1
|
Cao FY, Zeng Y, Lee AR, Kim B, Lee D, Kim ST, Kwon SW. OsFBN6 Enhances Brown Spot Disease Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3302. [PMID: 39683095 DOI: 10.3390/plants13233302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Brown spot (BS) is caused by necrotrophs fungi Cochliobolus miyabeanus (C. miyabeanus) which affects rainfed and upland production in rice, resulting in significant losses in yield and grain quality. Here, we explored the meJA treatment that leads to rice resistance to BS. Fibrillins (FBNs) family are constituents of plastoglobules in chloroplast response to biotic and abiotic stress, many research revealed that OsFBN1 and OsFBN5 are not only associated with the rice against disease but also with the JA pathway. The function of FBN6 was only researched in the Arabidopsis. We revealed gene expression levels of OsFBN1, OsFBN5, OsFBN6 and the JA pathway synthesis first specific enzyme OsAOS2 following infection with C. miyabeanus, OsAOS2 gene expression showed great regulation after C. miyabeanus and meJA treatment, indicating JA pathway response to BS resistance in rice. Three FBN gene expressions showed different significantly regulated modes in C. miyabeanus and meJA treatment. The haplotype analysis results showed OsFBN1 and OsFBN5 the diverse Haps significant with BS infection score, and the OsFBN6 showed stronger significance (**** p < 0.0001). Hence, we constructed OsFBN6 overexpression lines, which showed more resistance to BS compared to the wild type, revealing OsFBN6 positively regulated rice resistance to BS. We developed OsFBN6 genetic markers by haplotype analysis from 130 rice varieties according to whole-genome sequencing results, haplotype analysis, and marker development to facilitate the screening of BS-resistant varieties in rice breeding. The Caps marker developed by Chr4_30690229 can be directly applied to the breeding application of screening rice BS-resistant varieties.
Collapse
Affiliation(s)
- Fang-Yuan Cao
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yuting Zeng
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ah-Rim Lee
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Backki Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Dongryung Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sun-Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Chen K, Bhunia RK, Wendt MM, Campidilli G, McNinch C, Hassan A, Li L, Nikolau BJ, Yandeau-Nelson MD. Cuticle development and the underlying transcriptome-metabolome associations during early seedling establishment. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6500-6522. [PMID: 39031128 PMCID: PMC11522977 DOI: 10.1093/jxb/erae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The plant cuticle is a complex extracellular lipid barrier that has multiple protective functions. This study investigated cuticle deposition by integrating metabolomics and transcriptomics data gathered from six different maize seedling organs of four genotypes, the inbred lines B73 and Mo17, and their reciprocal hybrids. These datasets captured the developmental transition of the seedling from heterotrophic skotomorphogenic growth to autotrophic photomorphogenic growth, a transition that is highly vulnerable to environmental stresses. Statistical interrogation of these data revealed that the predominant determinant of cuticle composition is seedling organ type, whereas the seedling genotype has a smaller effect on this phenotype. Gene-to-metabolite associations assessed by integrated statistical analyses identified three gene networks associated with the deposition of different elements of the cuticle: cuticular waxes; monomers of lipidized cell wall biopolymers, including cutin and suberin; and both of these elements. These gene networks reveal three metabolic programs that appear to support cuticle deposition, including processes of chloroplast biogenesis, lipid metabolism, and molecular regulation (e.g. transcription factors, post-translational regulators, and phytohormones). This study demonstrates the wider physiological metabolic context that can determine cuticle deposition and lays the groundwork for new targets for modulating the properties of this protective barrier.
