1
|
Chavhan RL, Jaybhaye SG, Hinge VR, Deshmukh AS, Shaikh US, Jadhav PK, Kadam US, Hong JC. Emerging applications of gene editing technologies for the development of climate-resilient crops. Front Genome Ed 2025; 7:1524767. [PMID: 40129518 PMCID: PMC11931038 DOI: 10.3389/fgeed.2025.1524767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 03/26/2025] Open
Abstract
Climate change threatens global crop yield and food security due to rising temperatures, erratic rainfall, and increased abiotic stresses like drought, heat, and salinity. Gene editing technologies, including CRISPR/Cas9, base editors, and prime editors, offer precise tools for enhancing crop resilience. This review explores the mechanisms of these technologies and their applications in developing climate-resilient crops to address future challenges. While CRISPR/enables targeted modifications of plant DNA, the base editors allow for direct base conversion without inducing double-stranded breaks, and the prime editors enable precise insertions, deletions, and substitutions. By understanding and manipulating key regulator genes involved in stress responses, such as DREB, HSP, SOS, ERECTA, HsfA1, and NHX; crop tolerance can be enhanced against drought, heat, and salt stress. Gene editing can improve traits related to root development, water use efficiency, stress response pathways, heat shock response, photosynthesis, membrane stability, ion homeostasis, osmotic adjustment, and oxidative stress response. Advancements in gene editing technologies, integration with genomics, phenomics, artificial intelligence (AI)/machine learning (ML) hold great promise. However, challenges such as off-target effects, delivery methods, and regulatory barriers must be addressed. This review highlights the potential of gene editing to develop climate-resilient crops, contributing to food security and sustainable agriculture.
Collapse
Affiliation(s)
- R. L. Chavhan
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - S. G. Jaybhaye
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - V. R. Hinge
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - A. S. Deshmukh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - U. S. Shaikh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - P. K. Jadhav
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - U. S. Kadam
- Division of Applied Life Science (BK21 Four), Division of Life Science, Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - J. C. Hong
- Division of Applied Life Science (BK21 Four), Division of Life Science, Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Jahan T, Huda MN, Zhang K, He Y, Lai D, Dhami N, Quinet M, Ali MA, Kreft I, Woo SH, Georgiev MI, Fernie AR, Zhou M. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnol Adv 2025; 79:108520. [PMID: 39855404 DOI: 10.1016/j.biotechadv.2025.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time. Plant-derived natural products such as secondary metabolites like alkaloids, terpenoids, phenolics, and phytoalexins offer promising alternatives due to their ability to enhance plant immunity and inhibit pest activity. Recent advances in molecular biology and biotechnology have improved our understanding of how these natural compounds function at the cellular level, activating specific plant defense through complex biochemical pathways regulated by various transcription factors (TFs) such as MYB, WRKY, bHLH, bZIP, NAC, and AP2/ERF. Advancements in multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, have significantly improved the understanding of the regulatory networks that govern PSM synthesis. These integrative approaches have led to the discovery of novel insights into plant responses to biotic stresses, identifying key regulatory genes and pathways involved in plant defense. Advanced technologies like CRISPR/Cas9-mediated gene editing allow precise manipulation of PSM pathways, further enhancing plant resistance. Understanding the complex interaction between PSMs, TFs, and biotic stress responses not only advances our knowledge of plant biology but also provides feasible strategies for developing crops with improved resistance to pests and diseases, contributing to sustainable agriculture and food security. This review emphasizes the crucial role of PSMs, their biosynthetic pathways, the regulatory influence of TFs, and their potential applications in enhancing plant defense and sustainability. It also highlights the astounding potential of multi-omics approaches to discover gene functions and the metabolic engineering of genes associated with secondary metabolite biosynthesis. Taken together, this review provides new insights into research opportunities for enhancing biotic stress tolerance in crops through utilizing plant secondary metabolites.
Collapse
Affiliation(s)
- Tanzim Jahan
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Nurul Huda
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqi He
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dili Lai
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Namraj Dhami
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Dhungepatan, Pokhara-30, Kaski, Nepal
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Md Arfan Ali
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Zheng Y, Cai Z, Wang Z, Maruza TM, Zhang G. The Genetics and Breeding of Heat Stress Tolerance in Wheat: Advances and Prospects. PLANTS (BASEL, SWITZERLAND) 2025; 14:148. [PMID: 39861500 PMCID: PMC11768744 DOI: 10.3390/plants14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane. The deactivation of the photosystems, reduction in photosynthesis, and inactivation of Rubisco affect the production of photo-assimilates and their allocation, consequently resulting in reduced grain yield and quality. The development of thermo-tolerant wheat varieties is the most efficient and fundamental approach for coping with global warming. This review provides a comprehensive overview of various aspects related to heat stress tolerance in wheat, including damages caused by heat stress, mechanisms of heat stress tolerance, genes or QTLs regulating heat stress tolerance, and the methodologies of breeding wheat cultivars with high heat stress tolerance. Such insights are essential for developing thermo-tolerant wheat cultivars with high yield potential in response to an increasingly warmer environment.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.C.); (Z.W.); (T.M.M.)
| |
Collapse
|
4
|
Sohail A. Methyltransferase 1 (OsMTS1) interacts with hydroxycinnamoyltransferase 1 (OsHCT1) and promotes heading by upregulating heading date 1 (Hd1). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112291. [PMID: 39414147 DOI: 10.1016/j.plantsci.2024.112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Heading date determines the distribution and yield potentials of rice, and is an ideal target for crop improvement using CRISPR/Cas9 genome editing system. In this study, we reported the loss-of-function of Methyltransferase 1 (MTS1), which promotes heading in rice. Here, we constructed knockouts and overexpression transgenic plants of OsMTS1 in ZH8015 and Nipponbare (NIP) for the first time to validate its heading date function in rice subspecies Oryza sativa ssp. Indica and O. Sativa ssp. Japonica, respectively. The OsMTS1 knockouts in ZH8015 and NIP rice significantly promoted heading date under both natural short days (NSD) and natural long days (NLD) conditions, while the overexpression of OsMTS1 significantly delayed heading date in ZH8015 and NIP rice under both NSD and NLD conditions. Likewise, the complementation transgenic plants displayed late heading date phenotype. OsMTS1 repressed heading through up-regulating Heading date 1 (Hd1) and down-regulating Early heading date 1 (Ehd1) and Heading date 3a (Hd3a). The OsMTS1 protein interacted with OsHCT1 proteins using a yeast two-hybrid (Y2H) assay. The Y2H and overexpression confirmed that OsMTS1 interacted with OsHCT1, which delayed heading by 4.7 days under NLD. Taken together, CRISPR/Cas9, genetic complementation, and overexpression results validated that OsMTS1 represses heading in Indica and Japonica rice under both NLD and NSD conditions. These results demonstrated that OsMTS1 is a useful target for breeding early maturing rice varieties by CRISPR/Cas9 gene editing of the functional allele.
