1
|
Demiwal P, Saini PK, Kumar M, Roy P, Verma MK, Mir JI, Sircar D. The root-derived syringic acid and shoot-to-root phytohormone signaling pathways play a critical role in preventing apple scab disease. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112457. [PMID: 40049524 DOI: 10.1016/j.plantsci.2025.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/03/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Apple scab is a serious disease that has a huge economic impact. While some cultivars of apple are scab-resistant, most are not. Growing research has suggested that root-derived metabolites play a vital role in conferring resistance to aboveground pathogens through the long-distance signaling system between shoot and root. In this work, leaves of scab-resistant cultivar 'Prima' (PRM) and scab-susceptible cultivar 'Red Delicious' (RD) were challenged by Venturia inaequalis, and the resulting metabolic reprogramming in root tissues was monitored using gas chromatography-mass spectrometry-based metabolomics in time-course fashion. Metabolomics has revealed that scab fungus causes metabolic reprogramming in underground root tissue when above-ground parts (leaves) are infected. After scab infection in the above-ground leaf tissue, syringic acid is synthesized in the root tissue and transported from the root to the aerial part through vascular tissue. The increased level of reactive oxygen species and jasmonic acid (JA) across roots suggests a signaling pathway from infected leaves triggered by hydrogen peroxide (H2O2). In this study, it was found that leaf infection with scab produces H2O2. In aerial parts infected with scab, H2O2 may act as a signaling molecule to trigger JA production. By travelling from the aerial part (shoot) to the root, H2O2 and JA act as long-distance signaling molecules, stimulating magnesium uptake, and eventually enhancing phenylalanine ammonia-lyase (PAL) activity. A metabolic reprogramming of the root tissue is initiated by H2O2, JA and PAL activity. Root metabolic reprograming results in the formation of syringic acid, which travels from the roots to the aerial part through vascular tissue and helps fight scab fungal infections. The present study demonstrated that scab infection in apple leaves is associated with long distance signaling from shoot to root, in which root-derived specialized metabolites make their way to aerial parts and confer resistance to scab.
Collapse
Affiliation(s)
- Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Parikshit Kumar Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Mukund Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Mahendra Kumar Verma
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, J&K 190 005, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, J&K 190 005, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
2
|
Bashir K, Todaka D, Sako K, Ueda M, Aziz F, Seki M. Chemical application improves stress resilience in plants. PLANT MOLECULAR BIOLOGY 2025; 115:47. [PMID: 40105987 PMCID: PMC11922999 DOI: 10.1007/s11103-025-01566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
In recent years, abiotic stresses, including droughts, floods, high temperatures, and salinity, have become increasingly frequent and severe. These stresses significantly hinder crop yields and product quality, posing substantial challenges to sustainable agriculture and global food security. Simultaneously, the rapidly growing global population exacerbates the need to enhance crop production under worsening environmental conditions. Consequently, the development of effective strategies to strengthen the resilience of crop plants against high temperatures, water scarcity, and extreme environmental conditions is critical for mitigating the impacts of abiotic stress. Plants respond to these environmental challenges by reprogramming their transcriptome and metabolome. Common strategies for developing stress-tolerant plants include screening germplasm, generating transgenic crop plants, and employing genome editing techniques. Recently, chemical treatment has emerged as a promising approach to enhance abiotic stress tolerance in crops. This technique involves the application of exogenous chemical compounds that induce molecular and physiological changes, thereby providing a protective shield against abiotic stress. Forward and reverse genetic approaches have facilitated the identification of chemicals capable of modulating plant responses to abiotic stresses. These priming agents function as epigenetic regulators, agonists, or antagonists, playing essential roles in regulating stomatal closure to conserve water, managing cellular signaling through reactive oxygen species and metabolites to sustain plant growth, and activating gluconeogenesis to enhance cellular metabolism. This review summarizes recent advancements in the field of chemical priming and explores strategies to improve stress tolerance and crop productivity, thereby contributing to the enhancement of global food security.
Collapse
Grants
- 18H04791 Ministry of Education, Culture, Sports, Science and Technology
- 18H04705 Ministry of Education, Culture, Sports, Science and Technology
- 23119522 Ministry of Education, Culture, Sports, Science and Technology
- 25119724 Ministry of Education, Culture, Sports, Science and Technology
- CREST (JPMJCR13B4) the Japan Science and Technology Agency (JST)
- A-STEP (JPMJTM19BS) the Japan Science and Technology Agency (JST)
- GteX (JPMJGX23B0) the Japan Science and Technology Agency (JST)
- ASPIRE (JPMJAP24A3) Japan Society for Technology of Plasticity
Collapse
Affiliation(s)
- Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Department of Life Sciences, SBA School of Science and Engineering, , Lahore University of Management Sciences, DHA Phase 5, Lahore, Pakistan.
