1
|
Cerbantez-Bueno VE, Serwatowska J, Rodríguez-Ramos C, Cruz-Valderrama JE, de Folter S. The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. PLANTA 2024; 260:48. [PMID: 38980389 PMCID: PMC11233295 DOI: 10.1007/s00425-024-04481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
MAIN CONCLUSION We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
Collapse
Affiliation(s)
- Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - Carolina Rodríguez-Ramos
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - J Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México.
| |
Collapse
|
2
|
Lee K, Yoon H, Park OS, Lim J, Kim SG, Seo PJ. ESR2-HDA6 complex negatively regulates auxin biosynthesis to delay callus initiation in Arabidopsis leaf explants during tissue culture. PLANT COMMUNICATIONS 2024; 5:100892. [PMID: 38566417 PMCID: PMC11287192 DOI: 10.1016/j.xplc.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
Plants exhibit an astonishing ability to regulate organ regeneration upon wounding. Excision of leaf explants promotes the biosynthesis of indole-3-acetic acid (IAA), which is polar-transported to excised regions, where cell fate transition leads to root founder cell specification to induce de novo root regeneration. The regeneration capacity of plants has been utilized to develop in vitro tissue culture technologies. Here, we report that IAA accumulation near the wounded site of leaf explants is essential for callus formation on 2,4-dichlorophenoxyacetic acid (2,4-D)-rich callus-inducing medium (CIM). Notably, a high concentration of 2,4-D does not compensate for the action of IAA because of its limited efflux; rather, it lowers IAA biosynthesis via a negative feedback mechanism at an early stage of in vitro tissue culture, delaying callus initiation. The auxin negative feedback loop in CIM-cultured leaf explants is mediated by an auxin-inducible APETALA2 transcription factor, ENHANCER OF SHOOT REGENERATION 2 (ESR2), along with its interacting partner HISTONE DEACETYLASE 6 (HDA6). The ESR2-HDA6 complex binds directly to, and removes the H3ac mark from, the YUCCA1 (YUC1), YUC7, and YUC9 loci, consequently repressing auxin biosynthesis and inhibiting cell fate transition on 2,4-D-rich CIM. These findings indicate that negative feedback regulation of auxin biosynthesis by ESR2 and HDA6 interferes with proper cell fate transition and callus initiation.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Hobin Yoon
- Interdisciplinary Program in Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Ok-Sun Park
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Jongbu Lim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea; Interdisciplinary Program in Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
3
|
Lee K, Yoon H, Park OS, Seo PJ. ENHANCER OF SHOOT REGENERATION1 promotes de novo root organogenesis after wounding in Arabidopsis leaf explants. THE PLANT CELL 2024; 36:2359-2374. [PMID: 38445764 PMCID: PMC11132873 DOI: 10.1093/plcell/koae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Plants have an astonishing ability to regenerate new organs after wounding. Here, we report that the wound-inducible transcription factor ENHANCER OF SHOOT REGENERATION1 (ESR1) has a dual mode of action in activating ANTHRANILATE SYNTHASE ALPHA SUBUNIT1 (ASA1) expression to ensure auxin-dependent de novo root organogenesis locally at wound sites of Arabidopsis (Arabidopsis thaliana) leaf explants. In the first mode, ESR1 interacts with HISTONE DEACETYLASE6 (HDA6), and the ESR1-HDA6 complex directly binds to the JASMONATE-ZIM DOMAIN5 (JAZ5) locus, inhibiting JAZ5 expression through histone H3 deacetylation. As JAZ5 interferes with the action of ETHYLENE RESPONSE FACTOR109 (ERF109), the transcriptional repression of JAZ5 at the wound site allows ERF109 to activate ASA1 expression. In the second mode, the ESR1 transcriptional activator directly binds to the ASA1 promoter to enhance its expression. Overall, our findings indicate that the dual biochemical function of ESR1, which specifically occurs near wound sites of leaf explants, maximizes local auxin biosynthesis and de novo root organogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hobin Yoon
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok-Sun Park
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
5
|
Zhou Z, Wang J, Yu Q, Lan H. Promoter activity and transcriptome analyses decipher functions of CgbHLH001 gene (Chenopodium glaucum L.) in response to abiotic stress. BMC PLANT BIOLOGY 2023; 23:116. [PMID: 36849913 PMCID: PMC9969703 DOI: 10.1186/s12870-023-04128-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Our previous studies revealed that CgbHLH001 transcription factor (TF) played an important role in abiotic stress tolerance, suggesting that its promoter was a potential target in response to stress signals. In addition, the regulatory mechanism of CgbHLH001 TF is still limited. RESULTS In the present study, a 1512 bp of 5'-flanking sequence of CgbHLH001 gene was identified, and the sequence carried quite a few of cis-acting elements. The gene promoter displayed strong activity and was induced by multiple abiotic stress. A series of 5'-deletions of the promoter sequence resulted in a gradual decrease in its