Collapse
Affiliation(s)
- Amir Sohail
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| |
Collapse
|
5
|
Zhou L, Zeng X, Yang Y, Li R, Zhao Z. Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:3388. [PMID: 39683180 DOI: 10.3390/plants13233388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people. Most of these products are irreplaceable and possess special functions. They not only supply important raw materials for people's daily life and for industrial and agricultural production but also contribute to the economic growth in the tropical and subtropical regions of China. However, the modern molecular breeding of these crops is severely hampered by their biological characteristics and genetic complexity. Issues such as polyploidy, heterozygosity, vegetative propagation, long juvenile periods, and large plant sizes result in time consuming, low efficiency, and slow progress in conventional breeding of the major tropical crops. The development of genome-editing technologies has brought a new way in tropical crops breeding. As an emerging gene-editing technology, the CRISPR-Cas9 system has been widely used in plants, adopted for its higher targeting efficiency, versatility, and ease of usage. This approach has been applied in oil palm, rubber, banana, sugarcane, cassava, and papaya. This review summarized the delivery patterns, mutation detection, and application of the CRISPR-Cas9 system in tropical crop breeding, discussed the existing problems, and addressed prospects for future applications in this field, providing references to relevant studies.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
6
|
Liang Y, Yang X, Wang C, Wang Y. miRNAs: Primary modulators of plant drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154313. [PMID: 38991233 DOI: 10.1016/j.jplph.2024.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
Collapse
Affiliation(s)
- Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Huang J, Chen W, Gao L, Qing D, Pan Y, Zhou W, Wu H, Li J, Ma C, Zhu C, Dai G, Deng G. Rapid improvement of grain appearance in three-line hybrid rice via CRISPR/Cas9 editing of grain size genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:173. [PMID: 38937300 PMCID: PMC11211133 DOI: 10.1007/s00122-024-04627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/16/2024] [Indexed: 06/29/2024]
Abstract
KEY MESSAGE Genetic editing of grain size genes quickly improves three-line hybrid rice parents to increase the appearance quality and yield of hybrid rice. Grain size affects rice yield and quality. In this study, we used CRISPR/Cas9 to edit the grain size gene GW8 in the maintainer line WaitaiB (WTB) and restorer line Guanghui998 (GH998). The new slender sterile line WTEA (gw8) was obtained in the BC2F1 generation by transferring the grain mutation of the maintainer plant to the corresponding sterile line WantaiA (WTA, GW8) in the T1 generation. Two slender restorer lines, GH998E1 (gw8(II)) and GH998E2 (gw8(I)), were obtained in T1 generation. In the early stage, new sterile and restorer lines in grain mutations were created by targeted editing of GS3, TGW3, and GW8 genes. These parental lines were mated to detect the impact of grain-type mutations on hybrid rice yield and quality. Mutations in gs3, gw8, and tgw3 had a minimal impact on agronomic traits except the grain size and thousand-grain weight. The decrease in grain width in the combination mainly came from gw8/gw8, gs3/gs3 increased the grain length, gs3/gs3-gw8/gw8 had a more significant effect on the grain length, and gs3/gs3-gw8/gw8(I) contributed more to grain length than gs3/gs3-gw8/gw8(II). The heterozygous TGW3/tgw3 may not significantly increase grain length. Electron microscopy revealed that the low-chalky slender-grain variety had a cylindrical grain shape, a uniform distribution of endosperm cells, and tightly arranged starch grains. Quantitative fluorescence analysis of endospermdevelopment-related genes showed that the combination of slender grain hybrid rice caused by gs3 and gw8 mutations promoted endosperm development and improved appearance quality. An appropriate grain size mutation resulted in hybrid rice varieties with high yield and quality.
Collapse
Affiliation(s)
- Juan Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007, People's Republic of China
| | - Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007, People's Republic of China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Chonglie Ma
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007, People's Republic of China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China.
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China.
| |
Collapse
|
8
|
Alam O, Khan LU, Khan A, Salmen SH, Ansari MJ, Mehwish F, Ahmad M, Zaman QU, Wang HF. Functional characterisation of Dof gene family and expression analysis under abiotic stresses and melatonin-mediated tolerance in pitaya ( Selenicereus undatus). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23269. [PMID: 38569561 DOI: 10.1071/fp23269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/11/2024] [Indexed: 04/05/2024]
Abstract
DNA binding proteins with one finger (Dof ) transcription factors are essential for seed development and defence against various biotic and abiotic stresses in plants. Genomic analysis of Dof has not been determined yet in pitaya (Selenicereus undatus ). In this study, we have identified 26 Dof gene family members, renamed as HuDof-1 to HuDof-26 , and clustered them into seven subfamilies based on conserved motifs, domains, and phylogenetic analysis. The gene pairs of Dof family members were duplicated by segmental duplications that faced purifying selection, as indicated by the K a /K s ratio values. Promoter regions of HuDof genes contain many cis -acting elements related to phytohormones including abscisic acid, jasmonic acid, gibberellin, temperature, and light. We exposed pitaya plants to different environmental stresses and examined melatonin's influence on Dof gene expression levels. Signifcant expression of HuDof -2 and HuDof -6 were observed in different developmental stages of flower buds, flowers, pericarp, and pulp. Pitaya plants were subjected to abiotic stresses, and transcriptome analysis was carried out to identify the role of Dof gene family members. RNA-sequencing data and reverse transcription quantitative PCR-based expression analysis revealed three putative candidate genes (HuDof -1, HuDof -2, and HuDof -8), which might have diverse roles against the abiotic stresses. Our study provides a theoretical foundation for functional analysis through traditional and modern biotechnological tools for pitaya trait improvement.
Collapse
Affiliation(s)
- Osama Alam
- Department of Biotechnology, University of Science & Technology, Bannu, Khyber-Pakhtunkhwa28100, Pakistan
| | - Latif Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya572025, China; and Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops and Forestry, Hainan University, Haikou570228, China
| | - Adeel Khan
- Department of Biotechnology, University of Science & Technology, Bannu, Khyber-Pakhtunkhwa28100, Pakistan
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad244001, India
| | - Fizza Mehwish
- Department of Biotechnology, University of Science & Technology, Bannu, Khyber-Pakhtunkhwa28100, Pakistan
| | - Mushtaq Ahmad
- Department of Biotechnology, University of Science & Technology, Bannu, Khyber-Pakhtunkhwa28100, Pakistan
| | - Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya572025, China; and
| | - Hua-Feng Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya572025, China; and
| |
Collapse
|
9
|
Yamaguchi T, Ezaki K, Ito K. Exploring the landscape of public attitudes towards gene-edited foods in Japan. BREEDING SCIENCE 2024; 74:11-21. [PMID: 39246435 PMCID: PMC11375427 DOI: 10.1270/jsbbs.23047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/26/2023] [Indexed: 09/10/2024]
Abstract
The success or failure of food technologies in society depends to a large extent on the public interest, concerns, images, and expectations surrounding them. This paper delves into the landscape of public attitudes towards gene-edited foods in Japan, exploring the reasons behind the acceptance or rejection of these products. A literature review and preliminary findings from a survey conducted in Japan in 2022, aim to identify key issues crucial for evaluating societal acceptance of gene-edited foods. The study showed that the public view gene-edited foods as somewhat unnatural, but upon closer examination, significant variation in attitudes was observed among respondents. Some respondents expressed a favorable perception towards gene-edited foods, particularly those that benefit consumers, while others expressed concerns about its perceived artificiality. Moreover, a significant number of respondents displayed indifference or lack of clear perspective regarding gene-edited foods. These findings reflect the complex relationship between public attitudes, naturalness, and social acceptance of gene-edited foods. Furthermore, the study indicates the importance of paying close attention to those who refrain from expressing their viewpoints in the survey. This nuanced landscape warrants further exploration.
Collapse
Affiliation(s)
- Tomiko Yamaguchi
- College of Liberal Arts, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| | - Kazune Ezaki
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kyoko Ito
- Faculty of Engineering, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Dwivedi SL, Quiroz LF, Spillane C, Wu R, Mattoo AK, Ortiz R. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops. PLANTA 2024; 259:72. [PMID: 38386103 PMCID: PMC10884192 DOI: 10.1007/s00425-023-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
MAIN CONCLUSION Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock gene‒phytohormone‒trait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland.
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing, 101408, China
| | - Autar K Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD, 20705-2350, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen, 10, Box 190, SE 23422, Lomma, Sweden.
| |
Collapse
|
11
|
Nguyen TM, Wu PY, Chang CH, Huang LF. High-yield BMP2 expression in rice cells via CRISPR and endogenous αAmy3 promoter. Appl Microbiol Biotechnol 2024; 108:206. [PMID: 38353738 PMCID: PMC10867061 DOI: 10.1007/s00253-024-13054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Plant cells serve as versatile platforms for the production of high-value recombinant proteins. This study explored the efficacy of utilizing an endogenous αAmy3 promoter for the expression of a bioactive pharmaceutical protein, specifically the mature region of human bone morphogenetic protein 2 (hBMP2m). Utilizing a refined CRISPR/Cas9-mediated intron-targeting insertion technique, which incorporates an artificial 3' splicing site upstream of the target gene, we achieved a transformation efficiency of 13.5% in rice calli that carried the rice-codon optimized mature region of hBMP2 cDNA (rhBMP2m) in the αAmy3 intron 1. Both homozygous and heterozygous rhBMP2m knock-in rice suspension cell lines were generated. These lines demonstrated the endogenous αAmy3 promoter regulated rhBMP2m mRNA and rhBMP2m recombinant protein expression, with strongly upregulation in respond to sugar depletion. The homozygous rhBMP2m knock-in cell line yielded an impressive 21.5 μg/mL of rhBMP2m recombinant protein, accounting for 1.03% of the total soluble protein. The high-yield expression was stably maintained across two generations, indicating the genetic stability of rhBMP2m gene knock-in at the αAmy3 intron 1 locus. Additionally, the rice cell-derived rhBMP2m proteins were found to be glycosylated, capable of dimer formation, and bioactive. Our results indicate that the endogenous rice αAmy3 promoter-signal peptide-based expression system is an effective strategy for producing bioactive pharmaceutical proteins. KEY POINTS: • The endogenous αAmy3 promoter-based expression system enhanced the yield of BMP2 • The increased yield of BMP2 accounted for 1.03% of the total rice-soluble proteins • The rice-produced BMP2 showed glycosylation modifications, dimer formation, and bioactivity.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, Republic of China
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, Republic of China
| | - Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, Republic of China
| | - Chih-Hung Chang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, Republic of China
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, Republic of China
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, 320, Taiwan, Republic of China.