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara, 3327-204, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Farhan Aziz
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Life Sciences, SBA School of Science and Engineering, , Lahore University of Management Sciences, DHA Phase 5, Lahore, Pakistan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan.
| |
Collapse
|
3
|
Amirbekov A, Vrchovecká S, Říha J, Wacławek S, Ševců A, Hrabák P. Synergistic effect of Alnus glutinosa saplings and rhizosphere microorganisms on organochlorine pesticides remediation in contaminated soil. CHEMOSPHERE 2025; 373:144174. [PMID: 39892071 DOI: 10.1016/j.chemosphere.2025.144174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
The widespread use of hexachlorocyclohexanes (HCH) as pesticides has raised environmental concerns due to their persistence and toxicity. Addressing the pressing need for effective bioremediation strategies, this study explores the effects of α-, β-, δ-, and ε-HCH isomers on the growth, hormonal changes, physiological parameters and bioaccumulation in Alnus glutinosa saplings (1-year-old and 2-year-old) and bacterial communities in polluted soil. A. glutinosa saplings not only withstanded HCH exposure but also enhanced the remediation efficiency by 6.8-24.4%, suggesting an acceleration of pollutant breakdown likely mediated by root exudates positively affecting the soil microbiome. Interestingly, 1-year-old saplings demonstrated greater remediation efficiency post-pruning than unpruned 2-year-old saplings, despite the latter having a larger root biomass. The hormonal analysis indicated that HCH presence led to a reduction in abscisic acid (ABA) and an increase in jasmonic acid (JA), with the magnitude of changes being age-dependent. Salicylic acid (SA) levels increased 1-year-old and decreased in 2-year-old saplings under HCH stress. Moreover, a higher presence of lin-degrading genes in the rhizosphere of treated saplings compared to controls confirmed ongoing biodegradation processes. The outcomes help to better understand the processes involved in degradation of persistent pesticides in soil. The mechanism of in-plant isomerization and the identification of metabolites should be the focus of future research.
Collapse
Affiliation(s)
- Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic.
| | - Stanislava Vrchovecká
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, 461 17, Czech Republic
| | - Jakub Říha
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic
| | - Pavel Hrabák
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic
| |
Collapse
|
4
|
Zhang D, Wang Y, Gu Q, Liu L, Wang Z, Zhang J, Meng C, Yang J, Zhang Z, Ma Z, Wang X, Zhang Y. Cotton RLP6 Interacts With NDR1/HIN6 to Enhance Verticillium Wilt Resistance via Altering ROS and SA. MOLECULAR PLANT PATHOLOGY 2025; 26:e70052. [PMID: 39841622 PMCID: PMC11753439 DOI: 10.1111/mpp.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes. Here, we discovered a species-diversified structural variation (SV) in the promoter of receptor-like protein 6 (RLP6) that caused distinctly higher expression level of RLP6 in G. barbadense with the SV than G. hirsutum without the SV. Functional experiments showed that RLP6 is an important regulator in mediating VW resistance. Overexpressing RLP6 significantly enhanced resistance and root growth, whereas the opposite phenotype appeared in RLP6-silenced cotton. A series of experiments indicated that RLP6 regulated reactive oxygen species (ROS) and salicylic acid (SA) signalling, which induced diversified defence-related gene expression with pathogenesis-related (PR) proteins and cell wall proteins enrichments for resistance improvement. These findings could be valuable for the transfer of the G. barbadense SV locus to improve G. hirsutum VW resistance in future crop disease resistance breeding.
Collapse
Affiliation(s)
- Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Lixia Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zixu Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| |
Collapse
|
5
|
Li X, Ren B, Kou X, Hou Y, Buque AL, Gao F. Recent advances and prospects of constructed wetlands in cold climates: a review from 2013 to 2023. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44691-44716. [PMID: 38965108 DOI: 10.1007/s11356-024-34065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Constructed wetland (CW), a promising, environmentally responsible, and effective green ecological treatment technology, is actively involved in the treatment of various forms of wastewater. Low temperatures will, however, lead to issues including plant dormancy, decreased microbial activity, and ice formation in CWs, which will influence how well CWs process wastewater. Applying CWs successfully and continuously in cold areas is extremely difficult. Therefore, it is crucial to find solutions for the pressing issue of increasing the CWs' ability to process wastewater at low temperatures. This review focuses on the effect of cold climate on CWs (plants, substrates, microorganisms, removal effect of pollutants). It meticulously outlines current strategies to enhance CWs' performance under low-temperature conditions, including modifications for the improvement and optimization of the internal components (i.e., plant and substrate selection, bio-augmentation) and enhancement of the external operation conditions of CWs (such as process combination, effluent recirculation, aeration, heat preservation, and operation parameter optimization). Finally, future perspectives on potential research directions and technological innovations that could strengthen CWs' performance in cold climates are prospected. This review aims to contribute valuable insights into the operation strategies, widespread implementation, and subsequent study of CWs in colder climate regions.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Baiming Ren
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China.
| | - Xiaomei Kou
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| | - Yunjie Hou
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Arsenia Luana Buque
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, People's Republic of China
| | - Fan Gao
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, 710065, People's Republic of China
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, People's Republic of China
| |
Collapse
|
6
|
Maslennikova D, Knyazeva I, Vershinina O, Titenkov A, Lastochkina O. Contribution of Antioxidant System Components to the Long-Term Physiological and Protective Effect of Salicylic Acid on Wheat under Salinity Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1569. [PMID: 38891377 PMCID: PMC11174383 DOI: 10.3390/plants13111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) plays a crucial role in regulating plant growth and development and mitigating the negative effects of various stresses, including salinity. In this study, the effect of 50 μM SA on the physiological and biochemical parameters of wheat plants under normal and stress conditions was investigated. The results showed that on the 28th day of the growing season, SA pretreatment continued to stimulate the growth of wheat plants. This was evident through an increase in shoot length and leaf area, with the regulation of leaf blade width playing a significant role in this effect. Additionally, SA improved photosynthesis by increasing the content of chlorophyll a (Chl a) and carotenoids (Car), resulting in an increased TAP (total amount of pigments) index in the leaves. Furthermore, SA treatment led to a balanced increase in the levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) in the leaves, accompanied by a slight but significant accumulation of ascorbic acid (ASA), hydrogen peroxide (H2O2), proline, and the activation of glutathione reductase (GR) and ascorbate peroxidase (APX). Exposure to salt stress for 28 days resulted in a reduction in length and leaf area, photosynthetic pigments, and GSH and ASA content in wheat leaves. It also led to the accumulation of H2O2 and proline and significant activation of GR and APX. However, SA pretreatment exhibited a long-term growth-stimulating and protective effect under stress conditions. It significantly mitigated the negative impacts of salinity on leaf area, photosynthetic pigments, proline accumulation, lipid peroxidation, and H2O2. Furthermore, SA reduced the salinity-induced depletion of GSH and ASA levels, which was associated with the modulation of GR and APX activities. In small-scale field experiments conducted under natural growing conditions, pre-sowing seed treatment with 50 μM SA improved the main indicators of grain yield and increased the content of essential amino acids in wheat grains. Thus, SA pretreatment can be considered an effective approach for providing prolonged protection to wheat plants under salinity and improving grain yield and quality.
