1
|
Biswal DP, Panigrahi KCS. Photoperiodic control of growth and reproduction in non-flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:851-872. [PMID: 39575895 DOI: 10.1093/jxb/erae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 04/27/2025]
Abstract
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Department of Botany, S.K.C.G. (Autonomous) College, Paralakhemundi, Gajapati, 761200, Odisha, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Nybakken L, Lee Y, Brede DA, Mageroy MH, Lind OC, Salbu B, Kashparov V, Olsen JE. Long term effects of ionising radiation in the Chernobyl Exclusion zone on DNA integrity and chemical defence systems of Scots pine (Pinus sylvestris). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166844. [PMID: 37689207 DOI: 10.1016/j.scitotenv.2023.166844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The Chernobyl Nuclear Power Plant (ChNPP) accident in 1986 resulted in extremely high levels of acute ionising radiation, that killed or damaged Scots pine (Pinus sylvestris) trees in the surrounding areas. Dead trees were cleared and buried, and new plantations established a few years later. Today, more than three decades later, gamma and beta-radiation near the ChNPP is still elevated compared with ambient levels but have decreased by a factor of 300 and 100, respectively. In the present work, Scots pine-trees growing at High (220 μGy h-1), Medium (11 μGy h-1), and Low (0.2 μGy h-1) total (internal + external) dose rates of chronically elevated ionising radiation in the Chernobyl Exclusion zone were investigated with respect to possible damage to DNA, cells and organelles, as well as potentially increased levels of phenolic and terpenoid antioxidants. Scots pine from the High and Medium radiation sites had elevated levels of DNA damage in shoot tips and needles as shown by the COMET assay, as well as increased numbers of resin ducts and subcellular abnormalities in needles. Needles from the High radiation site showed elevated levels of monoterpenes and condensed tannins compared with those from the other sites. In conclusion, more than three decades after the ChNPP accident substantial DNA damage and (sub)cellular effects, but also mobilisation of stress-protective substances possessing antioxidant activity were observed in Scots pine trees growing at elevated levels of ionising radiation. This demonstrates that the radiation levels in the Red Forest still significantly impact the plant community.
Collapse
Affiliation(s)
- Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Korea University Graduate School, Department of Plant Biotechnology, 145, Anam-ro, Seongbuk-ku, Seoul, Republic of Korea
| | - Dag A Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Melissa H Mageroy
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway
| | - Ole Christian Lind
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Valery Kashparov
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Ukrainian Institute of Agricultural Radiology (UIAR) of National University of Life and Environment Sciences of Ukraine, Kiev, Ukraine
| | - Jorunn E Olsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
3
|
Identification of Key Genes Related to Dormancy Control in Prunus Species by Meta-Analysis of RNAseq Data. PLANTS 2022; 11:plants11192469. [PMID: 36235335 PMCID: PMC9573011 DOI: 10.3390/plants11192469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Bud dormancy is a genotype-dependent mechanism observed in Prunus species in which bud growth is inhibited, and the accumulation of a specific amount of chilling (endodormancy) and heat (ecodormancy) is necessary to resume growth and reach flowering. We analyzed publicly available transcriptome data from fifteen cultivars of four Prunus species (almond, apricot, peach, and sweet cherry) sampled at endo- and ecodormancy points to identify conserved genes and pathways associated with dormancy control in the genus. A total of 13,018 genes were differentially expressed during dormancy transitions, of which 139 and 223 were of interest because their expression profiles correlated with endo- and ecodormancy, respectively, in at least one cultivar of each species. The endodormancy-related genes comprised transcripts mainly overexpressed during chilling accumulation and were associated with abiotic stresses, cell wall modifications, and hormone regulation. The ecodormancy-related genes, upregulated after chilling fulfillment, were primarily involved in the genetic control of carbohydrate regulation, hormone biosynthesis, and pollen development. Additionally, the integrated co-expression network of differentially expressed genes in the four species showed clusters of co-expressed genes correlated to dormancy stages and genes of breeding interest overlapping with quantitative trait loci for bloom time and chilling and heat requirements.