| |
Collapse
|
12
|
Mishra A, Pandey VP. CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnol J 2024; 19:e2300298. [PMID: 38403466 DOI: 10.1002/biot.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
World's population is elevating at an alarming rate thus, the rising demands of producing crops with better adaptability to biotic and abiotic stresses, superior nutritional as well as morphological qualities, and generation of high-yielding varieties have led to encourage the development of new plant breeding technologies. The availability and easy accessibility of genome sequences for a number of crop plants as well as the development of various genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has opened up possibilities to develop new varieties of crop plants with superior desirable traits. However, these approaches has limitation of being more expensive as well as having complex steps and time-consuming. The CRISPR/Cas genome editing system has been intensively studied for allowing versatile target-specific modifications of crop genome that fruitfully aid in the generation of novel varieties. It is an advanced and promising technology with the potential to meet hunger needs and contribute to food production for the ever-growing human population. This review summarizes the usage of novel CRISPR/Cas genome editing tool for targeted crop improvement in stress resistance, yield, quality and nutritional traits in the desired crop plants.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
13
|
Chauhan PK, Upadhyay SK, Rajput VD, Dwivedi P, Minkina T, Wong MH. Fostering plant growth performance under drought stress using rhizospheric microbes, their gene editing, and biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:41. [PMID: 38227068 DOI: 10.1007/s10653-023-01823-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, 999077, China
| |
Collapse
|
14
|
Matveeva A, Ryabchenko A, Petrova V, Prokhorova D, Zhuravlev E, Zakabunin A, Tikunov A, Stepanov G. Expression and Functional Analysis of the Compact Thermophilic Anoxybacillus flavithermus Cas9 Nuclease. Int J Mol Sci 2023; 24:17121. [PMID: 38069443 PMCID: PMC10707453 DOI: 10.3390/ijms242317121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Research on Cas9 nucleases from different organisms holds great promise for advancing genome engineering and gene therapy tools, as it could provide novel structural insights into CRISPR editing mechanisms, expanding its application area in biology and medicine. The subclass of thermophilic Cas9 nucleases is actively expanding due to the advances in genome sequencing allowing for the meticulous examination of various microorganisms' genomes in search of the novel CRISPR systems. The most prominent thermophilic Cas9 effectors known to date are GeoCas9, ThermoCas9, IgnaviCas9, AceCas9, and others. These nucleases are characterized by a varying temperature range of the activity and stringent PAM preferences; thus, further diversification of the naturally occurring thermophilic Cas9 subclass presents an intriguing task. This study focuses on generating a construct to express a compact Cas9 nuclease (AnoCas9) from the thermophilic microorganism Anoxybacillus flavithermus displaying the nuclease activity in the 37-60 °C range and the PAM preference of 5'-NNNNCDAA-3' in vitro. Here, we highlight the close relation of AnoCas9 to the GeoCas9 family of compact thermophilic Cas9 effectors. AnoCas9, beyond broadening the repertoire of Cas9 nucleases, suggests application in areas requiring the presence of thermostable CRISPR/Cas systems in vitro, such as sequencing libraries' enrichment, allele-specific isothermal PCR, and others.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grigory Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.M.); (V.P.); (E.Z.); (A.T.)
| |
Collapse
|
15
|
Upadhyay SK, Rajput VD, Kumari A, Espinosa-Saiz D, Menendez E, Minkina T, Dwivedi P, Mandzhieva S. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9321-9344. [PMID: 36413266 DOI: 10.1007/s10653-022-01433-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Daniel Espinosa-Saiz
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
| | - Esther Menendez
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
16
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
17
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
18
|
KhokharVoytas A, Shahbaz M, Maqsood MF, Zulfiqar U, Naz N, Iqbal UZ, Sara M, Aqeel M, Khalid N, Noman A, Zulfiqar F, Al Syaad KM, AlShaqhaa MA. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Funct Integr Genomics 2023; 23:283. [PMID: 37642792 DOI: 10.1007/s10142-023-01202-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Enhancing the resilience of plants to abiotic stresses, such as drought, salinity, heat, and cold, is crucial for ensuring global food security challenge in the context of climate change. The adverse effects of climate change, characterized by rising temperatures, shifting rainfall patterns, and increased frequency of extreme weather events, pose significant threats to agricultural systems worldwide. Genetic modification strategies offer promising approaches to develop crops with improved abiotic stress tolerance. This review article provides a comprehensive overview of various genetic modification techniques employed to enhance plant resilience. These strategies include the introduction of stress-responsive genes, transcription factors, and regulatory elements to enhance stress signaling pathways. Additionally, the manipulation of hormone signaling pathways, osmoprotectant accumulation, and antioxidant defense mechanisms is discussed. The use of genome editing tools, such as CRISPR-Cas9, for precise modification of target genes related to stress tolerance is also explored. Furthermore, the challenges and future prospects of genetic modification for abiotic stress tolerance are highlighted. Understanding and harnessing the potential of genetic modification strategies can contribute to the development of resilient crop varieties capable of withstanding adverse environmental conditions caused by climate change, thereby ensuring sustainable agricultural productivity and food security.
Collapse
Affiliation(s)
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan.
| | | | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usama Zafar Iqbal
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid M Al Syaad
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | |
Collapse
|
19
|
Laura M, Forti C, Barberini S, Ciorba R, Mascarello C, Giovannini A, Pistelli L, Pieracci Y, Lanteri AP, Ronca A, Minuto A, Ruffoni B, Cardi T, Savona M. Highly Efficient CRISPR/Cas9 Mediated Gene Editing in Ocimum basilicum 'FT Italiko' to Induce Resistance to Peronospora belbahrii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2395. [PMID: 37446956 DOI: 10.3390/plants12132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Ocimum basilicum (sweet basil) is an economically important aromatic herb; in Italy, approximately 1000 ha of "Genovese-type" basil are grown annually in greenhouses and open fields and are subjected to Downy Mildew (DM) disease, caused by Peronospora belbahrii, leading to huge crop losses. Mutation of the Susceptibility (S) gene DMR6 (Downy Mildew Resistant 6) has been proven to confer a broad-spectrum resistance to DM. In this work, an effective Genome Editing (GE) approach mediated by CRISPR/Cas9 in O. basilicum 'Italiko', the élite cultivar used to produce "Pesto Genovese D.O.P", was developed. A highly efficient genetic transformation method mediated by A. tumefaciens has been optimized from cotyledonary nodes, obtaining 82.2% of regenerated shoots, 84.6% of which resulted in Cas9+ plants. Eleven T0 lines presented different type of mutations in ObDMR6; 60% were indel frameshift mutations with knock-out of ObDMR6 of 'FT Italiko'. Analysis of six T1 transgene-free seedlings revealed that the mutations of T0 plants were inherited and segregated. Based on infection trials conducted on T0 plants, clone 22B showed a very low percentage of disease incidence after 14 days post infection. The aromatic profile of all in vitro edited plants was also reported; all of them showed oxygenated monoterpenes as the major fraction.