Collapse
Affiliation(s)
- Dilara Maslennikova
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, 450054 Ufa, Russia;
| | - Inna Knyazeva
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Oksana Vershinina
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Andrey Titenkov
- Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM», 109428 Moscow, Russia; (I.K.); (O.V.); (A.T.)
| | - Oksana Lastochkina
- Ufa Federal Research Center, Institute of Biochemistry and Genetics, 450054 Ufa, Russia;
| |
Collapse
|
7
|
Mishra P, Roggen A, Ljung K, Albani MC, Vayssières A. Adventitious rooting in response to long-term cold: a possible mechanism of clonal growth in alpine perennials. FRONTIERS IN PLANT SCIENCE 2024; 15:1352830. [PMID: 38693930 PMCID: PMC11062184 DOI: 10.3389/fpls.2024.1352830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Arctic alpine species experience extended periods of cold and unpredictable conditions during flowering. Thus, often, alpine plants use both sexual and asexual means of reproduction to maximize fitness and ensure reproductive success. We used the arctic alpine perennial Arabis alpina to explore the role of prolonged cold exposure on adventitious rooting. We exposed plants to 4°C for different durations and scored the presence of adventitious roots on the main stem and axillary branches. Our physiological studies demonstrated the presence of adventitious roots after 21 weeks at 4°C saturating the effect of cold on this process. Notably, adventitious roots on the main stem developing in specific internodes allowed us to identify the gene regulatory network involved in the formation of adventitious roots in cold using transcriptomics. These data and histological studies indicated that adventitious roots in A. alpina stems initiate during cold exposure and emerge after plants experience growth promoting conditions. While the initiation of adventitious root was not associated with changes of DR5 auxin response and free endogenous auxin level in the stems, the emergence of the adventitious root primordia was. Using the transcriptomic data, we discerned the sequential hormone responses occurring in various stages of adventitious root formation and identified supplementary pathways putatively involved in adventitious root emergence, such as glucosinolate metabolism. Together, our results highlight the role of low temperature during clonal growth in alpine plants and provide insights on the molecular mechanisms involved at distinct stages of adventitious rooting.
Collapse
Affiliation(s)
- Priyanka Mishra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Rijk Zwaan, De Lier, Netherlands
| | - Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
8
|
Jan S, Rustgi S, Barmukh R, Shikari AB, Leske B, Bekuma A, Sharma D, Ma W, Kumar U, Kumar U, Bohra A, Varshney RK, Mir RR. Advances and opportunities in unraveling cold-tolerance mechanisms in the world's primary staple food crops. THE PLANT GENOME 2024; 17:e20402. [PMID: 37957947 DOI: 10.1002/tpg2.20402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Temperatures below or above optimal growth conditions are among the major stressors affecting productivity, end-use quality, and distribution of key staple crops including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays L.). Among temperature stresses, cold stress induces cellular changes that cause oxidative stress and slowdown metabolism, limit growth, and ultimately reduce crop productivity. Perception of cold stress by plant cells leads to the activation of cold-responsive transcription factors and downstream genes, which ultimately impart cold tolerance. The response triggered in crops to cold stress includes gene expression/suppression, the accumulation of sugars upon chilling, and signaling molecules, among others. Much of the information on the effects of cold stress on perception, signal transduction, gene expression, and plant metabolism are available in the model plant Arabidopsis but somewhat lacking in major crops. Hence, a complete understanding of the molecular mechanisms by which staple crops respond to cold stress remain largely unknown. Here, we make an effort to elaborate on the molecular mechanisms employed in response to low-temperature stress. We summarize the effects of cold stress on the growth and development of these crops, the mechanism of cold perception, and the role of various sensors and transducers in cold signaling. We discuss the progress in cold tolerance research at the genome, transcriptome, proteome, and metabolome levels and highlight how these findings provide opportunities for designing cold-tolerant crops for the future.