Collapse
Affiliation(s)
- Keting Chen
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Rupam Kumar Bhunia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Matthew M Wendt
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
| | - Grace Campidilli
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Genetics Major, Iowa State University, Ames, IA, USA
| | - Colton McNinch
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Ahmed Hassan
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Data Science Major, Iowa State University, Ames, IA, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Basil J Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
3
|
El-Sappah AH, Li J, Yan K, Zhu C, Huang Q, Zhu Y, Chen Y, El-Tarabily KA, AbuQamar SF. Fibrillin gene family and its role in plant growth, development, and abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1453974. [PMID: 39574446 PMCID: PMC11580037 DOI: 10.3389/fpls.2024.1453974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024]
Abstract
Fibrillins (FBNs), highly conserved plastid lipid-associated proteins (PAPs), play a crucial role in plant physiology. These proteins, encoded by nuclear genes, are prevalent in the plastoglobules (PGs) of chloroplasts. FBNs are indispensable for maintaining plastid stability, promoting plant growth and development, and enhancing stress responses. The conserved PAP domain of FBNs was found across a wide range of photosynthetic organisms, from plants and cyanobacteria. FBN families are classified into 12 distinct groups/clades, with the 12th group uniquely present in algal-fungal symbiosis. This mini review delves into the structural attributes, phylogenetic classification, genomic features, protein-protein interactions, and functional roles of FBNs in plants, with a special focus on their effectiveness in mitigating abiotic stresses, particularly drought stress.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - ChaoYang Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Yu Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Yao Y, Nan L, Wang K, Xia J, Ma B, Cheng J. Integrative leaf anatomy structure, physiology, and metabolome analyses revealed the response to drought stress in sainfoin at the seedling stage. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1174-1185. [PMID: 38553821 DOI: 10.1002/pca.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Sainfoin (Onobrychis viciaefolia) is a vital legume forage, and drought is the primary element impeding sainfoin growth. OBJECTIVE The anatomical structure, physiological indexes, and metabolites of the leaves of sainfoin seedlings with a drought-resistant line of P1 (DRL) and a drought-sensitive material of 2049 (DSM) were analyzed under drought (-1.0 MPa) with polyethylene glycol-6000 (PEG-6000). METHODS The leaf anatomy was studied by the paraffin section method. The related physiological indexes were measured by the hydroxylamine oxidation method, titanium sulfate colorimetric method, thiobarbituric acid method, acidic ninhydrin colorimetric method, and Coomassie brilliant blue method. The metabolomics analysis was composed of liquid chromatography tandem high-resolution mass spectrometry (LC-MS/MS). RESULTS The results revealed that the thickness of the epidermis, palisade tissue, and sponge tissue of DRL were significantly greater than those of DSM. The leaves of DRL exhibited lower levels of superoxide anion (O2 •-) production rate, hydrogen peroxide (H2O2) content, and malondialdehyde (MDA) content compared with DSM, while proline (Pro) content and soluble protein (SP) content were significantly higher than those of DSM. A total of 391 differential metabolites were identified in two samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that the primary differential metabolites were concentrated into the tyrosine metabolism; isoquinoline alkaloid biosynthesis; ubiquinone and other terpenoid quinone biosynthesis; neomycin, kanamycin, and gentamicin biosynthesis; and anthocyanin biosynthesis metabolic pathways. CONCLUSION Compared with DSM, DRL had more complete anatomical structure, lower active oxygen content, and higher antioxidant level. The results improved our insights into the drought-resistant mechanisms in sainfoin.
Collapse
Affiliation(s)
- Yuheng Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, Gansu, China
| | - Lili Nan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, Gansu, China
| | - Kun Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jing Xia
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, Gansu, China
| | - Biao Ma
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiao Cheng
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Zafer MZ, Tahir MHN, Khan Z, Sajjad M, Gao X, Bakhtavar MA, Waheed U, Siddique M, Geng Z, Ur Rehman S. Genome-Wide Characterization and Sequence Polymorphism Analyses of Glycine max Fibrillin ( FBN) Revealed Its Role in Response to Drought Condition. Genes (Basel) 2023; 14:1188. [PMID: 37372368 DOI: 10.3390/genes14061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
The fibrillin (FBN) gene family is widely distributed in all photosynthetic organisms. Members of this gene family are involved in plant growth and development and their response to various biotic and abiotic stress factors. In this study, 16 members of FBN were identified in Glycine max and characterized by using different bioinformatics tools. Phylogenetic analysis classified FBN genes into seven groups. The presence of stress-related cis-elements in the upstream region of GmFBN highlighted their role in tolerance against abiotic stresses. To further decipher the function, physiochemical properties, conserved motifs, chromosomal localization, subcellular localization, and cis-acting regulatory elements were also analyzed. Gene expression analysis based on FPKM values revealed that GmFBNs greatly enhanced soybean drought tolerance and controlled the expression of several genes involved in drought response, except for GmFBN-4, GmFBN-5, GmFBN-6, GmFBN-7 and GmFBN-9. For high throughput genotyping, an SNP-based CAPS marker was also developed for the GmFBN-15 gene. The CAPS marker differentiated soybean genotypes based on the presence of either the GmFBN-15-G or GmFBN-15-A alleles in the CDS region. Association analysis showed that G. max accessions containing the GmFBN-15-A allele at the respective locus showed higher thousand seed weight compared to accessions containing the GmFBN-15-G allele. This research has provided the basic information to further decipher the function of FBN in soybean.