Collapse
Affiliation(s)
- Marina Laura
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Chiara Forti
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, Via Bassini 12, 20133 Milano, Italy
| | - Sara Barberini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IPSP, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Roberto Ciorba
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | - Carlo Mascarello
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Annalisa Giovannini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Paola Lanteri
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Agostina Ronca
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Andrea Minuto
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Barbara Ruffoni
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Teodoro Cardi
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBR, Institute of Biosciences and Bioresources, 80055 Portici, Italy
| | - Marco Savona
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| |
Collapse
|
20
|
Rai GK, Khanday DM, Kumar P, Magotra I, Choudhary SM, Kosser R, Kalunke R, Giordano M, Corrado G, Rouphael Y, Pandey S. Enhancing Crop Resilience to Drought Stress through CRISPR-Cas9 Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:2306. [PMID: 37375931 DOI: 10.3390/plants12122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
With increasing frequency and severity of droughts in various parts of the world, agricultural productivity may suffer major setbacks. Among all the abiotic factors, drought is likely to have one of the most detrimental effects on soil organisms and plants. Drought is a major problem for crops because it limits the availability of water, and consequently nutrients which are crucial for plant growth and survival. This results in reduced crop yields, stunted growth, and even plant death, according to the severity and duration of the drought, the plant's developmental stage, and the plant's genetic background. The ability to withstand drought is a highly complex characteristic that is controlled by multiple genes, making it one of the most challenging attributes to study, classify, and improve. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) technology has opened a new frontier in crop enhancement, revolutionizing plant molecular breeding. The current review provides a general understanding of principles as well as optimization of CRISPR system, and presents applications on genetic enhancement of crops, specifically in terms of drought resistance and yield. Moreover, we discuss how innovative genome editing techniques can aid in the identification and modification of genes conferring drought tolerance.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Danish Mushtaq Khanday
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR-Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Sadiya M Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Raviraj Kalunke
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Maria Giordano
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Sudhakar Pandey
- Indian Council of Agricultural Research, Krishi Anusandhan Bhavan II, New Delhi 110012, India
| |
Collapse
|
21
|
Shi T, Gao Y, Xu A, Wang R, Lyu M, Sun Y, Chen L, Liu Y, Luo R, Wang H, Liu J. A fast breeding strategy creates fragrance- and anthocyanin-enriched rice lines by marker-free gene-editing and hybridization. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:23. [PMID: 37313528 PMCID: PMC10248702 DOI: 10.1007/s11032-023-01369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 06/15/2023]
Abstract
As rice is a staple food for nearly half of the world's population, rice varieties with excellent agronomic traits as well as high flavor and nutritional quality such as fragrant rice and purple rice are naturally favored by the market. In the current study, we adopt a fast breeding strategy to improve the aroma and anthocyanin content in the excellent rice inbred line, F25. The strategy skillfully used the advantages of obtaining editing pure lines in T0 generation of CRISPR/Cas9 editing system and easy observation of purple character and grain shape, integrated the subsequent screening of non-transgenic lines, and the elimination of undesirable edited variants from gene-editing and cross-breeding at the same time as the separation of the progeny from the purple cross, thus expediting the breeding process. Compared with conventional breeding strategies, this strategy saves about 6-8 generations and reduces breeding costs. Firstly, we edited the OsBADH2 gene associated with rice flavor using an Agrobacterium-mediated CRISPR/Cas9 system to improve the aroma of F25. In the T0 generation, a homozygous OsBADH2-edited F25 line (F25B) containing more of the scented substance 2-AP was obtained. Then, we crossed F25B (♀) with a purple rice inbred line, P351 (♂), with high anthocyanin enrichment to improve the anthocyanin content of F25. After nearly 2.5 years of screening and identification over five generations, the undesirable variation characteristics caused by gene-editing and hybridization and the transgenic components were screened out. Finally, the improved F25 line with highly stable aroma component, 2-AP, increased anthocyanin content and no exogenous transgenic components were obtained. This study not only provides high-quality aromatic anthocyanin rice lines that meet the market demand, but also offers a reference for the comprehensive use of CRISPR/Cas9 editing technology, hybridization, and marker-assisted selection to accelerate multi-trait improvement and breeding process. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01369-1.
Collapse
Affiliation(s)
- Tiantian Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Andi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Rui Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Mingjie Lyu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300112 China
| | - Yinglu Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Luoying Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
- Tianjin Agricultural University, Tianjin, 300392 China
| | - Yuanhang Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Rong Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610213 Sichuan China
| | - Jun Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| |
Collapse
|
22
|
Farooq MA, Chattha WS, Shafique MS, Karamat U, Tabusam J, Zulfiqar S, Shakeel A. Transgenerational impact of climatic changes on cotton production. FRONTIERS IN PLANT SCIENCE 2023; 14:987514. [PMID: 37063216 PMCID: PMC10102597 DOI: 10.3389/fpls.2023.987514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Changing climatic conditions are an increasing threat to cotton production worldwide. There is a need to develop multiple stress-tolerant cotton germplasms that can adapt to a wide range of environments. For this purpose, 30 cotton genotypes were evaluated for two years under drought (D), heat (H), and drought + heat stresses (DH) under field conditions. Results indicated that plant height, number of bolls, boll weight, seed cotton yield, fiber fineness, fiber strength, fiber length, K+, K+/Na+, relative water contents (RWC), chlorophyll a and b, carotenoids, and total soluble proteins got reduced under D and H and were lowest under DH, whereas superoxidase dismutase (SOD), H2O2, Na+, GOT%, total phenolic contents, ascorbate, and flavonoids got increased for consecutive years. Correlation studies indicated that there was a positive correlation between most of the traits, but a negative correlation with H2O2 and Na+ ions. PCA and clustering analysis indicated that MNH-786, KAHKSHAN, CEMB-33, MS-71, FH-142, NIAB-820, CRS-2007, and FH-312 consistently performed better than other genotypes for most traits under stress conditions. Identified genotypes can be utilized in the future cotton breeding program to develop high-yielding, climate change-resilient cotton.
Collapse
Affiliation(s)
- Muhammad Awais Farooq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- Molecular Virology Laboratory, National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Beijing, China
| | - Waqas Shafqat Chattha
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohaib Shafique
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Umer Karamat
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Beijing, China
| | - Javaria Tabusam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Beijing, China
| | - Sumer Zulfiqar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Beijing, China
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
23
|
Das J, Kumar S, Mishra DC, Chaturvedi KK, Paul RK, Kairi A. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system. Front Genet 2023; 13:1085332. [PMID: 36699447 PMCID: PMC9868961 DOI: 10.3389/fgene.2022.1085332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
CRISPR-Cas9 system is one of the recent most used genome editing techniques. Despite having a high capacity to alter the precise target genes and genomic regions that the planned guide RNA (or sgRNA) complements, the off-target effect still exists. But there are already machine learning algorithms for people, animals, and a few plant species. In this paper, an effort has been made to create models based on three machine learning-based techniques [namely, artificial neural networks (ANN), support vector machines (SVM), and random forests (RF)] for the prediction of the CRISPR-Cas9 cleavage sites that will be cleaved by a particular sgRNA. The plant dataset was the sole source of inspiration for all of these machine learning-based algorithms. 70% of the on-target and off-target dataset of various plant species that was gathered was used to train the models. The remaining 30% of the data set was used to evaluate the model's performance using a variety of evaluation metrics, including specificity, sensitivity, accuracy, precision, F1 score, F2 score, and AUC. Based on the aforementioned machine learning techniques, eleven models in all were developed. Comparative analysis of these produced models suggests that the model based on the random forest technique performs better. The accuracy of the Random Forest model is 96.27%, while the AUC value was found to be 99.21%. The SVM-Linear, SVM-Polynomial, SVM-Gaussian, and SVM-Sigmoid models were trained, making a total of six ANN-based models (ANN1-Logistic, ANN1-Tanh, ANN1-ReLU, ANN2-Logistic, ANN2-Tanh, and ANN-ReLU) and Support Vector Machine models (SVM-Linear, SVM-Polynomial, SVM-Gaussian However, the overall performance of Random Forest is better among all other ML techniques. ANN1-ReLU and SVM-Linear model performance were shown to be better among Artificial Neural Network and Support Vector Machine-based models, respectively.
Collapse
Affiliation(s)
- Jutan Das
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjeev Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,*Correspondence: Sanjeev Kumar,
| | | | | | - Ranjit Kumar Paul
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Amit Kairi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
24
|
Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM CROPS & FOOD 2022; 13:196-217. [PMID: 35983948 PMCID: PMC9397135 DOI: 10.1080/21645698.2022.2106111] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Global climate changes cause extreme temperatures and a significant reduction in crop production, leading to food insecurity worldwide. Temperature extremes (including both heat and cold stresses) is one of the most limiting factors in plant growth and development and severely affect plant physiology, biochemical, and molecular processes. Biostimulants like melatonin (MET) have a multifunctional role that acts as a "defense molecule" to safeguard plants against the noxious effects of temperature stress. MET treatment improves plant growth and temperature tolerance by improving several defense mechanisms. Current research also suggests that MET interacts with other molecules, like phytohormones and gaseous molecules, which greatly supports plant adaptation to temperature stress. Genetic engineering via overexpression or CRISPR/Cas system of MET biosynthetic genes uplifts the MET levels in transgenic plants and enhances temperature stress tolerance. This review highlights the critical role of MET in plant production and tolerance against temperature stress. We have documented how MET interacts with other molecules to alleviate temperature stress. MET-mediated molecular breeding would be great potential in helping the adverse effects of temperature stress by creating transgenic plants.