Collapse
|
4
|
Fall Applications of Ethephon Modulates Gene Networks Controlling Bud Development during Dormancy in Peach ( Prunus Persica). Int J Mol Sci 2022; 23:ijms23126801. [PMID: 35743242 PMCID: PMC9224305 DOI: 10.3390/ijms23126801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 01/04/2023] Open
Abstract
Ethephon (ET) is an ethylene-releasing plant growth regulator (PGR) that can delay the bloom time in Prunus, thus reducing the risk of spring frost, which is exacerbated by global climate change. However, the adoption of ET is hindered by its detrimental effects on tree health. Little knowledge is available regarding the mechanism of how ET shifts dormancy and flowering phenology in peach. This study aimed to further characterize the dormancy regulation network at the transcriptional level by profiling the gene expression of dormant peach buds from ET-treated and untreated trees using RNA-Seq data. The results revealed that ET triggered stress responses during endodormancy, delaying biological processes related to cell division and intercellular transportation, which are essential for the floral organ development. During ecodormancy, ET mainly impeded pathways related to antioxidants and cell wall formation, both of which are closely associated with dormancy release and budburst. In contrast, the expression of dormancy-associated MADS (DAM) genes remained relatively unaffected by ET, suggesting their conserved nature. The findings of this study signify the importance of floral organogenesis during dormancy and shed light on several key processes that are subject to the influence of ET, therefore opening up new avenues for the development of effective strategies to mitigate frost risks.
Collapse
|
5
|
Liu J, Willick IR, Hiraki H, Forand AD, Lawrence JR, Swerhone GDW, Wei Y, Ghosh S, Lee YK, Olsen JE, Usadel B, Wormit A, Günl M, Karunakaran C, Dynes JJ, Tanino KK. Cold and exogenous calcium alter Allium fistulosum cell wall pectin to depress intracellular freezing temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3807-3822. [PMID: 35298622 DOI: 10.1093/jxb/erac108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
De-methyl esterification of homogalacturonan and subsequent cross-linking with Ca2+ is hypothesized to enhance the freezing survival of cold acclimated plants by reducing the porosity of primary cell walls. To test this theory, we collected leaf epidermal peels from non- (23/18 °C) and cold acclimated (2 weeks at 12/4 °C) Japanese bunching onion (Allium fistulosum L.). Cold acclimation enhanced the temperature at which half the cells survived freezing injury by 8 °C (LT50 =-20 °C), and reduced tissue permeability by 70-fold compared with non-acclimated epidermal cells. These effects were associated with greater activity of pectin methylesterase (PME) and a reduction in the methyl esterification of homogalacturonan. Non-acclimated plants treated with 50 mM CaCl2 accumulated higher concentrations of galacturonic acid, Ca2+ in the cell wall, and a lower number of visible cell wall pores compared with that observed in cold acclimated plants. Using cryo-microscopy, we observed that 50 mM CaCl2 treatment did not lower the LT50 of non-acclimated cells, but reduced the lethal intracellular ice nucleation to temperatures observed in cold acclimated epidermal cells. We postulate that the PME-homogalacturonan-mediated reduction in cell wall porosity is integral to intracellular freezing avoidance strategies in cold acclimated herbaceous cells.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ian R Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hayato Hiraki
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Ariana D Forand
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Lawrence
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - George D W Swerhone
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Yangdou Wei
- Biology Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Supratim Ghosh
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yeon Kyeong Lee
- Department of Plant Sciences, Faculty of BioSciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn E Olsen
- Department of Plant Sciences, Faculty of BioSciences, Norwegian University of Life Sciences, Ås, Norway
| | - Björn Usadel
- RWTH Aachen University, Institute for Biology I, Aachen, Germany
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Germany
| | - Alexandra Wormit
- RWTH Aachen University, Institute for Biology I, Aachen, Germany
| | - Markus Günl
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Germany
| | | | | | - Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Production, Composition, and Ecological Function of Sweet-Basil-Seed Mucilage during Hydration. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sweet-basil (Ocimum basilicum L.) fruit/pericarp produces mucilage that engulfs the fruit and seed within minutes of hydration. Seed mucilage is produced by plant species that have adapted to arid, sandy soils. This study was conducted to determine how basil-seed mucilage improves ecological fitness. A second objective was to find ways to remove mucilage, which may interfere with commercial planting. Basil fruit/seeds were examined using light and environmental scanning electron microscopy. Columnar structures of basil mucilage rapidly unfolded from the pericarp upon initial hydration. Dilute hydrochloric acid removed the mucilage, which decreased the water content four-fold but did not inhibit seed germination in a laboratory test. Nondestructive Fourier-transform mid-infrared (FTIR) spectroscopy confirmed that the mucilage was primarily composed of hemicellulose that anchored the basil seed to resist movement. The fully hydrated seeds approached zero water potential, so the mucilage did not interfere with hydration. The seeds that were planted in growing media with mucilage had from 12 to 28% higher seedling emergence and survival percentages after 10 days than seeds without mucilage. Basil-fruit/seed mucilage provides a reservoir of loosely bound water at high water potential for seed germination and early seedling development, thus improving survivability under low moisture.