activity, especially, the 5' untranslated region (UTR) was necessary to drive promoter activity. Further, CgbHLH001 promoter drove its own gene overexpression ectopically at the transcriptional and translational levels, which in turn conferred the stress tolerance to transgenic Arabidopsis. Transcriptome analysis showed that salt stress induced a large number of genes involved in multiple biological regulatory processes. Differentially expressed genes (DEGs) that mediate phytohormone signal transduction and mitogen-activated protein kinase (MAPK) signaling pathway were widely induced and mostly upregulated under salt stress, and the transcription levels in PbHLH::bHLH-overexpressing transgenic lines were higher than that of 35S::bHLH overexpression. CONCLUSIONS The CgbHLH001 promoter exhibited a positive response to abiotic stress and its 5' UTR sequence enhanced the regulation of gene expression to stress. A few important pathways and putative key genes involved in salt tolerance were identified, which can be used to elucidate the mechanism of salt tolerance and decipher the regulatory mechanism of promoters to develop an adaptation strategy for desert halophytes.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
6
|
Zúñiga-Mayo VM, Durán-Medina Y, Marsch-Martínez N, de Folter S. Hormones and Flower Development in Arabidopsis. Methods Mol Biol 2023; 2686:111-127. [PMID: 37540356 DOI: 10.1007/978-1-0716-3299-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Sexual reproduction requires the participation of two gametes, female and male. In angiosperms, gametes develop in specialized organs, pollen (containing the male gametes) develops in the stamens, and the ovule (containing the female gamete) develops in the gynoecium. In Arabidopsis thaliana, the female and male sexual organs are found within the same structure called flower, surrounded by the perianth, which is composed of petals and sepals. During flower development, different organs emerge in an established order and throughout their development distinct tissues within each organ are differentiated. All this requires the coordination and synchronization of several biological processes. To achieve this, hormones and genes work together. These components can interact at different levels generating hormonal interplay and both positive and negative feedback loops, which in turn, gives robustness, stability, and flexibility to flower development. Here, we summarize the progress made on elucidating the role of different hormonal pathways during flower development in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Victor M Zúñiga-Mayo
- CONACyT - Postgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados, Campus Montecillo, Montecillo, Estado de México, Mexico
| | - Yolanda Durán-Medina
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico.
| |
Collapse
|
7
|
Chen Y, Dai Y, Li Y, Yang J, Jiang Y, Liu G, Yu C, Zhong F, Lian B, Zhang J. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5. BMC PLANT BIOLOGY 2022; 22:102. [PMID: 35255820 PMCID: PMC8900321 DOI: 10.1186/s12870-022-03487-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Salix matsudana (Koidz.) is a widely planted ornamental allotetraploid tree species. Genetic engineering can be used to enhance the tolerance of this species to soil salinization, endowing varieties with the ability to grow along coastlines, thereby mitigating afforestation and protecting the environment. The AP2/ERF family of transcription factors (TFs) plays multidimensional roles in plant biotic/abiotic stress tolerance and plant development. In this study, we cloned the SmAP2-17 gene and performed functional analysis of its role in salt tolerance. This study aims to identify key genes for future breeding of stress-resistant varieties of Salix matsudana. RESULTS SmAP2-17 was predicted to be a homolog of AP2-like ethylene-responsive transcription factor ANT isoform X2 from Arabidopsis, with a predicted ORF of 2058 bp encoding an estimated protein of 685 amino acids containing two conserved AP2 domains (PF00847.20). SmAP2-17 had a constitutive expression pattern and was localized to the nucleus. The overexpression of the native SmAP2-17 CDS sequence in Arabidopsis did not increase salt tolerance because of the reduced expression level of ectopic SmAP2-17, potentially caused by salt-induced RNAi. Transgenic lines with high expression of optimized SmAP2-17 CDS under salt stress showed enhanced tolerance to salt. Moreover, the expression of general stress marker genes and important salt stress signaling genes, including RD29A, ABI5, SOS3, AtHKT1, and RBohF, were upregulated in SmAP2-17-overexpressed lines, with expression levels consistent with that of SmAP2-17 or optimized SmAP2-17. Promoter activity analysis using dual luciferase analysis showed that SmAP2-17 could bind the promoters of SOS3 and ABI5 to activate their expression, which plays a key role in regulating salt tolerance. CONCLUSIONS The SmAP2-17 gene isolated from Salix matsudana (Koidz.) is a positive regulator that improves the resistance of transgenic plants to salt stress by upregulating SOS3 and ABI5 genes. This study provides a potential functional gene resource for future generation of salt-resistant Salix lines by genetic engineering.