Collapse
Affiliation(s)
- Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, Zhejiang, China
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Korea
| | | | - Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Turkey
| | - Wanmei Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Peking, China
| |
Collapse
|
25
|
Khan FS, Goher F, Zhang D, Shi P, Li Z, Htwe YM, Wang Y. Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits. FRONTIERS IN PLANT SCIENCE 2022; 13:1042828. [PMID: 36578341 PMCID: PMC9791139 DOI: 10.3389/fpls.2022.1042828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Commercially important palms (oil palm, coconut, and date palm) are widely grown perennial trees with tremendous commercial significance due to food, edible oil, and industrial applications. The mounting pressure on the human population further reinforces palms' importance, as they are essential crops to meet vegetable oil needs around the globe. Various conventional breeding methods are used for the genetic improvement of palms. However, adopting new technologies is crucial to accelerate breeding and satisfy the expanding population's demands. CRISPR/Cas9 is an efficient genome editing tool that can incorporate desired traits into the existing DNA of the plant without losing common traits. Recent progress in genome editing in oil palm, coconut and date palm are preliminarily introduced to potential readers. Furthermore, detailed information on available CRISPR-based genome editing and genetic transformation methods are summarized for researchers. We shed light on the possibilities of genome editing in palm crops, especially on the modification of fatty acid biosynthesis in oil palm. Moreover, the limitations in genome editing, including inadequate target gene screening due to genome complexities and low efficiency of genetic transformation, are also highlighted. The prospects of CRISPR/Cas9-based gene editing in commercial palms to improve sustainable production are also addressed in this review paper.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dapeng Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Peng Shi
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Zhiying Li
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yin Min Htwe
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yong Wang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| |
Collapse
|
26
|
CRISPR-Cas Genome Editing for Insect Pest Stress Management in Crop Plants. STRESSES 2022. [DOI: 10.3390/stresses2040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global crop yield and food security are being threatened by phytophagous insects. Innovative methods are required to increase agricultural output while reducing reliance on hazardous synthetic insecticides. Using the revolutionary CRISPR-Cas technology to develop insect-resistant plants appears to be highly efficient at lowering production costs and increasing farm profitability. The genomes of both a model insect, Drosophila melanogaster, and major phytophagous insect genera, viz. Spodoptera, Helicoverpa, Nilaparvata, Locusta, Tribolium, Agrotis, etc., were successfully edited by the CRISPR-Cas toolkits. This new method, however, has the ability to alter an insect’s DNA in order to either induce a gene drive or overcome an insect’s tolerance to certain insecticides. The rapid progress in the methodologies of CRISPR technology and their diverse applications show a high promise in the development of insect-resistant plant varieties or other strategies for the sustainable management of insect pests to ensure food security. This paper reviewed and critically discussed the use of CRISPR-Cas genome-editing technology in long-term insect pest management. The emphasis of this review was on the prospective uses of the CRISPR-Cas system for insect stress management in crop production through the creation of genome-edited crop plants or insects. The potential and the difficulties of using CRISPR-Cas technology to reduce pest stress in crop plants were critically examined and discussed.
Collapse
|
27
|
Naz M, Benavides-Mendoza A, Tariq M, Zhou J, Wang J, Qi S, Dai Z, Du D. CRISPR/Cas9 technology as an innovative approach to enhancing the phytoremediation: Concepts and implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116296. [PMID: 36261968 DOI: 10.1016/j.jenvman.2022.116296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation is currently an active field of research focusing chiefly on identifying and characterizing novel and high chelation action super-accumulators. In the last few years, molecular tools have been widely exploited to understand better metal absorption, translocation, cation, and tolerance mechanisms in plants. Recently more advanced CRISPR-Cas9 genome engineering technology is also employed to enhance detoxification efficiency. Further, advances in molecular science will trigger the understanding of adaptive phytoremediation ability plant production in current global warming conditions. The enhanced abilities of nucleases for genome modification can improve plant repair capabilities by modifying the genome, thereby achieving a sustainable ecosystem. The purpose of this manuscript focuses on biotechnology's fundamental principles and application to promote climate-resistant metal plants, especially the CRISPR-Cas9 genome editing system for enhancing the phytoremediation of harmful contamination and pollutants.
Collapse
Affiliation(s)
- Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| | - Adalberto Benavides-Mendoza
- Department of Horticulture, Autonomous Agricultural University Antonio Narro, 1923 Saltillo, C.P. 25315, Mexico
| | - Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy College, 54000, Lahore, Pakistan
| | - Jianyu Zhou
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| | - Jiahao Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| | - Shanshan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| |
Collapse
|
28
|
Morgan JM, Jelenska J, Hensley D, Retterer ST, Morrell-Falvey JL, Standaert RF, Greenberg JT. An efficient and broadly applicable method for transient transformation of plants using vertically aligned carbon nanofiber arrays. FRONTIERS IN PLANT SCIENCE 2022; 13:1051340. [PMID: 36507425 PMCID: PMC9728956 DOI: 10.3389/fpls.2022.1051340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Transient transformation in plants is a useful process for evaluating gene function. However, there is a scarcity of minimally perturbing methods for gene delivery that can be used on multiple organs, plant species, and non-excised tissues. We pioneered and demonstrated the use of vertically aligned carbon nanofiber (VACNF) arrays to efficiently perform transient transformation of different tissues with DNA constructs in multiple plant species. The VACNFs permeabilize plant tissue transiently to allow molecules into cells without causing a detectable stress response. We successfully delivered DNA into leaves, roots and fruit of five plant species (Arabidopsis, poplar, lettuce, Nicotiana benthamiana, and tomato) and confirmed accumulation of the encoded fluorescent proteins by confocal microscopy. Using this system, it is possible to transiently transform plant cells with both small and large plasmids. The method is successful for species recalcitrant to Agrobacterium-mediated transformation. VACNFs provide simple, reliable means of DNA delivery into a variety of plant organs and species.
Collapse
Affiliation(s)
- Jessica M Morgan
- Biophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Dale Hensley
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Scott T Retterer
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | - Robert F Standaert
- Department of Chemistry, East Tennessee State University, Johnson City, TN, United States
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Devi R, Chauhan S, Dhillon TS. Genome editing for vegetable crop improvement: Challenges and future prospects. Front Genet 2022; 13:1037091. [PMID: 36482900 PMCID: PMC9723405 DOI: 10.3389/fgene.2022.1037091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Vegetable crops are known as protective foods due to their potential role in a balanced human diet, especially for vegetarians as they are a rich source of vitamins and minerals along with dietary fibers. Many biotic and abiotic stresses threaten the crop growth, yield and quality of these crops. These crops are annual, biennial and perennial in breeding behavior. Traditional breeding strategies pose many challenges in improving economic crop traits. As in most of the cases the large number of backcrosses and stringent selection pressure is required for the introgression of the useful traits into the germplasm, which is time and labour-intensive process. Plant scientists have improved economic traits like yield, quality, biotic stress resistance, abiotic stress tolerance, and improved nutritional quality of crops more precisely and accurately through the use of the revolutionary breeding method known as clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 (Cas9). The high mutation efficiency, less off-target consequences and simplicity of this technique has made it possible to attain novel germplasm resources through gene-directed mutation. It facilitates mutagenic response even in complicated genomes which are difficult to breed using traditional approaches. The revelation of functions of important genes with the advancement of whole-genome sequencing has facilitated the CRISPR-Cas9 editing to mutate the desired target genes. This technology speeds up the creation of new germplasm resources having better agro-economical traits. This review entails a detailed description of CRISPR-Cas9 gene editing technology along with its potential applications in olericulture, challenges faced and future prospects.
Collapse
Affiliation(s)
- Ruma Devi
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | | | | |
Collapse
|
30
|
Salvi P, Varshney V, Majee M. Raffinose family oligosaccharides (RFOs): role in seed vigor and longevity. Biosci Rep 2022; 42:BSR20220198. [PMID: 36149314 PMCID: PMC9547172 DOI: 10.1042/bsr20220198] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Seed vigor and longevity are important agronomic attributes, as they are essentially associated with crop yield and thus the global economy. Seed longevity is a measure of seed viability and the most essential property in gene bank management since it affects regeneration of seed recycling. Reduced seed life or storability is a serious issue in seed storage since germplasm conservation and agricultural enhancement initiatives rely on it. The irreversible and ongoing process of seed deterioration comprises a complex gene regulatory network and altered metabolism that results in membrane damage, DNA integrity loss, mitochondrial dysregulation, protein damage, and disrupted antioxidative machinery. Carbohydrates and/or sugars, primarily raffinose family oligosaccharides (RFOs), have emerged as feasible components for boosting or increasing seed vigor and longevity in recent years. RFOs are known to perform diverse functions in plants, including abiotic and biotic stress tolerance, besides being involved in regulating seed germination, desiccation tolerance, vigor, and longevity. We emphasized and analyzed the potential impact of RFOs on seed vigor and longevity in this review. Here, we comprehensively reviewed the molecular mechanisms involved in seed longevity, RFO metabolism, and how RFO content is critical and linked with seed vigor and longevity. Further molecular basis, biotechnological approaches, and CRISPR/Cas applications have been discussed briefly for the improvement of seed attributes and ultimately crop production. Likewise, we suggest advancements, challenges, and future possibilities in this area.