Collapse
Affiliation(s)
- Sofora Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, Florence, South Carolina, USA
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Asif B Shikari
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| | - Brenton Leske
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Amanuel Bekuma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Darshan Sharma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Wujun Ma
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao, China
| | - Upendra Kumar
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
| | - Abhishek Bohra
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| |
Collapse
|
9
|
Jha DK, Chanwala J, Barla P, Dey N. "Genome-wide identification of bZIP gene family in Pearl millet and transcriptional profiling under abiotic stress, phytohormonal treatments; and functional characterization of PgbZIP9". FRONTIERS IN PLANT SCIENCE 2024; 15:1352040. [PMID: 38469329 PMCID: PMC10925649 DOI: 10.3389/fpls.2024.1352040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Abiotic stresses are major constraints in crop production, and are accountable for more than half of the total crop loss. Plants overcome these environmental stresses using coordinated activities of transcription factors and phytohormones. Pearl millet an important C4 cereal plant having high nutritional value and climate resilient features is grown in marginal lands of Africa and South-East Asia including India. Among several transcription factors, the basic leucine zipper (bZIP) is an important TF family associated with diverse biological functions in plants. In this study, we have identified 98 bZIP family members (PgbZIP) in pearl millet. Phylogenetic analysis divided these PgbZIP genes into twelve groups (A-I, S, U and X). Motif analysis has shown that all the PgbZIP proteins possess conserved bZIP domains and the exon-intron organization revealed conserved structural features among the identified genes. Cis-element analysis, RNA-seq data analysis, and real-time expression analysis of PgbZIP genes suggested the potential role of selected PgbZIP genes in growth/development and abiotic stress responses in pearl millet. Expression profiling of selected PgbZIPs under various phytohormones (ABA, SA and MeJA) treatment showed differential expression patterns of PgbZIP genes. Further, PgbZIP9, a homolog of AtABI5 was found to localize in the nucleus and modulate gene expression in pearl millet under stresses. Our present findings provide a better understanding of bZIP genes in pearl millet and lay a good foundation for the further functional characterization of multi-stress tolerant PgbZIP genes, which could become efficient tools for crop improvement.
Collapse
Affiliation(s)
- Deepak Kumar Jha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jeky Chanwala
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Preeti Barla
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
10
|
Zhang Y, Ni C, Dong Y, Jiang X, Liu C, Wang W, Zhao C, Li G, Xu K, Huo Z. The Role of the Ascorbic Acid-Glutathione Cycle in Young Wheat Ears' Response to Spring Freezing Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4170. [PMID: 38140497 PMCID: PMC10748077 DOI: 10.3390/plants12244170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Freezing stress in spring often causes the death and abnormal development of young ears of wheat, leading to a significant reduction in grain production. However, the mechanisms of young wheat ears responding to freezing are largely unclear. In this study, the role of the ascorbic acid-glutathione cycle (AsA-GSH cycle) in alleviating freezing-caused oxidative damage in young wheat ears at the anther connective tissue formation phase (ACFP) was investigated. The results showed that the release rate of reactive oxygen species (ROS) and the relative electrolyte conductivity in young ears of Jimai22 (JM22, freezing-tolerant) were significantly lower than those in young ears of Xumai33 (XM33, freezing-sensitive) under freezing. The level of the GSH pool (231.8~392.3 μg/g FW) was strikingly higher than that of the AsA pool (98.86~123.4 μg/g FW) in young wheat ears at the ACFP. Freezing significantly increased the level of the AsA pool and the activities of ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) in the young ears of both varieties. The level of the GSH pool increased in the young ears of XM33 under freezing but decreased in the young ears of JM22. The young ears of JM22 showed higher activities of glutathione reductase (GR), glutathione-S-transferase (GST) and glutathione peroxidase (GPX) than the young ears of XM33 under freezing. Collectively, these results suggest that the AsA-GSH cycle plays a positive role in alleviating freezing-induced oxidative damage in young wheat ears. Furthermore, the ability of utilizing GSH as a substrate to scavenge ROS is an important factor affecting the freezing tolerance of young wheat ears. In addition, abscisic acid (ABA), salicylic acid (SA), 3-indolebutyric acid (IBA) and cis-zeatin (cZ) may be involved in regulating the AsA-GSH cycle metabolism in young wheat ears under freezing.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiling Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (C.N.); (Y.D.); (X.J.); (C.L.); (C.Z.); (G.L.); (K.X.)
| | | | | | | | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (C.N.); (Y.D.); (X.J.); (C.L.); (C.Z.); (G.L.); (K.X.)
| |
Collapse
|
11
|
Wang W, Zhang Y, Liu C, Dong Y, Jiang X, Zhao C, Li G, Xu K, Huo Z. Label-Free Quantitative Proteomics Reveal the Mechanisms of Young Wheat ( Triticum aestivum L.) Ears' Response to Spring Freezing. Int J Mol Sci 2023; 24:15892. [PMID: 37958875 PMCID: PMC10648784 DOI: 10.3390/ijms242115892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Late spring frost is an important meteorological factor threatening the safe production of winter wheat in China. The young ear is the most vulnerable organ of the wheat plant to spring frost. To gain an insight into the mechanisms underpinning young wheat ears' tolerance to freezing, we performed a comparative proteome analysis of wheat varieties Xumai33 (XM33, freezing-sensitive) and Jimai22 (JM22, freezing-tolerant) under normal and freezing conditions using label-free quantitative proteomic techniques during the anther connective tissue formation phase (ACFP). Under freezing stress, 392 and 103 differently expressed proteins (DEPs) were identified in the young ears of XM33 and JM22, respectively, and among these, 30 proteins were common in both varieties. A functional characterization analysis revealed that these DEPs were associated with antioxidant capacity, cell wall modification, protein folding, dehydration response, and plant-pathogen interactions. The young ears of JM22 showed significantly higher expression levels of antioxidant enzymes, heat shock proteins, and dehydrin under normal conditions compared to those of XM33, which might help to prepare the young ears of JM22 for freezing stress. Our results lead to new insights into understanding the mechanisms in young wheat ears' response to freezing stress and provide pivotal potential candidate proteins required for improving young wheat ears' tolerance to spring frost.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China; (W.W.); (G.L.); (K.X.)