Collapse
Affiliation(s)
- Yanhong Chen
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Yuanhao Dai
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Yixin Li
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Jie Yang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Yuna Jiang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Guoyuan Liu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Chunmei Yu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Zhong
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Bolin Lian
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zhang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
8
|
Niu H, Wang H, Zhao B, He J, Yang L, Ma X, Cao J, Li Z, Shen J. Exogenous auxin-induced ENHANCER OF SHOOT REGENERATION 2 (ESR2) enhances femaleness of cucumber via activating CsACS2 gene. HORTICULTURE RESEARCH 2022; 9:uhab085. [PMID: 35048108 PMCID: PMC9039497 DOI: 10.1093/hr/uhab085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Cucumber (Cucumis sativus L.) is a model for the study of sex differentiation in the last two decades. In cucumber, sex differentiation is mainly controlled by genetic material, but plant growth regulators can also influence or even change it. However, the effect of exogenous auxin application on cucumber sex differentiation is mostly limited in physiological level. In this study, we explored the effects of different exogenous auxin concentrations on the varieties with different mutant sex-controlling genotypes and found that there was a dosage effect of exogenous indole-3-acetic acid (IAA) on the enhancement of cucumber femaleness. Several ACC synthetase (ACS) family members could directly respond to the induction of exogenous IAA to improve endogenous ethylene synthesis, and this process can be independent on the previously identified sex-related ACC oxidase CsACO2. We further demonstrated that ENHANCER OF SHOOT REGENERATION 2 (ESR2), responding to the induction of exogenous auxin, could directly activate CsACS2 expression by combining the ERE cis-acting element regions in the promoter, and then increase endogenous ethylene content, which may induce femaleness. These findings reveal that exogenous auxin improves cucumber femaleness via inducing sex-controlling gene and promoting ethylene synthesis.
Collapse
Affiliation(s)
- Huanhuan Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Hu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bosi Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao He
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Xiongfeng Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Nonda Road 1, Changsha 410128, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junjun Shen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Chen H, Hu L, Wang L, Wang S, Cheng X. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (Vigna radiata L.). J Appl Genet 2022; 63:223-236. [PMID: 34989979 DOI: 10.1007/s13353-021-00675-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Mung bean (Vigna radiata L. Wilczek) is an economically important grain legume crop in Asia, with high nutritional quality and potential in other parts of the world particularly arid and semiarid regions. Considering the potential adverse effects of drought, high salt, and other abiotic stresses on crop yield, significant efforts have been made to understand the underlying molecular mechanisms of tolerance to these abiotic stresses in legumes. In this study, a total of 186 putative AP2/ERF genes were identified, which were named VrERF1-186. These VrERF genes were classified into four main subfamilies according to the number of AP2 domains and sequence similarity, including 24 AP2 gene members, 81 ERF gene members, 79 DREB gene members, and 2 RAV members. VrERF genes are scattered across all 11 chromosomes and form small gene clusters on chromosomes due to segmental or tandem duplication. Promoter analysis revealed various cis-acting elements related to light, hormones, and stress responsiveness processes. The expression profiles of the VrERF genes in tissues during development and in response to abiotic stresses were assessed by transcriptome sequencing, and the selected reference genes were validated by qRT-PCR. A total of 174 VrERF genes were expressed in at least one of five tissues, while others showed distinct expression patterns in different tissues or under specific abiotic stress treatments, which indicates that VrERF genes are involved in developmental and environmental stress responses in V. radiata. In conclusion, the genome localization, genome-wide characterization, gene duplication, phylogenetic relationships, and expression pattern of VrERF genes in V. radiata were analyzed, and these results will lay the foundation for further functional analysis of these genes and improve stress tolerance to adverse conditions in plants.
Collapse
Affiliation(s)
- Honglin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Liangliang Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suhua Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuzhen Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
10
|
He S, Hao X, He S, Hao X, Chen X. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in sweet potato. BMC Genomics 2021; 22:748. [PMID: 34656106 PMCID: PMC8520649 DOI: 10.1186/s12864-021-08043-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background In recent years, much attention has been given to AP2/ERF transcription factors because they play indispensable roles in many biological processes, such as plant development and biotic and abiotic stress responses. Although AP2/ERFs have been thoroughly characterised in many plant species, the knowledge about this family in the sweet potato, which is a vital edible and medicinal crop, is still limited. In this study, a comprehensive genome-wide investigation was conducted to characterise the AP2/ERF gene family in the sweet potato. Results Here, 198 IbAP2/ERF transcription factors were obtained. Phylogenetic analysis classified the members of the IbAP2/ERF family into three groups, namely, ERF (172 members), AP2 (21 members) and RAV (5 members), which was consistent with the analysis of gene structure and conserved protein domains. The evolutionary characteristics of these IbAP2/ERF genes were systematically investigated by analysing chromosome location, conserved protein motifs and gene duplication events, indicating that the expansion of the IbAP2/ERF gene family may have been caused by tandem duplication. Furthermore, the analysis of cis-acting elements in IbAP2/ERF gene promoters implied that these genes may play crucial roles in plant growth, development and stress responses. Additionally, the available RNA-seq data and quantitative real-time PCR (qRT-PCR) were used to investigate the expression patterns of IbAP2/ERF genes during sweet potato root development as well as under multiple forms of abiotic stress, and we identified several developmental stage-specific and stress-responsive IbAP2/ERF genes. Furthermore, g59127 was differentially expressed under various stress conditions and was identified as a nuclear protein, which was in line with predicted subcellular localization results. Conclusions This study originally revealed the characteristics of the IbAP2/ERF superfamily and provides valuable resources for further evolutionary and functional investigations of IbAP2/ERF genes in the sweet potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08043-w.