Collapse
Affiliation(s)
- Prafull Salvi
- National Agri-Food Biotechnology Institute, Punjab 140308, India
| | - Vishal Varshney
- Govt. Shaheed Gend Singh College, Charama, Chhattisgarh 494337, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
31
|
Hassan MM, Yuan G, Liu Y, Alam M, Eckert CA, Tuskan GA, Golz JF, Yang X. Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies. Biotechnol J 2022; 17:e2100673. [PMID: 35766313 DOI: 10.1002/biot.202100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Precise modification of plant genomes, such as seamless insertion, deletion, or replacement of DNA sequences at a predefined site, is a challenging task. Gene targeting (GT) and prime editing are currently the best approaches for this purpose. However, these techniques are inefficient in plants, which limits their applications for crop breeding programs. Recently, substantial developments have been made to improve the efficiency of these techniques in plants. Several strategies, such as RNA donor templating, chemically modified donor DNA template, and tandem-repeat homology-directed repair, are aimed at improving GT. Additionally, improved prime editing gRNA design, use of engineered reverse transcriptase enzymes, and splitting prime editing components have improved the efficacy of prime editing in plants. These emerging strategies and existing technologies are reviewed along with various perspectives on their future improvement and the development of robust precision genome editing technologies for plants.
Collapse
Affiliation(s)
- Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Nambour, Queensland, Australia
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|
32
|
Fang Y, Yang J, Guo X, Qin Y, Zhou H, Liao S, Liu F, Qin B, Zhuang C, Li R. CRISPR/Cas9-Induced Mutagenesis of TMS5 Confers Thermosensitive Genic Male Sterility by Influencing Protein Expression in Rice (Oryza sativa L.). Int J Mol Sci 2022; 23:ijms23158354. [PMID: 35955484 PMCID: PMC9369173 DOI: 10.3390/ijms23158354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
The development of thermosensitive genic male sterile (TGMS) lines is the key to breeding two-line hybrid rice, which has been widely applied in China to increase grain yield. CRISPR/Cas9 has been widely used in genome editing to create novel mutants in rice. In the present study, a super grain quality line, GXU 47, was used to generate a new TGMS line with specific mutations in a major TGMS gene tms5 generated with CRISPR/Cas9-mediated genome editing in order to improve the rice quality of two-line hybrids. A mutagenesis efficiency level of 75% was achieved, and three homozygous T-DNA-free mutant lines were screened out. The mutants exhibited excellent thermosensitive male fertility transformation characteristics with complete male sterility at ≥24 °C and desirable male fertility at around 21 °C. Proteomic analysis based on isobaric tags for relative and absolute quantification (iTRAQ) was performed to unveil the subsequent proteomic changes. A total of 192 differentially expressed proteins (DEPs), including 35 upregulated and 157 downregulated, were found. Gene ontology (GO) analysis revealed that the DEPs were involved in a single-organism biosynthetic process, a single-organism metabolic process, oxidoreductase activity, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEPs were involved in ubiquinone and other terpenoid quinone biosynthesis, the biosynthesis of secondary metabolites, metabolic pathways, and phenylpropanoid biosynthesis. Our study shows that high mutation efficiency was achieved in both target sites, and T-DNA-free mutant lines were obtained in the T1 generation. The present study results prove that it is feasible and efficient to generate an excellent mutant line with CRISPR/Cas9, which provides a novel molecular mechanism of male sterility caused by the mutation of tms5.
Collapse
Affiliation(s)
- Yaoyu Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.F.); (J.Y.); (X.G.); (Y.Q.); (S.L.); (F.L.); (B.Q.)
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.F.); (J.Y.); (X.G.); (Y.Q.); (S.L.); (F.L.); (B.Q.)
| | - Xinying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.F.); (J.Y.); (X.G.); (Y.Q.); (S.L.); (F.L.); (B.Q.)
| | - Yufen Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.F.); (J.Y.); (X.G.); (Y.Q.); (S.L.); (F.L.); (B.Q.)
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Shanyue Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.F.); (J.Y.); (X.G.); (Y.Q.); (S.L.); (F.L.); (B.Q.)
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.F.); (J.Y.); (X.G.); (Y.Q.); (S.L.); (F.L.); (B.Q.)
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.F.); (J.Y.); (X.G.); (Y.Q.); (S.L.); (F.L.); (B.Q.)
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (C.Z.); (R.L.)
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.F.); (J.Y.); (X.G.); (Y.Q.); (S.L.); (F.L.); (B.Q.)
- Correspondence: (C.Z.); (R.L.)
| |
Collapse
|
33
|
Mahto RK, Ambika, Singh C, Chandana BS, Singh RK, Verma S, Gahlaut V, Manohar M, Yadav N, Kumar R. Chickpea Biofortification for Cytokinin Dehydrogenase via Genome Editing to Enhance Abiotic-Biotic Stress Tolerance and Food Security. Front Genet 2022; 13:900324. [PMID: 35669196 PMCID: PMC9164125 DOI: 10.3389/fgene.2022.900324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Globally more than two billion people suffer from micronutrient malnutrition (also known as "hidden hunger"). Further, the pregnant women and children in developing nations are mainly affected by micronutrient deficiencies. One of the most important factors is food insecurity which can be mitigated by improving the nutritional values through biofortification using selective breeding and genetic enhancement techniques. Chickpea is the second most important legume with numerous economic and nutraceutical properties. Therefore, chickpea production needs to be increased from the current level. However, various kind of biotic and abiotic stresses hamper global chickpea production. The emerging popular targets for biofortification in agronomic crops include targeting cytokinin dehydrogenase (CKX). The CKXs play essential roles in both physiological and developmental processes and directly impact several agronomic parameters i.e., growth, development, and yield. Manipulation of CKX genes using genome editing tools in several crop plants reveal that CKXs are involved in regulation yield, shoot and root growth, and minerals nutrition. Therefore, CKXs have become popular targets for yield improvement, their overexpression and mutants can be directly correlated with the increased yield and tolerance to various stresses. Here, we provide detailed information on the different roles of CKX genes in chickpea. In the end, we discuss the utilization of genome editing tool clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) to engineer CKX genes that can facilitate trait improvement. Overall, recent advancements in CKX and their role in plant growth, stresses and nutrient accumulation are highlighted, which could be used for chickpea improvement.
Collapse
Affiliation(s)
| | - Ambika
- Department of Genetics and Plant Breeding, UAS, Bangalore, India
| | - Charul Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - B S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Shruti Verma
- NCoE-SAM, Department of Pediatrics, KSCH, Lady Hardinge Medical College, New Delhi, India
| | - Vijay Gahlaut
- Institute of Himalayan Bioresource Technology (CSIR), Palampur, India
| | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Neelam Yadav
- Centre of Food Technology, University of Allahabad, Prayagraj, India
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
34
|
Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. FRONTIERS IN PLANT SCIENCE 2022; 13:843575. [PMID: 35463432 PMCID: PMC9024397 DOI: 10.3389/fpls.2022.843575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/08/2023]
Abstract
The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.
