and in a bulk (two sets), 10 plants individually and in a bulk (two sets), all 15 plants individually (one set), and a randomly sampled individual repeated six times (six sets). Overall, we arrived at broadly similar conclusions across 11 datasets in terms of SNP polymorphism, heterozygosity/heterogeneity, diversity indices, concordance among genetic dissimilarity matrices, population structure, and genetic differentiation; there were, however, a few discrepancies between some pairs of datasets. Detailed results of each sampling method, the concordance in their outputs, and the technical and cost implications of each method were discussed.
Collapse
|
50
|
Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D. Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq. RICE (NEW YORK, N.Y.) 2020; 13:55. [PMID: 32778977 PMCID: PMC7417472 DOI: 10.1186/s12284-020-00416-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/04/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Salt stress is one of the main abiotic stresses that limits rice production worldwide. Rice salt tolerance at the bud burst stage directly affects the seedling survival rate and the final yield in the direct seeding cultivation model. However, the reports on quantitative trait locus (QTL) mapping and map-based cloning for salt tolerance at the bud burst stage are limited. RESULTS Here, an F2:3 population derived from a cross between IR36 (salt-sensitive) and Weiguo (salt-tolerant) was used to identify salt-tolerant QTL interval at the bud burst stage using a whole-genome sequencing-based QTL-seq containing 40 extreme salt-tolerant and 40 extreme salt-sensitive individuals. A major QTL, qRSL7, related to relative shoot length (RSL) was detected on chromosome 7 using ΔSNP index algorithms and Euclidean Distance (ED) algorithms. According to single nucleotide polymorphisms (SNPs) between the parents, 25 Kompetitive allele-specific PCR (KASP) markers were developed near qRSL7, and regional QTL mapping was performed using 199 individuals from the F2:3 population. We then confirmed and narrowed down qRSL7 to a 222 kb genome interval. Additionally, RNA sequencing (RNA-seq) was performed for IR36 and Weiguo at 36 h after salt stress and control condition at the bud burst stage, and 5 differentially expressed genes (DEGs) were detected in the candidate region. The qRT-PCR results showed the same expression patterns as the RNA-seq data. Furthermore, sequence analysis revealed a 1 bp Indel difference in Os07g0569700 (OsSAP16) between IR36 and Weiguo. OsSAP16 encodes a stress-associated protein whose expression is increased under drought stress. CONCLUSION These results indicate that OsSAP16 was the candidate gene of qRSL7. The results is useful for gene cloning of qRSL7 and for improving the salt tolerance of rice varieties by marker assisted selection (MAS).
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150030, China
| | - Yanli Bi
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Xianwei Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaming Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|