Collapse
Affiliation(s)
- Shutao He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaomeng Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuli He
- Jining College Affiliated Senior High School, Jining, 272004, China
| | - Xiaoge Hao
- Tsinghua University, Beijing, 100084, China
| | | |
Collapse
|
11
|
Post-Embryonic Lateral Organ Development and Adaxial-Abaxial Polarity Are Regulated by the Combined Effect of ENHANCER OF SHOOT REGENERATION 1 and WUSCHEL in Arabidopsis Shoots. Int J Mol Sci 2021; 22:ijms221910621. [PMID: 34638958 PMCID: PMC8508843 DOI: 10.3390/ijms221910621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
The development of above-ground lateral organs is initiated at the peripheral zone of the shoot apical meristem (SAM). The coordination of cell fate determination and the maintenance of stem cells are achieved through a complex regulatory network comprised of transcription factors. Two AP2/ERF transcription factor family genes, ESR1/DRN and ESR2/DRNL/SOB/BOL, regulate cotyledon and flower formation and de novo organogenesis in tissue culture. However, their roles in post-embryonic lateral organ development remain elusive. In this study, we analyzed the genetic interactions among SAM-related genes, WUS and STM, two ESR genes, and one of the HD-ZIP III members, REV, whose protein product interacts with ESR1 in planta. We found that esr1 mutations substantially enhanced the wus and stm phenotypes, which bear a striking resemblance to those of the wus rev and stm rev double mutants, respectively. Aberrant adaxial–abaxial polarity is observed in wus esr1 at relatively low penetrance. On the contrary, the esr2 mutation partially suppressed stm phenotypes in the later vegetative phase. Such complex genetic interactions appear to be attributed to the distinct expression pattern of two ESR genes because the ESR1 promoter-driving ESR2 is capable of rescuing phenotypes caused by the esr1 mutation. Our results pose the unique genetic relevance of ESR1 and the SAM-related gene interactions in the development of rosette leaves.
Collapse
|
12
|
Lazcano-Ramírez HG, Gamboa-Becerra R, García-López IJ, Montes RAC, Díaz-Ramírez D, de la Vega OM, Ordaz-Ortíz JJ, de Folter S, Tiessen-Favier A, Winkler R, Marsch-Martínez N. Effects of the Developmental Regulator BOLITA on the Plant Metabolome. Genes (Basel) 2021; 12:genes12070995. [PMID: 34209960 PMCID: PMC8305173 DOI: 10.3390/genes12070995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factors are important regulators of gene expression. They can orchestrate the activation or repression of hundreds or thousands of genes and control diverse processes in a coordinated way. This work explores the effect of a master regulator of plant development, BOLITA (BOL), in plant metabolism, with a special focus on specialized metabolism. For this, we used an Arabidopsis thaliana line in which the transcription factor activity can be induced. Fingerprinting metabolomic analyses of whole plantlets were performed at different times after induction. After 96 h, all induced replicas clustered as a single group, in contrast with all controls which did not cluster. Metabolomic analyses of shoot and root tissues enabled the putative identification of differentially accumulated metabolites in each tissue. Finally, the analysis of global gene expression in induced vs. non-induced root samples, together with enrichment analyses, allowed the identification of enriched metabolic pathways among the differentially expressed genes and accumulated metabolites after the induction. We concluded that the induction of BOL activity can modify the Arabidopsis metabolome. Future work should investigate whether its action is direct or indirect, and the implications of the metabolic changes for development regulation and bioprospection.
Collapse
Affiliation(s)
- Hugo Gerardo Lazcano-Ramírez
- Cell Identity Laboratory, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (H.G.L.-R.); (D.D.-R.)
| | - Roberto Gamboa-Becerra
- Laboratory of Biochemical and Instrumental Analysis, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico;
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico
| | - Irving J. García-López
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (I.J.G.-L.); (A.T.-F.)
| | - Ricardo A. Chávez Montes
- Advanced Genomics Unit (UGA-Langebio), CINVESTAV-IPN, Irapuato 36824, Mexico; (R.A.C.M.); (O.M.d.l.V.); (J.J.O.-O.); (S.d.F.)