Collapse
Affiliation(s)
- Muhammad Zeshan Zafer
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Zulqurnain Khan
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University, Islamabad (CUI), Park Road, Islamabad 45550, Pakistan
| | - Xiangkuo Gao
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Muhammad Amir Bakhtavar
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zhide Geng
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Shoaib Ur Rehman
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| |
Collapse
|
6
|
Pandey A, Sharma P, Mishra D, Dey S, Malviya R, Gayen D. Genome-wide identification of the fibrillin gene family in chickpea (Cicer arietinum L.) and its response to drought stress. Int J Biol Macromol 2023; 234:123757. [PMID: 36805507 DOI: 10.1016/j.ijbiomac.2023.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Fibrillin family members play multiple roles in growth, development, and protection against abiotic stress. In this study, we identified 12 potential CaFBNs that are ranging from 25 kDa-42.92 kDa and are mostly basic. These proteins were hydrophilic in nature and generally resided in the chloroplast. The CaFBN genes were located on different chromosomes like 1, 4, 5, and 7. All FBNs shared conserved motifs and possessed a higher number of stress-responsive elements. For evolutionary analysis, a phylogenetic tree of CaFBNs with other plants' FBNs was constructed and clustered into 11 FBN subgroups. For expression analysis, 21 day old chickpea seedling was exposed to dehydration stress by withholding water. We also performed various physiological and biochemical analyses to check that plant changes at the physiological and cellular levels while undergoing stress conditions. The transcript expression of CaFBNs was higher in aerial parts, especially in stems and leaves. Dehydration-specific transcriptome and qPCR analysis showed that FBN-1, FBN-2, and FBN-6 were highly expressed. In addition, our study provides a comprehensive overview of the FBN protein family and their importance during the dehydration stress condition in Cicer arietinum.
Collapse
Affiliation(s)
- Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Divya Mishra
- Department of Plant Pathology, Kansas State University, USA
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India.
| |
Collapse
|
7
|
Lyu K, Lyu Z, Zhang X, Hao D, Yang Z, Liu Y, Liu D, Wang X. Effect of cerium on the production of reactive oxygen species in the root of Arabidopsis thaliana: An in vitro study. Microsc Res Tech 2023; 86:137-143. [PMID: 36056697 DOI: 10.1002/jemt.24226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023]
Abstract
In the current study, the effect of trivalent cerium (Ce3+ ) on the production of reactive oxygen species (ROS) was investigated in the root of Arabidopsis thaliana by an in vitro study. The roots of A. thaliana were exposed with 0, 1, and 5 μmol/L Ce3+ for 12 h in vitro. It was found that the level of H2 O2 , O2 .- , and ·OH was enhanced by 5 μmol/L Ce3+ , but reduced by 1 μmol/L Ce3+ . The activities of peroxidase (POD), catalase (CAT), and superoxidase dismutase (SOD) were enhanced by 1 μmol/L Ce3+ , but reduced by 5 μmol/L Ce3+ . Moreover, we used a laser-scanning confocal microscopy to detect the changes of ROS in the root cells of A. thaliana by using a fluorochrome 2',7'-dichlorofluorescein diacetate (H2 DCF-DA). It showed that the level of ROS was declined in the root cells treated by 1 μmol/L Ce3+ , but the oscillation of ROS was found in the root cells treated with 5 μmol/L Ce3+ . In addition, REEs affect the uptake of mineral elements, which may be related to the oxidative stress in the cells of roots. In all, the data of our study indicated that the appropriate concentration of Ce3+ exhibited an anti-oxidation property and improved the defense system in the root cells of A. thaliana.