| |
Collapse
|
12
|
Guo J, Beemster GTS, Liu F, Wang Z, Li X. Abscisic Acid Regulates Carbohydrate Metabolism, Redox Homeostasis and Hormonal Regulation to Enhance Cold Tolerance in Spring Barley. Int J Mol Sci 2023; 24:11348. [PMID: 37511108 PMCID: PMC10379442 DOI: 10.3390/ijms241411348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Abscisic acid (ABA) plays a vital role in the induction of low temperature tolerance in plants. To understand the molecular basis of this phenomenon, we performed a proteomic analysis on an ABA-deficit mutant barley (Az34) and its wild type (cv Steptoe) under control conditions (25/18 °C) and after exposure to 0 °C for 24 h. Most of the differentially abundant proteins were involved in the processes of photosynthesis and metabolisms of starch, sucrose, carbon, and glutathione. The chloroplasts in Az34 leaves were more severely damaged, and the decrease in Fv/Fm was larger in Az34 plants compared with WT under low temperature. Under low temperature, Az34 plants possessed significantly higher activities of ADP-glucose pyrophosphorylase, fructokinase, monodehydroascorbate reductase, and three invertases, but lower UDP-glucose pyrophosphorylase activity than WT. In addition, concentrations of proline and soluble protein were lower, while concentration of H2O2 was higher in Az34 plants compared to WT under low temperature. Collectively, the results indicated that ABA deficiency induced modifications in starch and sucrose biosynthesis and sucrolytic pathway and overaccumulation of reactive oxygen species were the main reason for depressed low temperature tolerance in barley, which provide novel insights to the response of barley to low temperature under future climate change.
Collapse
Affiliation(s)
- Junhong Guo
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Zongming Wang
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiangnan Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Sampedro-Guerrero J, Vives-Peris V, Gomez-Cadenas A, Clausell-Terol C. Efficient strategies for controlled release of nanoencapsulated phytohormones to improve plant stress tolerance. PLANT METHODS 2023; 19:47. [PMID: 37189192 PMCID: PMC10184380 DOI: 10.1186/s13007-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Climate change due to different human activities is causing adverse environmental conditions and uncontrolled extreme weather events. These harsh conditions are directly affecting the crop areas, and consequently, their yield (both in quantity and quality) is often impaired. It is essential to seek new advanced technologies to allow plants to tolerate environmental stresses and maintain their normal growth and development. Treatments performed with exogenous phytohormones stand out because they mitigate the negative effects of stress and promote the growth rate of plants. However, the technical limitations in field application, the putative side effects, and the difficulty in determining the correct dose, limit their widespread use. Nanoencapsulated systems have attracted attention because they allow a controlled delivery of active compounds and for their protection with eco-friendly shell biomaterials. Encapsulation is in continuous evolution due to the development and improvement of new techniques economically affordable and environmentally friendly, as well as new biomaterials with high affinity to carry and coat bioactive compounds. Despite their potential as an efficient alternative to phytohormone treatments, encapsulation systems remain relatively unexplored to date. This review aims to emphasize the potential of phytohormone treatments as a means of enhancing plant stress tolerance, with a specific focus on the benefits that can be gained through the improved exogenous application of these treatments using encapsulation techniques. Moreover, the main encapsulation techniques, shell materials and recent work on plants treated with encapsulated phytohormones have been compiled.
Collapse
Affiliation(s)
- Jimmy Sampedro-Guerrero
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain
| | - Aurelio Gomez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain.
| | - Carolina Clausell-Terol
- Departamento de Ingeniería Química, Instituto Universitario de Tecnología Cerámica, Universitat Jaume I, 12071, Castelló de la Plana, Castellón, Spain.