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - David Díaz-Ramírez
- Cell Identity Laboratory, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (H.G.L.-R.); (D.D.-R.)
| | - Octavio Martínez de la Vega
- Advanced Genomics Unit (UGA-Langebio), CINVESTAV-IPN, Irapuato 36824, Mexico; (R.A.C.M.); (O.M.d.l.V.); (J.J.O.-O.); (S.d.F.)
| | - José Juan Ordaz-Ortíz
- Advanced Genomics Unit (UGA-Langebio), CINVESTAV-IPN, Irapuato 36824, Mexico; (R.A.C.M.); (O.M.d.l.V.); (J.J.O.-O.); (S.d.F.)
| | - Stefan de Folter
- Advanced Genomics Unit (UGA-Langebio), CINVESTAV-IPN, Irapuato 36824, Mexico; (R.A.C.M.); (O.M.d.l.V.); (J.J.O.-O.); (S.d.F.)
| | - Axel Tiessen-Favier
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (I.J.G.-L.); (A.T.-F.)
| | - Robert Winkler
- Laboratory of Biochemical and Instrumental Analysis, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico;
- Correspondence: (R.W.); (N.M.-M.); Tel.: +52-(462)-623-9635 (R.W.); +52-462-623-9671 (N.M.-M.)
| | - Nayelli Marsch-Martínez
- Cell Identity Laboratory, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (H.G.L.-R.); (D.D.-R.)
- Correspondence: (R.W.); (N.M.-M.); Tel.: +52-(462)-623-9635 (R.W.); +52-462-623-9671 (N.M.-M.)
| |
Collapse
|
13
|
Zhang J, Shi SZ, Jiang Y, Zhong F, Liu G, Yu C, Lian B, Chen Y. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow ( Salix matsudana). PeerJ 2021; 9:e11076. [PMID: 33954030 PMCID: PMC8051338 DOI: 10.7717/peerj.11076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
AP2/ERF transcription factors (TFs) play indispensable roles in plant growth, development, and especially in various abiotic stresses responses. The AP2/ERF TF family has been discovered and classified in more than 50 species. However, little is known about the AP2/ERF gene family of Chinese willow (Salix matsudana), which is a tetraploid ornamental tree species that is widely planted and is also considered as a species that can improve the soil salinity of coastal beaches. In this study, 364 AP2/ERF genes of Salix matsudana (SmAP2/ERF) were identified depending on the recently produced whole genome sequencing data of Salix matsudana. These genes were renamed according to the chromosomal location of the SmAP2/ERF genes. The SmAP2/ERF genes included three major subfamilies: AP2 (55 members), ERF (301 members), and RAV (six members) and two Soloist genes. Genes’ structure and conserved motifs were analyzed in SmAP2/ERF family members, and introns were not found in most genes of the ERF subfamily, some unique motifs were found to be important for the function of SmAP2/ERF genes. Syntenic relationships between the SmAP2/ERF genes and AP2/ERF genes from Populus trichocarpa and Salix purpurea showed that Salix matsudana is genetically more closely related to Populus trichocarpa than to Salix purpurea. Evolution analysis on paralog gene pairs suggested that progenitor of S. matsudana originated from hybridization between two different diploid salix germplasms and underwent genome duplication not more than 10 Mya. RNA sequencing results demonstrated the differential expression patterns of some SmAP2/ERF genes under salt stress and this information can help reveal the mechanism of salt tolerance regulation in Salix matsudana.
Collapse
Affiliation(s)
- Jian Zhang
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu, China
| | - Shi Zheng Shi
- Jiangsu Academy of Forestry, Nanjing, Jiangsu, China
| | - Yuna Jiang
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu, China
| | - Fei Zhong
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu, China
| | - Guoyuan Liu
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu, China
| | - Chunmei Yu
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu, China
| | - Bolin Lian
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu, China
| | - Yanhong Chen
- Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Pei Y, Zhang J, Wu P, Ye L, Yang D, Chen J, Li J, Hu Y, Zhu X, Guo X, Zhang T. GoNe encoding a class VIIIb AP2/ERF is required for both extrafloral and floral nectary development in Gossypium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1116-1127. [PMID: 33666289 DOI: 10.1111/tpj.15223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The floral nectary, first recognized and described by Carl Linnaeus, is a remarkable organ that serves to provide carbohydrate-rich nectar to visiting pollinators in return for gamete transfer between flowers. Therefore, the nectary has indispensable biological significance in plant reproduction and even in evolution. Only two genes, CRC and STY, have been reported to regulate floral nectary development. However, it is still unknown what genes contribute to extrafloral nectary development. Here, we report that a nectary development gene in Gossypium (GoNe), annotated as an APETALA 2/ethylene-responsive factor (AP2/ERF), is responsible for the formation of both floral and extrafloral nectaries. GoNe plants that are silenced via virus-induced gene silencing technology and/or knocked out by Cas9 produce a nectariless phenotype. Point mutation and gene truncation simultaneously in duplicated genes Ne1 Ne2 lead to impaired nectary development in tetraploid cotton. There is no difference in the expression of the CRC and STY genes between the nectary TM-1 and the nectariless MD90ne in cotton. Therefore, the GoNe gene responsible for the formation of floral and extrafloral nectaries may be independent of CRC and STY. A complex mechanism might exist that restricts the nectary to a specific position with different genetic factors. Characterization of these target genes regulating nectary production has provided insights into the development, evolution, and function of nectaries and insect-resistant breeding.