Collapse
Affiliation(s)
- Banavath Jayanna Naik
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | - Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Seong-Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | | | | | | | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, South Korea
| |
Collapse
|
35
|
Cheng A, Harikrishna JA, Redwood CS, Lit LC, Nath SK, Chua KH. Genetics Matters: Voyaging from the Past into the Future of Humanity and Sustainability. Int J Mol Sci 2022; 23:ijms23073976. [PMID: 35409335 PMCID: PMC8999725 DOI: 10.3390/ijms23073976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The understanding of how genetic information may be inherited through generations was established by Gregor Mendel in the 1860s when he developed the fundamental principles of inheritance. The science of genetics, however, began to flourish only during the mid-1940s when DNA was identified as the carrier of genetic information. The world has since then witnessed rapid development of genetic technologies, with the latest being genome-editing tools, which have revolutionized fields from medicine to agriculture. This review walks through the historical timeline of genetics research and deliberates how this discipline might furnish a sustainable future for humanity.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Charles S. Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Swapan K. Nath
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Correspondence: (S.K.N.); (K.H.C.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.K.N.); (K.H.C.)
| |
Collapse
|
36
|
Huang J, Gao L, Luo S, Liu K, Qing D, Pan Y, Dai G, Deng G, Zhu C. The genetic editing of GS3 via CRISPR/Cas9 accelerates the breeding of three-line hybrid rice with superior yield and grain quality. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:22. [PMID: 37309462 PMCID: PMC10248666 DOI: 10.1007/s11032-022-01290-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Grain size is one of the major traits that determine rice grain yield and quality. The GS3 gene is the first major quantitative trait locus (QTL) that was identified in regulating rice grain length and weight. It was reported that the gs3 allele with a mutation in the organ size regulation (OSR) domain of the GS3 protein produced longer grains. In this study, we used the CRISPR/Cas9 gene editing technology to introduce an edited gs3 allele into our indica maintainer line, Mei1B, to enhance its grain yield and quality. Through molecular analysis and sequencing, a homologous edited-gs3 mutant line without any transgene was obtained in the T1 generation and was named Mei2B. A superior male sterile line Mei2A was generated by backcrossing the cytoplasmic male sterile (CMS) line Mei1A with Mei2B. Mei2B had a higher grain quality and yield compared to its wild-type Mei1B. Its grain length increased by 7.9%, its length/width ratio increased from 3.89 to 4.19, TGW increased by 6.7%, and grain yield per plant increased by 14.9%. In addition, genetic improvement of other quality traits including brown rice length (6.83 mm), brown rice grain length/width ratio (3.61), matched the appearance standards set for traditional Simiao (silk seedling) type cultivars. Two restorer lines were outcrossed to both Mei1A and Mei2A to produce hybrid rice. Compared to two hybrids of Mei1A, the hybrids of Mei2A had longer grains, higher length/width ratio, TGW, and yield per plant. In addition, the hybrids of Mei2A showed a better grain appearance including better translucency, a lower chalky rice rate, and degree of chalkiness than the hybrids of Mei1A. These results demonstrated that the introduction of an elite gs3 allele into Mei1A via CRISPR/Cas9 gene editing technology led to significant genetic improvement of the rice grain. The resultant CMS line Mei2A(gs3) displayed much higher grain quality and yield than the original Mei1A. Therefore, our study demonstrated that the targeted genetic improvement via gene editing technology can enhance rice breeding, especially the breeding of three-line hybrid rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01290-z.
Collapse
Affiliation(s)
- Juan Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Lijun Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory/Guangxi Key Laboratory of Genetic Improvement of Crops, Nanning, 530007 China
| | - Shuming Luo
- Flower Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Kaiqiang Liu
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Gaoxing Dai
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Guofu Deng
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
37
|
Nguyen TM, Lu CA, Huang LF. Applications of CRISPR/Cas9 in a rice protein expression system via an intron-targeted insertion approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111132. [PMID: 35067302 DOI: 10.1016/j.plantsci.2021.111132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The sugar starvation-inducible rice αAmy3 promoter and signal peptide are widely used to produce valuable recombinant proteins in rice suspension culture cells. Conventionally, the recombinant gene expression cassette is inserted into the genome at random locations by Agrobacterium- or particle bombardment-mediated transformation. CRISPR/Cas9 gene editing enables gene insertion at a precise target site in the genome. In this study the CRISPR/Cas9 approach was modified for intron-targeted insertion by adding an artificial 3' splicing site upstream of the recombinant gene. Knock-in transgenic rice cell lines containing the recombinant GFP gene inserted in intron 1 of αAmy3 were generated. The endogenous αAmy3 promoter regulated recombinant gene expression and the αAmy3 signal peptide directed secretion of the recombinant GFP protein into the culture medium. In addition, the recombinant GFP protein was localized in amyloplasts, identical to the subcellular localization of endogenous αAmy3 reported previously. This modified CRISPR/Cas9 knock-in approach is simple and highly efficient, and the recombinant gene insertion frequency attained 12.5%. The approach can be applied in the production of pharmaceutical proteins in rice suspension cell cultures. The high efficiency of the GFP reporter gene knock-in method and the maintenance of target gene behavior also make the strategy applicable to endogenous gene functional studies in rice.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City 320, Taiwan, ROC; Department of Life Sciences, National Central University, Taoyuan City 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Taoyuan City 320, Taiwan, ROC.
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City 320, Taiwan, ROC.
| |
Collapse
|
38
|
Joo KA, Muszynski MG, Kantar MB, Wang ML, He X, Del Valle Echevarria AR. Utilizing CRISPR-Cas in Tropical Crop Improvement: A Decision Process for Fitting Genome Engineering to Your Species. Front Genet 2021; 12:786140. [PMID: 34868276 PMCID: PMC8633396 DOI: 10.3389/fgene.2021.786140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Adopting modern gene-editing technologies for trait improvement in agriculture requires important workflow developments, yet these developments are not often discussed. Using tropical crop systems as a case study, we describe a workflow broken down into discrete processes with specific steps and decision points that allow for the practical application of the CRISPR-Cas gene editing platform in a crop of interest. While we present the steps of developing genome-edited plants as sequential, in practice parts can be done in parallel, which are discussed in this perspective. The main processes include 1) understanding the genetic basis of the trait along with having the crop’s genome sequence, 2) testing and optimization of the editing reagents, development of efficient 3) tissue culture and 4) transformation methods, and 5) screening methods to identify edited events with commercial potential. Our goal in this perspective is to help any lab that wishes to implement this powerful, easy-to-use tool in their pipeline, thus aiming to democratize the technology.
Collapse
Affiliation(s)
- Kathleen A Joo
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael G Muszynski
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Ming-Li Wang
- Hawaii Agriculture Research Center, Waipahu, HI, United States
| | - Xiaoling He
- Hawaii Agriculture Research Center, Waipahu, HI, United States
| | - Angel R Del Valle Echevarria
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.,Hawaii Agriculture Research Center, Waipahu, HI, United States
| |
Collapse
|
39
|
Lassoued R, Macall DM, Smyth SJ, Phillips PWB, Hesseln H. Data challenges for future plant gene editing: expert opinion. Transgenic Res 2021; 30:765-780. [PMID: 34106390 PMCID: PMC8580900 DOI: 10.1007/s11248-021-00264-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022]
Abstract
Agricultural data in its multiple forms are ubiquitous. With progress in crop and input monitoring systems and price reductions over the past decade, data are now being captured at an unprecedented rate. Once compiled, organized and analyzed, these data are capable of providing valuable insights into much of the agri-food supply chain. While much of the focus is on precision farming, agricultural data applications coupled with gene editing tools hold the potential to enhance crop performance and global food security. Yet, digitization of agriculture is a double-edged sword as it comes with inherent security and privacy quandaries. Infrastructure, policies, and practices to better harness the value of data are still lacking. This article reports expert opinions about the potential challenges regarding the use of data relevant to the development and approval of new crop traits as well as mechanisms employed to manage and protect data. While data could be of great value, issues of intellectual property and accessibility surround many of its forms. The key finding of this research is that surveyed experts optimistically report that by 2030, the synergy of computing power and genome editing could have profound effects on the global agri-food system, but that the European Union may not participate fully in this transformation.
Collapse
Affiliation(s)
- Rim Lassoued
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Diego M. Macall
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Stuart J. Smyth
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Peter W. B. Phillips
- The Johnson Shoyama Graduate School of Public Policy, University of Saskatchewan, 101 Diefenbaker Place, Saskatoon, SK S7N 5B8 Canada
| | - Hayley Hesseln
- Department of Agricultural and Resource Economics, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
40
|
Hassan MM, Zhang Y, Yuan G, De K, Chen JG, Muchero W, Tuskan GA, Qi Y, Yang X. Construct design for CRISPR/Cas-based genome editing in plants. TRENDS IN PLANT SCIENCE 2021; 26:1133-1152. [PMID: 34340931 DOI: 10.1016/j.tplants.2021.06.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 05/06/2023]
Abstract
CRISPR construct design is a key step in the practice of genome editing, which includes identification of appropriate Cas proteins, design and selection of guide RNAs (gRNAs), and selection of regulatory elements to express gRNAs and Cas proteins. Here, we review the choices of CRISPR-based genome editors suited for different needs in plant genome editing applications. We consider the technical aspects of gRNA design and the associated computational tools. We also discuss strategies for the design of multiplex CRISPR constructs for high-throughput manipulation of complex biological processes or polygenic traits. We provide recommendations for different elements of CRISPR constructs and discuss the remaining challenges of CRISPR construct optimization in plant genome editing.