| |
Collapse
|
14
|
Singh A, Roychoudhury A. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. PLANT CELL REPORTS 2023; 42:961-974. [PMID: 37079058 DOI: 10.1007/s00299-023-03013-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Extensive crosstalk exists among ABA and different phytohormones that modulate plant tolerance against different abiotic stress. Being sessile, plants are exposed to a wide range of abiotic stress (drought, heat, cold, salinity and metal toxicity) that exert unwarranted threat to plant life and drastically affect growth, development, metabolism, and yield of crops. To cope with such harsh conditions, plants have developed a wide range of protective phytohormones of which abscisic acid plays a pivotal role. It controls various physiological processes of plants such as leaf senescence, seed dormancy, stomatal closure, fruit ripening, and other stress-related functions. Under challenging situations, physiological responses of ABA manifested in the form of morphological, cytological, and anatomical alterations arise as a result of synergistic or antagonistic interaction with multiple phytohormones. This review provides new insight into ABA homeostasis and its perception and signaling crosstalk with other phytohormones at both molecular and physiological level under critical conditions including drought, salinity, heavy metal toxicity, and extreme temperature. The review also reveals the role of ABA in the regulation of various physiological processes via its positive or negative crosstalk with phytohormones, viz., gibberellin, melatonin, cytokinin, auxin, salicylic acid, jasmonic acid, ethylene, brassinosteroids, and strigolactone in response to alteration of environmental conditions. This review forms a basis for designing of plants that will have an enhanced tolerance capability against different abiotic stress.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
15
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
16
|
RASOLİ F, GHOLİPOOR M. Interactive effects of salicylic acid and jasmonic acid on secondary metabolite production in Echinacea purpurea. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2023. [DOI: 10.21448/ijsm.1079812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Secondary metabolites are highly beneficial to human health and have commercial and industrial values. So, this research aimed to study the effects of exogenous salicylic acid (SA) and jasmonic acid (JA) on some secondary metabolites in purple coneflower. A field experiment as a randomized complete block design with three replications was conducted in Shahrood, Iran. Treatments were the factorial arrangement of 3 SA (0, 0.5, and 1 millimole) and 4 JA concentrations (0, 5, 20, and 50 micromole). The non-linear regression procedure was employed to quantify the relation of these materials with each other. The results indicated that the SA effect on all ten measured secondary metabolites changed with changing the JA levels as there was the interaction between these elicitors. On average, most (7 out of 11) of the combined SA_JA levels up-regulated the production of secondary metabolites as compared to the plants not sprayed with SA and JA. In terms of average response to elicitation with 11 combined SA_JA levels, they ranked from higher to lower as the guaiacol peroxidase, hydrogen proxide (H2O2), polyphenol oxidase, glutathione S-transferase, superoxide dismutase, NADPH oxidase, total phenolic content, phenylalanine ammonia-lyase, anthocyanin, and flavonoid. A few secondary metabolites appeared to have a biphasic relationship with each other. For instance, over lower and medium values of NADPH oxidase activity, anthocyanin content increased linearly with increasing NADPH oxidase activity; over higher values of NADPH oxidase activity, it showed a plateau state.
Collapse
|
17
|
Kaya C, Ugurlar F, Ashraf M, Ahmad P. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:431-443. [PMID: 36758290 DOI: 10.1016/j.plaphy.2023.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Salicylic acid (SA) is one of the potential plant growth regulators (PGRs) that regulate plant growth and development by triggering many physiological and metabolic processes. It is also known to be a crucial component of plant defense mechanisms against environmental stimuli. In stressed plants, it is documented that it can effectively modulate a myriad of metabolic processes including strengthening of oxidative defense system by directly or indirectly limiting the buildup of reactive nitrogen and oxygen radicals. Although it is well recognized that it performs a crucial role in plant tolerance to various stresses, it is not fully elucidated that whether low or high concentrations of this PGR is effective to achieve optimal growth of plants under stressful environments. It is also not fully understood that to what extent and in what manner it cross-talks with other potential growth regulators and signalling molecules within the plant body. Thus, this critical review discusses how far SA mediates crosstalk with other key PGRs and molecular components of signalling pathways mechanisms, particularly in plants exposed to environmental cues. Moreover, the function of SA exogenously applied in regulation of growth and development as well as reinforcement of oxidative defense system of plants under abiotic stresses is explicitly elucidated.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammed Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan; International Centre for Chemical and Biological Sciences, The University of Karachi, Pakistan
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
18
|
Soualiou S, Duan F, Li X, Zhou W. CROP PRODUCTION UNDER COLD STRESS: An understanding of plant responses, acclimation processes, and management strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:47-61. [PMID: 36099808 DOI: 10.1016/j.plaphy.2022.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Wu J, Nadeem M, Galagedara L, Thomas R, Cheema M. Effects of Chilling Stress on Morphological, Physiological, and Biochemical Attributes of Silage Corn Genotypes during Seedling Establishment. PLANTS (BASEL, SWITZERLAND) 2022; 11:1217. [PMID: 35567218 PMCID: PMC9101286 DOI: 10.3390/plants11091217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Chilling stress is one of the major abiotic stresses which hinder seedling emergence and growth. Herein, we investigated the effects of chilling/low temperature stress on the morphological, physiological, and biochemical attributes of two silage corn genotypes during the seedling establishment phase. The experiment was conducted in a growth chamber, and silage corn seedlings of Yukon-R and A4177G-RIB were grown at optimum temperature up to V3 stage and then subjected to five temperature regimes (25 °C as control, 20 °C, 15 °C, 10 °C, and 5 °C) for 5 days. After the temperature treatment, the morphological, physiological, and biochemical parameters were recorded. Results indicated that temperatures of 15 °C and lower significantly affected seedling growth, photosynthesis system, reactive oxygen species (ROS) accumulation, and antioxidant enzyme activities. Changes in seedlings’ growth parameters were in the order of 25 °C > 20 °C > 15 °C > 10 °C > 5 °C, irrespective of genotypes. The chlorophyll content, photosynthetic rate, and maximal photochemical efficiency of PS-II (Fv/Fm) were drastically decreased under chilling conditions. Moreover, chilling stress induced accumulation of hydrogen peroxide (H2O2)and malonaldehyde (MDA) contents. Increased proline content and enzymatic antioxidants, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxide (APX), were found to alleviate oxidative damage under chilling stress. However, the genotype of Yukon-R exhibited better adaption to chilling stress than A4177G3-RIB. Yukon-R showed significantly higher proline content and enzymatic antioxidant activities than A4177G3-RIB under severe chilling conditions (temperature ≤ 10 °C). Similarly, Yukon-R expressed low temperature-induced ROS accumulation. Furthermore, the interaction effects were found between temperature treatment and genotype on the ROS accumulation, proline content and antioxidant enzyme activities. In summary, the present study indicated that Yukon-R has shown better adaptation and resilience against chilling temperature stress, and therefore could be considered a potential candidate genotype to be grown in the boreal climate.