Collapse
|
7
|
Villouta C, Workmaster BA, Livingston DP, Atucha A. Acquisition of Freezing Tolerance in Vaccinium macrocarpon Ait. Is a Multi-Factor Process Involving the Presence of an Ice Barrier at the Bud Base. FRONTIERS IN PLANT SCIENCE 2022; 13:891488. [PMID: 35599888 PMCID: PMC9115472 DOI: 10.3389/fpls.2022.891488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/18/2022] [Indexed: 05/17/2023]
Abstract
Bud freezing survival strategies have in common the presence of an ice barrier that impedes the propagation of lethally damaging ice from the stem into the internal structures of buds. Despite ice barriers' essential role in buds freezing stress survival, the nature of ice barriers in woody plants is not well understood. High-definition thermal recordings of Vaccinium macrocarpon Ait. buds explored the presence of an ice barrier at the bud base in September, January, and May. Light and confocal microscopy were used to evaluate the ice barrier region anatomy and cell wall composition related to their freezing tolerance. Buds had a temporal ice barrier at the bud base in September and January, although buds were only freezing tolerant in January. Lack of functionality of vascular tissues may contribute to the impedance of ice propagation. Pith tissue at the bud base had comparatively high levels of de-methyl-esterified homogalacturonan (HG), which may also block ice propagation. By May, the ice barrier was absent, xylogenesis had resumed, and de-methyl-esterified HG reached its lowest levels, translating into a loss of freezing tolerance. The structural components of the barrier had a constitutive nature, resulting in an asynchronous development of freezing tolerance between anatomical and metabolic adaptations.
Collapse
Affiliation(s)
- Camilo Villouta
- Arnold Arboretum of Harvard University, Boston, MA, United States
| | - Beth Ann Workmaster
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - David P. Livingston
- Department of Crop and Soil Sciences, USDA-ARS and North Carolina State University, Raleigh, NC, United States
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Amaya Atucha,
| |
Collapse
|
8
|
Takahashi D, Willick IR, Kasuga J, Livingston III DP. Responses of the Plant Cell Wall to Sub-Zero Temperatures: A Brief Update. PLANT & CELL PHYSIOLOGY 2021; 62:1858-1866. [PMID: 34240199 PMCID: PMC8711693 DOI: 10.1093/pcp/pcab103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 05/04/2023]
Abstract
Our general understanding of plant responses to sub-zero temperatures focuses on mechanisms that mitigate stress to the plasma membrane. The plant cell wall receives comparatively less attention, and questions surrounding its role in mitigating freezing injury remain unresolved. Despite recent molecular discoveries that provide insight into acclimation responses, the goal of reducing freezing injury in herbaceous and woody crops remains elusive. This is likely due to the complexity associated with adaptations to low temperatures. Understanding how leaf cell walls of herbaceous annuals promote tissue tolerance to ice does not necessarily lead to understanding how meristematic tissues are protected from freezing by tissue-level barriers formed by cell walls in overwintering tree buds. In this mini-review, we provide an overview of biological ice nucleation and explain how plants control the spatiotemporal location of ice formation. We discuss how sugars and pectin side chains alleviate adhesive injury that develops at sub-zero temperatures between the matrix polysaccharides and ice. The importance of site-specific cell-wall elasticity to promote tissue expansion for ice accommodation and control of porosity to impede ice growth and promote supercooling will be presented. How specific cold-induced proteins modify plant cell walls to mitigate freezing injury will also be discussed. The opinions presented in this report emphasize the importance of a plant's developmental physiology when characterizing mechanisms of freezing survival.