Collapse
Affiliation(s)
- Yanfei Pei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Peng Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Duofeng Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaoping Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Glowa D, Comelli P, Chandler JW, Werr W. Clonal sector analysis and cell ablation confirm a function for DORNROESCHEN-LIKE in founder cells and the vasculature in Arabidopsis. PLANTA 2021; 253:27. [PMID: 33420666 PMCID: PMC7794208 DOI: 10.1007/s00425-020-03545-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/20/2020] [Indexed: 06/02/2023]
Abstract
Inducible lineage analysis and cell ablation via conditional toxin expression in cells expressing the DORNRÖSCHEN-LIKE transcription factor represent an effective and complementary adjunct to conventional methods of functional gene analysis. Classical methods of functional gene analysis via mutational and expression studies possess inherent limitations, and therefore, the function of a large proportion of transcription factors remains unknown. We have employed two complementary, indirect methods to obtain functional information for the AP2/ERF transcription factor DORNRÖSCHEN-LIKE (DRNL), which is dynamically expressed in flowers and marks lateral organ founder cells. An inducible, two-component Cre-Lox system was used to express beta-glucuronidase GUS in cells expressing DRNL, to perform a sector analysis that reveals lineages of cells that transiently expressed DRNL throughout plant development. In a complementary approach, an inducible system was used to ablate cells expressing DRNL using diphtheria toxin A chain, to visualise the phenotypic consequences. These complementary analyses demonstrate that DRNL functionally marks founder cells of leaves and floral organs. Clonal sectors also included the vasculature of the leaves and petals, implicating a previously unidentified role for DRNL in provasculature development, which was confirmed in cotyledons by closer analysis of drnl mutants. Our findings demonstrate that inducible gene-specific lineage analysis and cell ablation via conditional toxin expression represent an effective and informative adjunct to conventional methods of functional gene analysis.
Collapse
Affiliation(s)
- Dorothea Glowa
- Developmental Biology, Institute of Zoology, Cologne Biocenter, Cologne University, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - Petra Comelli
- Developmental Biology, Institute of Zoology, Cologne Biocenter, Cologne University, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - John W Chandler
- Developmental Biology, Institute of Zoology, Cologne Biocenter, Cologne University, Zülpicher Straße 47b, 50674, Cologne, Germany
| | - Wolfgang Werr
- Developmental Biology, Institute of Zoology, Cologne Biocenter, Cologne University, Zülpicher Straße 47b, 50674, Cologne, Germany.
| |
Collapse
|
16
|
Cerbantez-Bueno VE, Zúñiga-Mayo VM, Reyes-Olalde JI, Lozano-Sotomayor P, Herrera-Ubaldo H, Marsch-Martinez N, de Folter S. Redundant and Non-redundant Functions of the AHK Cytokinin Receptors During Gynoecium Development. FRONTIERS IN PLANT SCIENCE 2020; 11:568277. [PMID: 33117412 PMCID: PMC7575793 DOI: 10.3389/fpls.2020.568277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/17/2020] [Indexed: 05/17/2023]
Abstract
The phytohormone cytokinin is crucial for plant growth and development. The site of action of cytokinin in the plant is dependent on the expression of the cytokinin receptors. In Arabidopsis, there are three cytokinin receptors that present some overlap in expression pattern. Functional studies demonstrated that the receptors play highly redundant roles but also have specialized functions. Here, we focus on gynoecium development, which is the female reproductive part of the plant. Cytokinin signaling has been demonstrated to be important for reproductive development, positively affecting seed yield and fruit production. Most of these developmental processes are regulated by cytokinin during early gynoecium development. While some information is available, there is a gap in knowledge on cytokinin function and especially on the cytokinin receptors during early gynoecium development. Therefore, we studied the expression patterns and the role of the cytokinin receptors during gynoecium development. We found that the three receptors are expressed in the gynoecium and that they have redundant and specialized functions.