Collapse
Affiliation(s)
- Keliang Lyu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhiwen Lyu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xinran Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Donghao Hao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhonghuang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yumeng Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xue Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
8
|
Kim E, Poudyal RS, Lee K, Yu H, Gi E, Kim HU. Chloroplast-localized PITP7 is essential for plant growth and photosynthetic function in Arabidopsis. PHYSIOLOGIA PLANTARUM 2022; 174:e13760. [PMID: 36004734 PMCID: PMC9546280 DOI: 10.1111/ppl.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 06/02/2023]
Abstract
Recent studies of chloroplast-localized Sec14-like protein (CPSFL1, also known as phosphatidylinositol transfer protein 7, PITP7) showed that CPSFL1 is necessary for photoautotropic growth and chloroplast vesicle formation in Arabidopsis (Arabidopsis thaliana). Here, we investigated the functional roles of CPSFL1/PITP7 using two A. thaliana mutants carrying a putative null allele (pitp7-1) and a weak allele (pitp7-2), respectively. PITP7 transcripts were undetectable in pitp7-1 and less abundant in pitp7-2 than in the wild-type (WT). The severity of mutant phenotypes, such as plant developmental abnormalities, levels of plastoquinone-9 (PQ-9) and chlorophylls, photosynthetic protein complexes, and photosynthetic performance, were well related to PITP7 transcript levels. The pitp7-1 mutation was seedling lethal and was associated with significantly lower levels of PQ-9 and major photosynthetic proteins. pitp7-2 plants showed greater susceptibility to high-intensity light stress than the WT, attributable to defects in nonphotochemical quenching and photosynthetic electron transport. PITP7 is specifically bound to phosphatidylinositol phosphates (PIPs) in lipid-binding assays in vitro, and the point mutations R82, H125, E162, or K233 reduced the binding affinity of PITP7 to PIPs. Further, constitutive expression of PITP7H125Q or PITP7E162K in pitp7-1 homozygous plants restored autotrophic growth in soil but without fully complementing the mutant phenotypes. Consistent with a previous study, our results demonstrate that PITP7 is essential for plant development, particularly the accumulation of PQ-9 and photosynthetic complexes. We propose a possible role for PITP7 in membrane trafficking of hydrophobic ligands such as PQ-9 and carotenoids through chloroplast vesicle formation or direct binding involving PIPs.
Collapse
Affiliation(s)
- Eun‐Ha Kim
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Roshan Sharma Poudyal
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Kyeong‐Ryeol Lee
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Hami Yu
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Eunji Gi
- Department of Agricultural BiotechnologyNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource EngineeringPlant Engineering Research Institute, Sejong UniversitySeoulRepublic of Korea
| |
Collapse
|
9
|
Kim I, Kim HU. The mysterious role of fibrillin in plastid metabolism: current advances in understanding. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2751-2764. [PMID: 35560204 DOI: 10.1093/jxb/erac087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fibrillins (FBNs) are a family of genes in cyanobacteria, algae, and plants. The proteins they encode possess a lipid-binding motif, exist in various types of plastids, and are associated with lipid bodies called plastoglobules, implicating them in lipid metabolism. FBNs present in the thylakoid and stroma are involved in the storage, transport, and synthesis of lipid molecules for photoprotective functions against high-light stress. In this review, the diversity of subplastid locations in the evolution of FBNs, regulation of FBNs expression by various stresses, and the role of FBNs in plastid lipid metabolism are comprehensively summarized and directions for future research are discussed.