Collapse
Affiliation(s)
- Daisuke Takahashi
- *Corresponding authors: Daisuke Takahashi, E-mail, ; Ian R. Willick, E-mail,
| | - Ian R Willick
- *Corresponding authors: Daisuke Takahashi, E-mail, ; Ian R. Willick, E-mail,
| | - Jun Kasuga
- Research Center for Global Agro-Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | |
Collapse
|
9
|
Coleman HD, Brunner AM, Tsai CJ. Synergies and Entanglement in Secondary Cell Wall Development and Abiotic Stress Response in Trees. FRONTIERS IN PLANT SCIENCE 2021; 12:639769. [PMID: 33815447 PMCID: PMC8018706 DOI: 10.3389/fpls.2021.639769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
A major challenge for sustainable food, fuel, and fiber production is simultaneous genetic improvement of yield, biomass quality, and resilience to episodic environmental stress and climate change. For Populus and other forest trees, quality traits involve alterations in the secondary cell wall (SCW) of wood for traditional uses, as well as for a growing diversity of biofuels and bioproducts. Alterations in wood properties that are desirable for specific end uses can have negative effects on growth and stress tolerance. Understanding of the diverse roles of SCW genes is necessary for the genetic improvement of fast-growing, short-rotation trees that face perennial challenges in their growth and development. Here, we review recent progress into the synergies and antagonisms of SCW development and abiotic stress responses, particularly, the roles of transcription factors, SCW biogenesis genes, and paralog evolution.
Collapse
Affiliation(s)
| | - Amy M. Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States
| | - Chung-Jui Tsai
- Department of Plant Biology, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Holloway T, Steinbrecher T, Pérez M, Seville A, Stock D, Nakabayashi K, Leubner-Metzger G. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. THE NEW PHYTOLOGIST 2021; 229:2179-2191. [PMID: 32970853 DOI: 10.1111/nph.16948] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 05/07/2023]
Abstract
How the biophysical properties of overlaying tissues control growth, such as the embryonic root (radicle) during seed germination, is a fundamental question. In eudicot seeds the endosperm surrounding the radicle confers coat dormancy and controls germination responses through modulation of its cell wall mechanical properties. Far less is known for grass caryopses that differ in tissue morphology. Here we report that the coleorhiza, a sheath-like organ that surrounds the radicle in grass embryos, performs the same role in the grass weed Avena fatua (common wild oat). We combined innovative biomechanical techniques, tissue ablation, microscopy, tissue-specific gene and enzyme activity expression with the analysis of hormones and oligosaccharides. The combined experimental work demonstrates that in grass caryopses the coleorhiza indeed controls germination for which we provide direct biomechanical evidence. We show that the coleorhiza becomes reinforced during dormancy maintenance and weakened during germination. Xyloglucan endotransglycosylases/hydrolases may have a role in coleorhiza reinforcement through cell wall remodelling to confer coat dormancy. The control of germination by coleorhiza-enforced dormancy in grasses is an example of the convergent evolution of mechanical restraint by overlaying tissues.