Collapse
Affiliation(s)
- Jiaxu Wu
- Correspondence: (J.W.); (M.N.); (M.C.)
| | | | | | | | | |
Collapse
|
20
|
Lee BR, La VH, Park SH, Mamun MA, Bae DW, Kim TH. H2O2-Responsive Hormonal Status Involves Oxidative Burst Signaling and Proline Metabolism in Rapeseed Leaves. Antioxidants (Basel) 2022; 11:antiox11030566. [PMID: 35326216 PMCID: PMC8944793 DOI: 10.3390/antiox11030566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Drought alters the level of endogenous reactive oxygen species (ROS) and hormonal status, which are both involved in the regulation of stress responses. To investigate the interplay between ROS and hormones in proline metabolism, rapeseed (Brassica napus L.) plants were exposed to drought or exogenous H2O2 (Exo-H2O2) treatment for 10 days. During the first 5 days, the enhanced H2O2 concentrations in drought treatment were associated with the activation of superoxide dismutase (SOD) and NADPH oxidase, with enhanced ABA and SA levels, while that in Exo-H2O2 treatment was mainly associated with SA-responsive POX. During the latter 5 days, ABA-dependent ROS accumulation was predominant with an upregulated oxidative signal-inducible gene (OXI1) and MAPK6, leading to the activation of ABA synthesis and the signaling genes (NCED3 and MYC2). During the first 5 days, the enhanced levels of P5C and proline were concomitant with SA-dependent NDR1-mediated signaling in both drought and Exo-H2O2 treatments. In the latter 5 days of drought treatment, a distinct enhancement in P5CR and ProDH expression led to higher proline accumulation compared to Exo-H2O2 treatment. These results indicate that SA-mediated P5C synthesis is highly activated under lower endogenous H2O2 levels, and ABA-mediated OXI1-dependent proline accumulation mainly occurs with an increasing ROS level, leading to ProDH activation as a hypersensitive response to ROS and proline overproduction under severe stress.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Van Hien La
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
- Department of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam
| | - Sang-Hyun Park
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Md Al Mamun
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
| | - Dong-Won Bae
- Central Instruments Facility, Gyeongsang National University, Jinju 52828, Korea;
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (V.H.L.); (S.-H.P.); (M.A.M.)
- Correspondence: ; Tel.: +82-62-530-2126
| |
Collapse
|
21
|
Campos MD, Campos C, Nogales A, Cardoso H. Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112369. [PMID: 34834732 PMCID: PMC8625938 DOI: 10.3390/plants10112369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 05/28/2023]
Abstract
Alternative oxidase (AOX) is a key enzyme of the alternative respiration, known to be involved in plant development and in response to various stresses. To verify the role of DcAOX1 and DcAOX2a genes in carrot tap root growth and in response to cold stress, their expression was analyzed in two experiments: during root growth for 13 weeks and in response to a cold challenge trial of 7 days, in both cases using different carrot cultivars. Carrot root growth is initially characterized by an increase in length, followed by a strong increase in weight. DcAOX2a presented the highest expression levels during the initial stages of root growth for all cultivars, but DcAOX1 showed no particular trend in expression. Cold stress had a negative impact on root growth, and generally up-regulated DcAOX2a with no consistent effect on DcAOX1. The identification of cis-acting regulatory elements (CAREs) located at the promoters of both genes showed putative sequences involved in cold stress responsiveness, as well as growth. However, DcAOX2a promoter presented more CAREs related to hormonal pathways, including abscisic acid and gibberellins synthesis, than DcAOX1. These results point to a dual role of DcAOX2a on carrot tap root secondary growth and cold stress response.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Amaia Nogales
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| |
Collapse
|
22
|
Zheng S, Su M, Wang L, Zhang T, Wang J, Xie H, Wu X, Haq SIU, Qiu QS. Small signaling molecules in plant response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153534. [PMID: 34601338 DOI: 10.1016/j.jplph.2021.153534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Cold stress is one of the harsh environmental stresses that adversely affect plant growth and crop yields in the Qinghai-Tibet Plateau. However, plants have evolved mechanisms to overcome the impact of cold stress. Progress has been made in understanding how plants perceive and transduce low-temperature signals to tolerate cold stress. Small signaling molecules are crucial for cellular signal transduction by initiating the downstream signaling cascade that helps plants to respond to cold stress. These small signaling molecules include calcium, reactive oxygen species, nitric oxide, hydrogen sulfide, cyclic guanosine monophosphate, phosphatidic acid, and sphingolipids. The small signaling molecules are involved in many aspects of cellular and physiological functions, such as inducing gene expression and activating hormone signaling, resulting in upregulation of the antioxidant enzyme activities, osmoprotectant accumulation, malondialdehyde reduction, and photosynthesis improvement. We summarize our current understanding of the roles of the small signaling molecules in cold stress in plants, and highlight their crosstalk in cold signaling transduction. These discoveries help us understand how the plateau plants adapt to the severe alpine environment as well as to develop new crops tolerating cold stress in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Min Su
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tengguo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Xuexia Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
23
|
Zhang Y, Liu R, Zhou Y, Wang S, Zhang B, Kong J, Zheng S, Yang N. PLDα1 and GPA1 are involved in the stomatal closure induced by Oridonin in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1005-1016. [PMID: 34167638 DOI: 10.1071/fp21156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Oridonin is an important diterpenoid, which plays an important role in plant growth and development. PLDα1 and GPA1 are involved in many biotic or abiotic stresses. In this study, using the seedlings of Arabidopsis thaliana L. wild type (WT), PLDα1 defective mutant (pldα1), GPA1 defective mutant (gpa1) and pldα1/gpa1 double mutant as materials, the effect of stomatal apertures responding to Oridonin and the functions of PLDα1 and GPA1 in this response were investigated. The results showed that 60 μmol·L-1 of Oridonin induced stomatal closure and significantly increased the relative expression levels of GPA1 and PLDα1. Oridonin increased H2O2 accumulation in guard cells by inhibiting the antioxidant enzymes. The increase of H2O2 caused the expression of OST1, which is a positive regulatory gene for stomatal closure. Both PLDα1 and GPA1 were involved in Oridonin-induced stomatal closure and PLDα1 acted downstream of GPA1. The results suggested that Oridonin caused stomatal closure by affecting GPA1 and promoting PLDα1 to produce PA, and further accumulating H2O2 to upregulate gene OST1.