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
10
|
Chloroplast Localized FIBRILLIN11 Is Involved in the Osmotic Stress Response during Arabidopsis Seed Germination. BIOLOGY 2021; 10:biology10050368. [PMID: 33922967 PMCID: PMC8145590 DOI: 10.3390/biology10050368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The FIBRILLIN11 (FBN11) of Arabidopsis has a lipid-binding FBN domain and a kinase domain. FBN11 is present in chloroplasts and is involved in salt and osmotic stress responses during seed germination. In mannitol, the seed germination rate of the fbn11 mutants significantly reduced compared to that of the wild type. The ABA-dependent and -independent stress response regulating genes were differentially expressed in fbn11 mutants and wild-type when grown in mannitol supplemented medium. These results suggest that chloroplast localized FBN11 is involved in mediating osmotic stress tolerance through the signaling pathway that regulates the stress response in the nucleus. Abstract Plants live in ever-changing environments, facing adverse environmental conditions including pathogen infection, herbivore attack, drought, high temperature, low temperature, nutrient deficiency, toxic metal soil contamination, high salt, and osmotic imbalance that inhibit overall plant growth and development. Plants have evolved mechanisms to cope with these stresses. In this study, we found that the FIBRILLIN11 (FBN11) gene in Arabidopsis, which has a lipid-binding FBN domain and a kinase domain, is involved in the plant’s response to abiotic stressors, including salt and osmotic stresses. FBN11 protein localizes to the chloroplast. FBN11 gene expression significantly changed when plants were exposed to the abiotic stress response mediators such as abscisic acid (ABA), sodium chloride (NaCl), and mannitol. The seed germination rates of fbn11 homozygous mutants in different concentrations of mannitol and NaCl were significantly reduced compared to wild type. ABA-dependent and -independent stress response regulatory genes were differentially expressed in the fbn11 mutant compared with wild type when grown in mannitol medium. These results suggest a clear role for chloroplast-localized FBN11 in mediating osmotic stress tolerance via the stress response regulatory signaling pathway in the nucleus.
Collapse
|
11
|
You MK, Lee YJ, Yu JS, Ha SH. The Predicted Functional Compartmentation of Rice Terpenoid Metabolism by Trans-Prenyltransferase Structural Analysis, Expression and Localization. Int J Mol Sci 2020; 21:E8927. [PMID: 33255547 PMCID: PMC7728057 DOI: 10.3390/ijms21238927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Most terpenoids are derived from the basic terpene skeletons of geranyl pyrophosphate (GPP, C10), farnesyl-PP (FPP, C15) and geranylgeranyl-PP (GGPP, C20). The trans-prenyltransferases (PTs) mediate the sequential head-to-tail condensation of an isopentenyl-PP (C5) with allylic substrates. The in silico structural comparative analyses of rice trans-PTs with 136 plant trans-PT genes allowed twelve rice PTs to be identified as GGPS_LSU (OsGGPS1), homomeric G(G)PS (OsGPS) and GGPS_SSU-II (OsGRP) in Group I; two solanesyl-PP synthase (OsSPS2 and 3) and two polyprenyl-PP synthases (OsSPS1 and 4) in Group II; and five FPSs (OsFPS1, 2, 3, 4 and 5) in Group III. Additionally, several residues in "three floors" for the chain length and several essential domains for enzymatic activities specifically varied in rice, potentiating evolutionarily rice-specific biochemical functions of twelve trans-PTs. Moreover, expression profiling and localization patterns revealed their functional compartmentation in rice. Taken together, we propose the predicted topology-based working model of rice PTs with corresponding terpene metabolites: GPP/GGPPs mainly in plastoglobuli, SPPs in stroma, PPPs in cytosol, mitochondria and chloroplast and FPPs in cytosol. Our findings could be suitably applied to metabolic engineering for producing functional terpene metabolites in rice systems.
Collapse
Affiliation(s)
- Min Kyoung You
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea; (Y.J.L.); (J.S.Y.)
| | | | | | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea; (Y.J.L.); (J.S.Y.)