Collapse
Affiliation(s)
- Thomas Holloway
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Anne Seville
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - David Stock
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
11
|
Zhao X, Han X, Wang Q, Wang X, Chen X, Li L, Fu X, Gao D. EARLY BUD BREAK 1 triggers bud break in peach trees by regulating hormone metabolism, the cell cycle, and cell wall modifications. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3512-3523. [PMID: 32507879 PMCID: PMC7475240 DOI: 10.1093/jxb/eraa119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
In a previous study we identified EARLY BUD BREAK 1 (EBB1), an ERF transcription factor, in peach (Prunus persica var. nectarina cultivar Zhongyou 4); however, little is known of how PpEBB1 may regulate bud break. To verify the function of PpEBB1 in bud break, PpEBB1 was transiently transformed into peach buds, resulting in early bud break. Bud break occurred earlier in PpEBB1-oe poplar (Populus trichocarpa) obtained by heterologous transformation than in wild type (WT), consistent with the peach bud results, indicating that PpEBB1 can promote bud break. To explore how PpEBB1 affects bud break, differentially expressed genes (DEGs) between WT and PpEBB1-oe poplar plants were identified by RNA-sequencing. The expression of DEGs associated with hormone metabolism, cell cycle, and cell wall modifications changed substantially according to qRT-PCR. Auxin, ABA, and total trans-zeatin-type cytokinin levels were higher in the PpEBB1-oe plants than in WT plants, while the total N6-(Δ 2-isopentenyl)-adenine-type cytokinins was lower. Yeast two-hybrid and bimolecular fluorescence complementation assays verified that a cell wall modification-related protein (PpEXBL1) interacted with PpEBB1 suggesting that PpEBB1 could interact with these cell wall modification proteins directly. Overall, our study proposed a multifaceted explanation for how PpEBB1 regulates bud break and showed that PpEBB1 promotes bud break by regulating hormone metabolism, the cell cycle, and cell wall modifications.
Collapse
Affiliation(s)
- Xuehui Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Xiaolun Han
- Laiyang City Bureau of Natural Resources and Planning, Yantai, Shangdong, China
| | - Qingjie Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Xuxu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
- Correspondence: or
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai’an, Shandong, China
- Correspondence: or
| |
Collapse
|
12
|
Willick IR, Stobbs J, Karunakaran C, Tanino KK. Phenotyping Plant Cellular and Tissue Level Responses to Cold with Synchrotron-Based Fourier-Transform Infrared Spectroscopy and X-Ray Computed Tomography. Methods Mol Biol 2020; 2156:141-159. [PMID: 32607980 DOI: 10.1007/978-1-0716-0660-5_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the extensive use of synchrotron radiation in material and biomedical sciences, it has only recently been utilized to expand our understanding of plant responses to environmental stress. Recent advances have led to the development of phenotyping platforms to identify chemical and morphological differences in breeding plant material. While these methodologies are applicable for and tested with a variety of abiotic and biotic stresses, they are particularly useful as a first step to identify cold-induced chemical and morphological changes in plants. Here, we describe two methods to determine cold acclimation-induced changes at the cellular and tissue levels. First, we illustrate how to quantify and visualize changes in tissue chemistry using Fourier-transform infrared spectroscopy. Second, we describe how to nondestructively prepare, analyze, and interpret X-ray phase contrast images and render this data as two- or three-dimensional models. While these techniques utilize synchrotron radiation, the methodology and standard practices are applicable for handheld and laboratory bench-top equipment operating with conventional light sources.
Collapse
Affiliation(s)
- Ian R Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
13
|
Lundell R, Hänninen H, Saarinen T, Åström H, Zhang R. Beyond rest and quiescence (endodormancy and ecodormancy): A novel model for quantifying plant-environment interaction in bud dormancy release. PLANT, CELL & ENVIRONMENT 2020; 43:40-54. [PMID: 31472073 DOI: 10.1111/pce.13650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 05/21/2023]
Abstract
Bud dormancy of plants has traditionally been explained either by physiological growth arresting conditions in the bud or by unfavourable environmental conditions, such as non-growth-promoting low air temperatures. This conceptual dichotomy has provided the framework also for developing process-based plant phenology models. Here, we propose a novel model that in addition to covering the classical dichotomy as a special case also allows the quantification of an interaction of physiological and environmental factors. According to this plant-environment interaction suggested conceptually decades ago, rather than being unambiguous, the concept of "non-growth-promoting low air temperature" depends on the dormancy status of the plant. We parameterized the model with experimental results of growth onset for seven boreal plant species and found that based on the strength of the interaction, the species can be classified into three dormancy types, only one of which represents the traditional dichotomy. We also tested the model with four species in an independent experiment. Our study suggests that interaction of environmental and physiological factors may be involved in many such phenomena that have until now been considered simply as plant traits without any considerations of effects of the environmental factors.