Collapse
Affiliation(s)
- Vincent E. Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Victor M. Zúñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - J. Irepan Reyes-Olalde
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | | | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
- *Correspondence: Stefan de Folter,
| |
Collapse
|
17
|
Genome-wide analysis of spatiotemporal gene expression patterns during floral organ development in Brassica rapa. Mol Genet Genomics 2019; 294:1403-1420. [PMID: 31222475 DOI: 10.1007/s00438-019-01585-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Flowering is a key agronomic trait that directly influences crop yield and quality and serves as a model system for elucidating the molecular basis that controls successful reproduction, adaptation, and diversification of flowering plants. Adequate knowledge of continuous series of expression data from the floral transition to maturation is lacking in Brassica rapa. To unravel the genome expression associated with the development of early small floral buds (< 2 mm; FB2), early large floral buds (2-4 mm; FB4), stamens (STs) and carpels (CPs), transcriptome profiling was carried out with a Br300K oligo microarray. The results showed that at least 6848 known nonredundant genes (30% of the genes of the Br300K) were differentially expressed during the floral transition from vegetative tissues to maturation. Functional annotation of the differentially expressed genes (DEGs) (fold change ≥ 5) by comparison with a close relative, Arabidopsis thaliana, revealed 6552 unigenes (4579 upregulated; 1973 downregulated), including 131 Brassica-specific and 116 functionally known floral Arabidopsis homologs. Additionally, 1723, 236 and 232 DEGs were preferentially expressed in the tissues of STs, FB2, and CPs. These DEGs also included 43 transcription factors, mainly AP2/ERF-ERF, NAC, MADS-MIKC, C2H2, bHLH, and WRKY members. The differential gene expression during flower development induced dramatic changes in activities related to metabolic processes (23.7%), cellular (22.7%) processes, responses to the stimuli (7.5%) and reproduction (1%). A relatively large number of DEGs were observed in STs and were overrepresented by photosynthesis-related activities. Subsequent analysis via semiquantitative RT-PCR, histological analysis performed with in situ hybridization of BrLTP1 and transgenic reporter lines (BrLTP promoter::GUS) of B. rapa ssp. pekinensis supported the spatiotemporal expression patterns. Together, these results suggest that a temporally and spatially regulated process of the selective expression of distinct fractions of the same genome leads to the development of floral organs. Interestingly, most of the differentially expressed floral transcripts were located on chromosomes 3 and 9. This study generated a genome expression atlas of the early floral transition to maturation that represented the flowering regulatory elements of Brassica rapa.
Collapse
|
18
|
Reyes-Olalde JI, de Folter S. Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. PLANT REPRODUCTION 2019; 32:123-136. [PMID: 30671644 DOI: 10.1007/s00497-018-00359-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/24/2018] [Indexed: 05/29/2023]
Abstract
Overview of the current understanding of the molecular mechanisms that regulate meristem activity in the CMM compared to the SAM. Meristems are undifferentiated cells responsible for post-embryonic plant development. The meristems are able to form new organs continuously by carefully balancing between stem cell proliferation and cell differentiation. The plant stem cell niche in each meristem harbors the stem cells that are important to maintain each meristem. The shoot apical meristem (SAM) produces all above-parts of a plant and the molecular mechanisms active in the SAM are actively studied since many years, and models are available. During the reproductive phase of the plant, the inflorescence meristem gives rise to floral meristems, which give rise to the flowers. During floral development, the gynoecium forms that contains a new meristem inside, called the carpel margin meristem (CMM). In Arabidopsis, the gynoecium consists out of two fused carpels, where the CMM forms along the fused carpel margins. In this review, we focus on the molecular mechanisms taking place in the CMM, and we discuss similarities and differences found in the SAM.
Collapse
Affiliation(s)
- J Irepan Reyes-Olalde
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CP 36824, Irapuato, Guanajuato, Mexico
- Universidad Politécnica del Valle de Toluca, CP 50904, Almoloya de Juárez, Estado de México, Mexico
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, CP 50180, Toluca, Estado de Mexico, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CP 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
19
|
Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, de Folter S. Gynoecium development: networks in Arabidopsis and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1447-1460. [PMID: 30715461 DOI: 10.1093/jxb/erz026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 05/27/2023]
Abstract
Life has always found a way to preserve itself. One strategy that has been developed for this purpose is sexual reproduction. In land plants, the gynoecium is considered to be at the top of evolutionary innovation, since it has been a key factor in the success of the angiosperms. The gynoecium is composed of carpels with different tissues that need to develop and differentiate in the correct way. In order to control and guide gynoecium development, plants have adapted elements of pre-existing gene regulatory networks (GRNs) but new ones have also evolved. The GRNs can interact with internal factors (e.g. hormones and other metabolites) and external factors (e.g. mechanical signals and temperature) at different levels, giving robustness and flexibility to gynoecium development. Here, we review recent findings regarding the role of cytokinin-auxin crosstalk and the genes that connect these hormonal pathways during early gynoecium development. We also discuss some examples of internal and external factors that can modify GRNs. Finally, we make a journey through the flowering plant lineage to determine how conserved are these GRNs that regulate gynoecium and fruit development.