| |
Collapse
|
12
|
Ding N, Wang L, Kang Y, Luo K, Zeng D, Man YB, Zhang Q, Zeng L, Luo J, Jiang F. The comparison of transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) and 4-n-nonylphenol. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2881-2894. [PMID: 32026273 DOI: 10.1007/s10653-020-00526-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) (Cd) and 4-n-nonylphenol (4-n-NP) was compared in the present study. Cd and 4-n-NP exposure showed a similar pattern of dys-regulated pathways. The photosystem was affected due to suppression of chlorophyll biosynthesis via down-regulation of Mg-protoporphyrin IX chelatase subunit ChlD (CHLD) and divinyl chlorophyllide a 8-vinyl-reductase (DVR) in Cd group and via down-regulation of DVR in 4-n-NP group. Furthermore, the reactive oxygen species (ROS) could be induced through down-regulation of solanesyl diphosphate synthase 1 (SPS1) and homogentisate phytyltransferase (HPT) in Cd group and via down-regulation of HPT in 4-n-NP group. Additionally, Cd and 4-n-NP would both cause the dys-regulation of carbohydrate metabolism and protein synthesis. On the other hand, there are some different responses or detoxification mechanism of C. sorokiniana to 4-n-NP stress compared to Cd exposure. The increased ROS would cause the DNA damage and protein destruction in Cd exposure group. Simultaneously, the RNA transcription was dys-regulated and a series of changes in gene expressions were observed. This included lipid metabolism, protein modification, and DNA repair, which involved in response of C. sorokiniana to Cd stress or detoxification of Cd. For 4-n-NP exposure, no effect on lipid metabolism and DNA repair was observed. The nucleotide metabolism including pyrimidine metabolism and purine metabolism was significantly up-regulated in the 4-n-NP exposure group, but not in the Cd exposure group. In addition, 4-n-NP would induce the ubiquitin-mediated proteolysis and proteasomal degradation to diminish the misfolded protein caused by ROS and down-regulation of heat shocking protein 40. In sum, the Cd and 4-n-NP could cause the same toxicological effects via the common pathways and possess similar detoxification mechanism. They also showed different responses in nucleotide metabolism, lipid metabolism, and DNA repair.
Collapse
Affiliation(s)
- Na Ding
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Lu Wang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Diya Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, People's Republic of China.
| | - Qiuyun Zhang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Feng Jiang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
13
|
Li J, Li X, Khatab AA, Xie G. Phylogeny, structural diversity and genome-wide expression analysis of fibrillin family genes in rice. PHYTOCHEMISTRY 2020; 175:112377. [PMID: 32315840 DOI: 10.1016/j.phytochem.2020.112377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Fibrillins (FBNs) constitute a plastid-lipid-associated protein family that plays a role in chloroplast development, lipids metabolism and stress responses in plants. Until now, FBNs have been functionally characterized in stability of thylakoid and responses to the different stress stimuli. Consequently, phylogeny, domain composition and structural features of 121 FBNs family proteins from ten representative species have been identified. As results, phylogenetic analysis demonstrated that FBNs proteins were grouped into 24 clades and further subdivided into three groups, including terrestrial plant-specific, algae-specific, and intermediate group. These FBNs genes had different numbers of introns and exons but encoded the conserved N-terminal chloroplast transport peptide (CTP) domains and plastid lipid-associated protein (PAP) domains, which greatly contributed to the sub-functionalization and neo-functionalization. Meanwhile, the CTP domains of eleven OsFBN proteins except OsFBN8 could help them transport into chloroplasts. The PAP domains of OsFBN2 and OsFBN4 showed the in vitro specific binding activity to C12-C22 fatty acids that were affected by YxD motif. The qRT-PCR analysis showed that OsFBN genes were differentially induced by heat stress and cold stress in rice. Collectively, this study has provided the new insights into the evolution, structure, and functions of FBN gene family and will help to elucidate the molecular mechanisms of these proteins functioning in growth, development and adaptations in the global climate change.
Collapse
Affiliation(s)
- Jiajia Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Ahmed Adel Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
Jiang Y, Hu H, Ma Y, Zhou J. Genome-wide identification and characterization of the fibrillin gene family in Triticum aestivum. PeerJ 2020; 8:e9225. [PMID: 32518731 PMCID: PMC7258936 DOI: 10.7717/peerj.9225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/30/2020] [Indexed: 12/03/2022] Open
Abstract
Background The fibrillin (FBN) gene family is highly conserved and widely distributed in the photosynthetic organs of plants. Members of this gene family are involved in the growth and development of plants and their response to biotic and abiotic stresses. Wheat (Triticum aestivum), an important food crop, has a complex genetic background and little progress has occurred in the understanding of its molecular mechanisms. Methods In this study, we identified 26 FBN genes in the whole genome of T. aestivum through bioinformatic tools and biotechnological means. These genes were divided into 11 subgroups and were distributed on 11 chromosomes of T. aestivum. Interestingly, most of the TaFBN genes were located on the chromosomes 2A, 2B and 2D. The gene structure of each subgroup of gene family members and the position and number of motifs were highly similar. Results The evolutionary analysis results indicated that the affinities of FBNs in monocots were closer together. The tissue-specific analysis revealed that TaFBN genes were expressed in different tissues and developmental stages. In addition, some TaFBNs were involved in one or more biotic and abiotic stress responses. These results provide a basis for further study of the biological function of FBNs.