Collapse
Affiliation(s)
- Robin Lundell
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, PR China
| | - Timo Saarinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Helena Åström
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, PR China
| |
Collapse
|
14
|
Blagojevic D, Lee Y, Brede DA, Lind OC, Yakovlev I, Solhaug KA, Fossdal CG, Salbu B, Olsen JE. Comparative sensitivity to gamma radiation at the organismal, cell and DNA level in young plants of Norway spruce, Scots pine and Arabidopsis thaliana. PLANTA 2019; 250:1567-1590. [PMID: 31372744 DOI: 10.1007/s00425-019-03250-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Persistent DNA damage in gamma-exposed Norway spruce, Scots pine and Arabidopsis thaliana, but persistent adverse effects at the organismal and cellular level in the conifers only. Gamma radiation emitted from natural and anthropogenic sources may have strong negative impact on plants, especially at high dose rates. Although previous studies implied different sensitivity among species, information from comparative studies under standardized conditions is scarce. In this study, sensitivity to gamma radiation was compared in young seedlings of the conifers Scots pine and Norway spruce and the herbaceous Arabidopsis thaliana by exposure to 60Co gamma dose rates of 1-540 mGy h-1 for 144 h, as well as 360 h for A. thaliana. Consistent with slightly less prominent shoot apical meristem, in the conifers growth was significantly inhibited with increasing dose rate ≥ 40 mGy h-1. Post-irradiation, the conifers showed dose-rate-dependent inhibition of needle and root development consistent with increasingly disorganized apical meristems with increasing dose rate, visible damage and mortality after exposure to ≥ 40 mGy h-1. Regardless of gamma duration, A. thaliana showed no visible or histological damage or mortality, only delayed lateral root development after ≥ 100 mGy h-1 and slightly, but transiently delayed post-irradiation reproductive development after ≥ 400 mGy h-1. In all species dose-rate-dependent DNA damage occurred following ≥ 1-10 mGy h-1 and was still at a similar level at day 44 post-irradiation. In conclusion, the persistent DNA damage (possible genomic instability) following gamma exposure in all species may suggest that DNA repair is not necessarily mobilized more extensively in A. thaliana than in Norway spruce and Scots pine, and the far higher sensitivity at the organismal and cellular level in the conifers indicates lower tolerance to DNA damage than in A. thaliana.
Collapse
Affiliation(s)
- Dajana Blagojevic
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - YeonKyeong Lee
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Dag A Brede
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Ole Christian Lind
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Igor Yakovlev
- Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway
| | - Knut Asbjørn Solhaug
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | | | - Brit Salbu
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Jorunn E Olsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
15
|
Blagojevic D, Lee Y, Xie L, Brede DA, Nybakken L, Lind OC, Tollefsen KE, Salbu B, Solhaug KA, Olsen JE. No evidence of a protective or cumulative negative effect of UV-B on growth inhibition induced by gamma radiation in Scots pine (Pinus sylvestris) seedlings. Photochem Photobiol Sci 2019; 18:1945-1962. [PMID: 31305802 DOI: 10.1039/c8pp00491a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exposure to ambient UV-B radiation may prime protective responses towards various stressors in plants, though information about interactive effects of UV-B and gamma radiation is scarce. Here, we aimed to test whether UV-B exposure could prime acclimatisation mechanisms contributing to tolerance to low-moderate gamma radiation levels in Scots pine seedlings, and concurrently whether simultaneous UV-B and gamma exposure may have an additive adverse effect on seedlings that had previously not encountered either of these stressors. Responses to simultaneous UV-B (0.35 W m-2) and gamma radiation (10.2-125 mGy h-1) for 6 days with or without UV-B pre-exposure (0.35 W m-2, 4 days) were studied across various levels of organisation, as compared to effects of either radiation type. In contrast to UV-B, and regardless of UV-B presence, gamma radiation at ≥42.9 mGy h-1 caused increased formation of reactive oxygen species and reduced shoot length, and reduced root length at 125 mGy h-1. In all experiments there was a gamma dose rate-dependent increase in DNA damage at ≥10.8 mGy h-1, generally with additional UV-B-induced damage. Gamma-induced growth inhibition and gamma- and UV-B-induced DNA damage were still visible 44 days post-irradiation, even at 20.7 mGy h-1, probably due to genomic instability, but this was reversed after 8 months. In conclusion, there was no evidence of a protective effect of UV-B on gamma-induced growth inhibition and DNA damage in Scots pine, and no additive adverse effect of gamma and UV-B radiation on growth in spite of the additional UV-B-induced DNA damage.