Collapse
Affiliation(s)
- Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
41
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021; 22:11753. [PMID: 34769204 PMCID: PMC8583973 DOI: 10.3390/ijms222111753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan 60000, Pakistan;
| | - Alaa T. Qusmani
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia;
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Muhammad Zubair Ghouri
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sabin Aslam
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Muhammad Salman Mubarik
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Ahmad Munir
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Qaiser Sultan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Sameer H. Qari
- Molecular Biology Central Laboratory (GMCL), Department of Biology/Genetics, Aljumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia
| |
Collapse
|
42
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms222111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits—without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
43
|
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
44
|
Syombua ED, Tripathi JN, Obiero GO, Nguu EK, Yang B, Wang K, Tripathi L. Potential applications of the CRISPR/Cas technology for genetic improvement of yam (
Dioscorea
spp.). Food Energy Secur 2021. [DOI: 10.1002/fes3.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Easter D. Syombua
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
- Centre for Biotechnology and Bioinformatics (CEBIB) University of Nairobi Nairobi Kenya
| | | | - George O. Obiero
- Centre for Biotechnology and Bioinformatics (CEBIB) University of Nairobi Nairobi Kenya
| | - Edward K. Nguu
- Department of Biochemistry University of Nairobi Nairobi Kenya
| | - Bing Yang
- Division of Plant Sciences Bond Life Sciences Center University of Missouri Columbia MO USA
- Donald Danforth Plant Science Center St. Louis MO USA
| | - Kan Wang
- Department of Agronomy Iowa State University Ames IA USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| |
Collapse
|
45
|
Zhou Z, Ford R, Bar I, Kanchana-udomkan C. Papaya ( Carica papaya L.) Flavour Profiling. Genes (Basel) 2021; 12:1416. [PMID: 34573398 PMCID: PMC8471406 DOI: 10.3390/genes12091416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
A major challenge to the papaya industry is inconsistency in fruit quality and, in particular, flavour, which is a complex trait that comprises taste perception in the mouth (sweetness, acidity, or bitterness) and aroma produced by several volatile compounds. Current commercial varieties vary greatly in their taste, likely due to historical prioritised selection for fruit appearance as well as large environmental effects. Therefore, it is important to better understand the genetic and biochemical mechanisms and biosynthesis pathways underpinning preferable flavour in order to select and breed for better tasting new commercial papaya varieties. As an initial step, objectively measurable standards of the compound profiles that provide papaya's taste and aroma, together with 'mouth feel', are required. This review presents an overview of the approaches to characterise the flavour profiles of papaya through sugar component determination, volatile compound detection, sensory panel testing, as well as genomics-based studies to identify the papaya flavour.
Collapse
Affiliation(s)
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; (Z.Z.); (I.B.); (C.K.)
| | | | | |
Collapse
|
46
|
Sami A, Xue Z, Tazein S, Arshad A, He Zhu Z, Ping Chen Y, Hong Y, Tian Zhu X, Jin Zhou K. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered 2021; 12:5814-5829. [PMID: 34506262 PMCID: PMC8808358 DOI: 10.1080/21655979.2021.1969831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In several parts of the world, the prevalence and severity of drought are predicted to increase, creating considerable pressure on global agricultural yield. Among all abiotic stresses, drought is anticipated to produce the most substantial impact on soil biota and plants, along with complex environmental impacts on other ecological systems. Being sessile, plants tend to be the least resilient to drought-induced osmotic stress, which reduces nutrient accessibility due to soil heterogeneity and limits nutrient access to the root system. Drought tolerance is a complex quantitative trait regulated by multiple genes, and it is one of the most challenging characteristics to study and classify. Fortunately, the clustered regularly interspaced short palindromic repeat (CRISPR) technology has paved the way as a new frontier in crop improvement, thereby revolutionizing plant breeding. The application of CRISPER systems has proven groundbreaking across numerous biological fields, particularly in biomedicine and agriculture. The present review highlights the principle and optimization of CRISPR systems and their implementation for crop improvement, particularly in terms of drought tolerance, yield, and domestication. Furthermore, we address the ways in which innovative genome editing tools can help recognize and modify novel genes coffering drought tolerance. We anticipate the establishment of effective strategies of crop yield improvement in water-limited regions through collaborative efforts in the near future.
Collapse
Affiliation(s)
- Abdul Sami
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Zhao Xue
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Saheera Tazein
- Pgrl CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Arshad
- Plant Physiology Lab, Quaid I Azam University, Islamabad, Pakistan
| | - Zong He Zhu
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Ya Ping Chen
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Yue Hong
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Xiao Tian Zhu
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| | - Ke Jin Zhou
- Rapeseed Cultivation and Breeding Lab, Anhui Agricultural University, Hefei, China
| |
Collapse
|
47
|
Carroll D, Creasey Krainer KM. Attitude and application: Judge a crop on its potential and not breeding technology. MOLECULAR PLANT 2021; 14:1405-1407. [PMID: 34252610 DOI: 10.1016/j.molp.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Daire Carroll
- Grow More Foundation, 25 Health Sciences Drive, Stony Brook, NY 11790, USA
| | | |
Collapse
|
48
|
Advances in Genomics Approaches Shed Light on Crop Domestication. PLANTS 2021; 10:plants10081571. [PMID: 34451616 PMCID: PMC8401213 DOI: 10.3390/plants10081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Crop domestication occurred ~10,000–12,000 years ago when humans shifted from a hunter–gatherer to an agrarian society. Crops were domesticated by selecting the traits in wild plant species that were suitable for human use. Research is crucial to elucidate the mechanisms and processes involved in modern crop improvement and breeding. Recent advances in genomics have revolutionized our understanding of crop domestication. In this review, we summarized cutting-edge crop domestication research by presenting its (1) methodologies, (2) current status, (3) applications, and (4) perspectives. Advanced genomics approaches have clarified crop domestication processes and mechanisms, and supported crop improvement.
Collapse
|
49
|
Singh PK, Gahtyari NC, Roy C, Roy KK, He X, Tembo B, Xu K, Juliana P, Sonder K, Kabir MR, Chawade A. Wheat Blast: A Disease Spreading by Intercontinental Jumps and Its Management Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:710707. [PMID: 34367228 PMCID: PMC8343232 DOI: 10.3389/fpls.2021.710707] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 05/26/2023]
Abstract
Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an important fungal disease in tropical and subtropical wheat production regions. The disease was initially identified in Brazil in 1985, and it subsequently spread to some major wheat-producing areas of the country as well as several South American countries such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to Bangladesh and Zambia via international wheat trade, threatening wheat production in South Asia and Southern Africa with the possible further spreading in these two continents. Resistance source is mostly limited to 2NS carriers, which are being eroded by newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to manage WB that resulted in increasing fungal resistance, which should be addressed by utilization of new fungicides or rotating different fungicides. Additionally, quarantine measures, cultural practices, non-fungicidal chemical treatment, disease forecasting, biocontrol etc., are also effective components of integrated WB management, which could be used in combination with varietal resistance and fungicides to obtain reasonable management of this disease.
Collapse
Affiliation(s)
- Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Navin C. Gahtyari
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora, India
| | - Chandan Roy
- Department of Plant Breeding and Genetics, BAC, Bihar Agricultural University, Sabour, India
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - B. Tembo
- Zambia Agricultural Research Institute (ZARI), Chilanga, Zambia
| | - Kaijie Xu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Muhammad R. Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
50
|
Abstract
Fruit and vegetable crops are rich in dietary fibre, vitamins and minerals, which are vital to human health. However, many biotic stressors (such as pests and diseases) and abiotic stressors threaten crop growth, quality, and yield. Traditional breeding strategies for improving crop traits include a series of backcrosses and selection to introduce beneficial traits into fine germplasm, this process is slow and resource-intensive. The new breeding technique known as clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 (Cas9) has the potential to improve many traits rapidly and accurately, such as yield, quality, disease resistance, abiotic stress tolerance, and nutritional aspects in crops. Because of its simple operation and high mutation efficiency, this system has been applied to obtain new germplasm resources via gene-directed mutation. With the availability of whole-genome sequencing data, and information about gene function for important traits, CRISPR-Cas9 editing to precisely mutate key genes can rapidly generate new germplasm resources for the improvement of important agronomic traits. In this review, we explore this technology and its application in fruit and vegetable crops. We address the challenges, existing variants and the associated regulatory framework, and consider future applications.
Collapse
|