Collapse
Affiliation(s)
- Yaoyao Jiang
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Haichao Hu
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yuhua Ma
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyan, China
| | - Junliang Zhou
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyan, China
| |
Collapse
|
15
|
Li J, Yang J, Zhu B, Xie G. Overexpressing OsFBN1 enhances plastoglobule formation, reduces grain-filling percent and jasmonate levels under heat stress in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:230-238. [PMID: 31203888 DOI: 10.1016/j.plantsci.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
In higher plants, Fibrillins (FBNs) constitute a conserved plastid-lipid-associated (PAPs) protein family and modulate the metabolite transport and lipid metabolism in plastids of dicot species. However, FBNs have not functionally characterized in monocot species. In this study, the function of rice fibrillin 1 (OsFBN1) was investigated. The subcellular localization assay showed that the N-terminal chloroplast transport peptide (CTP) could facilitate the import of OsFBN1 into chloroplast. OsFBN1 specifically bound C18- and C20- fatty acids in vitro. Overexpressing OsFBN1 increased the tiller number but decreased the panicle length, grain-filling percent and JA levels compared to the wild type and RNAi silencing lines under heat stress. In addition, the overexpressing lines had more plastoglobules (PGs) than the wild type and RNAi silencing lines under both normal and heat stress conditions. Moreover, overexpressing OsFBN1 affected the transcription levels of OsAOS2 in JA synthesis, OsTHF1, OsABC1K7 and OsPsaE in thylakoid stability and photosynthesis, OsABC1-4 and OsSPS2 in ubiquinone-metabolism, OsHDR, OsDXR, and OsFPPS in isoprenoid metabolism. Collectively, these findings suggest the essential role of rice OsFBN1 in PG formation and lipid metabolism in chloroplasts, which coordinately regulate the growth and grain filling of the overexpressing lines under heat stress.
Collapse
Affiliation(s)
- Jiajia Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jun Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Bohua Zhu
- Agricultural Technology Extension Center of Wuhan City, Wuhan, Hubei 430016, China.
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
16
|
Liu M, Ma Y, Du Q, Hou X, Wang M, Lu S. Functional Analysis of Polyprenyl Diphosphate Synthase Genes Involved in Plastoquinone and Ubiquinone Biosynthesis in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2019; 10:893. [PMID: 31354766 PMCID: PMC6629958 DOI: 10.3389/fpls.2019.00893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Polyprenyl diphosphate synthase (PPS) plays important roles in the biosynthesis of functionally important plastoquinone (PQ) and ubiquinone (UQ). However, only few plant PPS genes have been functionally characterized. Through genome-wide analysis, two PPS genes, termed SmPPS1 and SmPPS2, were identified from Salvia miltiorrhiza, an economically significant Traditional Chinese Medicine material and an emerging model medicinal plant. SmPPS1 and SmPPS2 belonged to different phylogenetic subgroups of plant trans-long-chain prenyltransferases and exhibited differential tissue expression and light-induced expression patterns. Computational prediction and transient expression assays showed that SmPPS1 was localized in the chloroplasts, whereas SmPPS2 was mainly localized in the mitochondria. SmPPS2, but not SmPPS1, could functionally complement the coq1 mutation in yeast cells and catalyzed the production of UQ-9 and UQ-10. Consistently, both UQ-9 and UQ-10 were detected in S. miltiorrhiza plants. Overexpression of SmPPS2 caused significant UQ accumulation in S. miltiorrhiza transgenics, whereas down-regulation resulted in decreased UQ content. Differently, SmPPS1 overexpression significantly elevated PQ-9 content in S. miltiorrhiza. Transgenic lines showing a down-regulation of SmPPS1 expression exhibited decreased PQ-9 level, abnormal chloroplast and trichome development, and varied leaf bleaching phenotypes. These results suggest that SmPPS1 is involved in PQ-9 biosynthesis, whereas SmPPS2 is involved in UQ-9 and UQ-10 biosynthesis.