Collapse
Affiliation(s)
- Dajana Blagojevic
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Willick IR, Gusta LV, Fowler DB, Tanino KK. Ice segregation in the crown of winter cereals: Evidence for extraorgan and extratissue freezing. PLANT, CELL & ENVIRONMENT 2019; 42:701-716. [PMID: 30291635 DOI: 10.1111/pce.13454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 05/20/2023]
Abstract
Meaningful improvements in winter cereal cold hardiness requires a complete model of freezing behaviour in the critical crown organ. Magnetic resonance microimaging diffusion-weighted experiments provided evidence that cold acclimation decreased water content and mobility in the vascular transition zone (VTZ) and the intermediate zone in rye (Secale cereale L. Hazlet) compared with wheat (Triticum aestivum L. Norstar). Differential thermal analysis, ice nucleation, and localization studies identified three distinct exothermic events. A high-temperature exotherm (-3°C to -5°C) corresponded with ice formation and high ice-nucleating activity in the leaf sheath encapsulating the crown. A midtemperature exotherm (-6°C and -8°C) corresponded with cavity ice formation in the VTZ but an absence of ice in the shoot apical meristem (SAM). A low-temperature exotherm corresponded with SAM injury and the killing temperature in wheat (-21°C) and rye (-27°C). The SAM had lower ice-nucleating activity and freezing survival compared with the VTZ when frozen in vitro. The intermediate zone was hypothesized to act as a barrier to ice growth into the SAM. Higher cold hardiness of rye compared with wheat was associated with higher VTZ and intermediate zone desiccation resulting in the formation of ice barriers surrounding the SAM.
Collapse
Affiliation(s)
- Ian R Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lawrence V Gusta
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - D Brian Fowler
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
Sun Y, Huang D, Chen X. Dynamic regulation of plasmodesmatal permeability and its application to horticultural research. HORTICULTURE RESEARCH 2019; 6:47. [PMID: 30962940 PMCID: PMC6441653 DOI: 10.1038/s41438-019-0129-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/10/2023]
Abstract
Effective cell-to-cell communication allows plants to fine-tune their developmental processes in accordance with the prevailing environmental stimuli. Plasmodesmata (PD) are intercellular channels that span the plant cell wall and serve as cytoplasmic bridges to facilitate efficient exchange of signaling molecules between neighboring cells. The identification of PD-associated proteins and the subsequent elucidation of the regulation of PD structure have provided vital insights into the role of PD architecture in enforcing crucial cellular processes, including callose deposition, ER-Golgi-based secretion, cytoskeleton dynamics, membrane lipid raft organization, chloroplast metabolism, and cell wall formation. In this review, we summarize the emerging discoveries from recent studies that elucidated the regulatory mechanisms involved in PD biogenesis and the dynamics of PD opening-closure. Retrospectively, PD-mediated cell-to-cell communication has been implicated in diverse cellular and physiological processes that are fundamental for the development of horticultural plants. The potential application of PD biotechnological engineering represents a powerful approach for improving agronomic traits in horticultural crops in the future.
Collapse
Affiliation(s)
- Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Dingquan Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|