Collapse
Affiliation(s)
- Victor M Zúñiga-Mayo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Andrea Gómez-Felipe
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, México
| |
Collapse
|
20
|
Wybouw B, De Rybel B. Cytokinin - A Developing Story. TRENDS IN PLANT SCIENCE 2019; 24:177-185. [PMID: 30446307 DOI: 10.1016/j.tplants.2018.10.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 05/21/2023]
Abstract
In the past decade tremendous advances have been made in understanding the biosynthesis, perception, and signaling pathways of the plant hormone cytokinin. It also became clear that interfering with any of these steps greatly impacts all on stages of growth and development. This has recently spurted renewed effort to understand how cytokinin signaling affects developmental processes. As a result, new insights on the role of cytokinin signaling and the downstream targets during, for example, shoot apical meristem, flower, female gametophyte, stomata and vascular development are being unraveled. In this review we aim to give a comprehensive overview of recent findings on how cytokinin influences growth and development in plants, and highlight areas for future research.
Collapse
Affiliation(s)
- Brecht Wybouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
21
|
Lazcano-Ramírez HG, Gómez-Felipe A, Díaz-Ramírez D, Durán-Medina Y, Sánchez-Segura L, de Folter S, Marsch-Martínez N. Non-destructive Plant Morphometric and Color Analyses Using an Optoelectronic 3D Color Microscope. FRONTIERS IN PLANT SCIENCE 2018; 9:1409. [PMID: 30319671 PMCID: PMC6167917 DOI: 10.3389/fpls.2018.01409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Gene function discovery in plants, as other plant science quests, is aided by tools that image, document, and measure plant phenotypes. Tools that acquire images of plant organs and tissues at the microscopic level have evolved from qualitative documentation tools, to advanced tools where software-assisted analysis of images extracts quantitative information that allows statistical analyses. They are useful to perform morphometric studies that describe plant physical characteristics and quantify phenotypes, aiding gene function discovery. In parallel, non-destructive, versatile, robust, and user friendly technologies have also been developed for surface topography analysis and quality control in the industrial manufacture sector, such as optoelectronic three-dimensional (3D) color microscopes. These microscopes combine optical lenses, electronic image sensors, motorized stages, graphics engines, and user friendly software to allow the visualization and inspection of objects of diverse sizes and shapes from different angles. This allow the integration of different automatically obtained images along the Z axis of an object, into a single image with a large depth-of-field, or a 3D model in color. In this work, we explored the performance of an optoelectronic microscope to study plant morphological phenotypes and plant surfaces in different model species. Furthermore, as a "proof-of-concept," we included the phenotypic characterization (morphometric analyses at the organ level, color, and cell size measurements) of Arabidopsis mutant leaves. We found that the microscope tested is a suitable, practical, and fast tool to routinely and precisely analyze different plant organs and tissues, producing both high-quality, sharp color images and morphometric and color data in real time. It is fully compatible with live plant tissues (no sample preparation is required) and does not require special conditions, high maintenance, nor complex training. Therefore, though barely reported in plant scientific studies, optoelectronic microscopes should emerge as convenient and useful tools for phenotypic characterization in plant sciences.
Collapse
Affiliation(s)
- Hugo G. Lazcano-Ramírez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Andrea Gómez-Felipe
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - David Díaz-Ramírez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Yolanda Durán-Medina
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Lino Sánchez-Segura
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| |
Collapse
|
22
|
Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. PLANT CELL REPORTS 2018; 37:1049-1060. [PMID: 29687169 DOI: 10.1007/s00299-018-2290-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 05/21/2023]
Abstract
We find that the DREB subfamily transcription factor, CmERF053, has a novel function to regulate the development of shoot branching and lateral root in addition to affecting abiotic stress. Dehydration-responsive element binding proteins (DREBs) are important plant transcription factors that regulate various abiotic stresses. Here, we isolated an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor from chrysanthemum (Chrysanthemum morifolium 'Jinba'), CmERF053, the expression of which was rapidly up-regulated by main stem decapitation. Phylogenetic analysis indicated that it belongs to the A-6 group of the DREB subfamily, and the subcellular localization assay confirmed that CmERF053 was a nuclear protein. Overexpression of CmERF053 in Arabidopsis exhibited positive effects of plant lateral organs, which had more shoot branching and lateral roots than did the wild type. We also found that the expression of CmERF053 in axillary buds was induced by exogenous cytokinins. These results suggested that CmERF053 may be involved in cytokinins-related shoot branching pathway. In this study, an altered auxin distribution was observed during root elongation in the seedlings of the overexpression plants. Furthermore, overexpress CmERF053 gene could enhance drought tolerance. Together, these findings indicated that CmERF053 plays crucial roles in regulating shoot branching, lateral root, and drought stress in plant. Moreover, our study provides potential application value for improving plant productivity, ornamental traits, and drought tolerance.
Collapse
Affiliation(s)
- Jing Nie
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Wen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lin Xi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Suhui Lv
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qingcui Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaping Kou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liangjun Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|