Collapse
Affiliation(s)
- Miaomiao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yimian Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Xuemin Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Genome-Wide Identification and Expression Analyses of the Fibrillin Family Genes Suggest Their Involvement in Photoprotection in Cucumber. PLANTS 2018; 7:plants7030050. [PMID: 29954122 PMCID: PMC6161074 DOI: 10.3390/plants7030050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 11/17/2022]
Abstract
Fibrillin (FBN) is a plastid lipid-associated protein found in photosynthetic organisms from cyanobacteria to plants. In this study, 10 CsaFBN genes were identified in genomic DNA sequences of cucumber (Chinese long and Gy14) through database searches using the conserved domain of FBN and the 14 FBN genes of Arabidopsis. Phylogenetic analysis of CsaFBN protein sequences showed that there was no counterpart of Arabidopsis and rice FBN5 in the cucumber genome. FBN5 is essential for growth in Arabidopsis and rice; its absence in cucumber may be because of incomplete genome sequences or that another FBN carries out its functions. Among the 10 CsaFBN genes, CsaFBN1 and CsaFBN9 were the most divergent in terms of nucleotide sequences. Most of the CsaFBN genes were expressed in the leaf, stem and fruit. CsaFBN4 showed the highest mRNA expression levels in various tissues, followed by CsaFBN6, CsaFBN1 and CsaFBN9. High-light stress combined with low temperature decreased photosynthetic efficiency and highly induced transcript levels of CsaFBN1, CsaFBN6 and CsaFBN11, which decreased after 24 h treatment. Transcript levels of the other seven genes were changed only slightly. This result suggests that CsaFBN1, CsaFBN6 and CsaFBN11 may be involved in photoprotection under high-light conditions at low temperature.
Collapse
|
18
|
Abstract
Prenylquinones are isoprenoid compounds with a characteristic quinone structure and isoprenyl tail that are ubiquitous in almost all living organisms. There are four major prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among organisms. UQ, PQ, and RQ contain benzoquinone, while MK contains naphthoquinone. UQ, MK, and RQ are involved in oxidative phosphorylation, while PQ functions in photosynthetic electron transfer. Some organisms possess two types of prenylquinones; Escherichia coli has UQ8 and MK8, and Caenorhabditis elegans has UQ9 and RQ9. Crystal structures of most of the enzymes involved in MK synthesis have been solved. Studies on the biosynthesis and functions of quinones have advanced recently, including for phylloquinone (PhQ), which has a phytyl moiety instead of an isoprenyl tail. Herein, the synthesis and applications of prenylquinones are reviewed.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
19
|
Mène-Saffrané L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants (Basel) 2017; 7:E2. [PMID: 29295607 PMCID: PMC5789312 DOI: 10.3390/antiox7010002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022] Open
Abstract
Vitamin E is one of the 13 vitamins that are essential to animals that do not produce them. To date, six natural organic compounds belonging to the chemical family of tocochromanols-four tocopherols and two tocotrienols-have been demonstrated as exhibiting vitamin E activity in animals. Edible plant-derived products, notably seed oils, are the main sources of vitamin E in the human diet. Although this vitamin is readily available, independent nutritional surveys have shown that human populations do not consume enough vitamin E, and suffer from mild to severe deficiency. Tocochromanols are mostly produced by plants, algae, and some cyanobacteria. Tocochromanol metabolism has been mainly studied in higher plants that produce tocopherols, tocotrienols, plastochromanol-8, and tocomonoenols. In contrast to the tocochromanol biosynthetic pathways that are well characterized, our understanding of the physiological and molecular mechanisms regulating tocochromanol biosynthesis is in its infancy. Although it is known that tocochromanol biosynthesis is strongly conditioned by the availability in homogentisate and polyprenyl pyrophosphate, its polar and lipophilic biosynthetic precursors, respectively, the mechanisms regulating their biosyntheses are barely known. This review summarizes our current knowledge of tocochromanol biosynthesis in plants, and highlights future challenges regarding the understanding of its regulation.
Collapse
Affiliation(s)
- Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du Musée, 10, 1700 Fribourg, Switzerland.
| |
Collapse
|