Collapse
Affiliation(s)
- Yue Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ruirui Liu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaping Zhou
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Simin Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Bianfeng Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Juantao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ning Yang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China; and Corresponding author.
| |
Collapse
|
24
|
Mudrilov M, Ladeynova M, Berezina E, Grinberg M, Brilkina A, Sukhov V, Vodeneev V. Mechanisms of specific systemic response in wheat plants under different locally acting heat stimuli. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153377. [PMID: 33621780 DOI: 10.1016/j.jplph.2021.153377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Mechanisms of the specific systemic response of plant to different adverse factors are poorly understood. We studied the mechanisms acting in wheat (Triticum aestivum L.) under the action of local burn and gradual heating. Both stimuli induce a variation potential (VP) propagation and a biphasic (fast and long-term phases) photosynthetic response in non-stimulated zones of plant with stimulus-specific parameters of the latter: the fast phase or long-term phase predominance in responses induced by burn or heating, respectively. The burn-induced VP and photosynthetic response attenuate with distance, while the heating-induced VP and photosynthetic response were of more stable amplitude in distant part of the stimulated plant. VP propagation in both cases induced apoplast alkalization with dynamics well corresponding to such of VP and of the fast phase of photosynthetic response. Gradual heating induced a significant rise in jasmonate production along with a decrease in stomatal conductance with characteristic times well corresponding to the long-term phase of the photosynthetic response. We suppose that the VP-induced pH shift is responsible for in the induction of the fast phase, while jasmonate production for the long-term phase of the photosynthetic response. The revealed differences in the systemic response to stressors studied, apparently, reflect two distinct plant adaptation strategies to fast and slow-growing stimuli. The immediate response in the tissue nearest to the damage zone is the most important under a fast-growing stimulus. The fundamentally different situation is under a slowly-growing stimulus which provokes long-term changes in the plant that ensure the preparation of the whole organism for impending environmental changes.
Collapse
Affiliation(s)
- Maxim Mudrilov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Maria Ladeynova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Ekaterina Berezina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Marina Grinberg
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Anna Brilkina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Vladimir Sukhov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
25
|
Bharath P, Gahir S, Raghavendra AS. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:615114. [PMID: 33746999 PMCID: PMC7969522 DOI: 10.3389/fpls.2021.615114] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) is a stress hormone that accumulates under different abiotic and biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water loss by closing stomata and parallelly defend against microbes by restricting their entry through stomatal pores. ABA can also promote the accumulation of polyamines, sphingolipids, and even proline. Stomatal closure by compounds other than ABA also helps plant defense against both abiotic and biotic stress factors. Further, ABA can interact with other hormones, such as methyl jasmonate (MJ) and salicylic acid (SA). Such cross-talk can be an additional factor in plant adaptations against environmental stresses and microbial pathogens. The present review highlights the recent progress in understanding ABA's multifaceted role under stress conditions, particularly stomatal closure. We point out the importance of reactive oxygen species (ROS), reactive carbonyl species (RCS), nitric oxide (NO), and Ca2+ in guard cells as key signaling components during the ABA-mediated short-term plant defense reactions. The rise in ROS, RCS, NO, and intracellular Ca2+ triggered by ABA can promote additional events involved in long-term adaptive measures, including gene expression, accumulation of compatible solutes to protect the cell, hypersensitive response (HR), and programmed cell death (PCD). Several pathogens can counteract and try to reopen stomata. Similarly, pathogens attempt to trigger PCD of host tissue to their benefit. Yet, ABA-induced effects independent of stomatal closure can delay the pathogen spread and infection within leaves. Stomatal closure and other ABA influences can be among the early steps of defense and a crucial component of plants' innate immunity response. Stomatal guard cells are quite sensitive to environmental stress and are considered good model systems for signal transduction studies. Further research on the ABA-induced stomatal closure mechanism can help us design strategies for plant/crop adaptations to stress.
Collapse
|
26
|
Carbohydrate Accumulation and Differential Transcript Expression in Winter Wheat Lines with Different Levels of Snow Mold and Freezing Tolerance after Cold Treatment. PLANTS 2020; 9:plants9111416. [PMID: 33113921 PMCID: PMC7690702 DOI: 10.3390/plants9111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/23/2022]
Abstract
Winter wheat (Triticum aestivum L.) undergoes a period of cold acclimation in order to survive the ensuing winter, which can bring freezing temperatures and snow mold infection. Tolerance of these stresses is conferred in part by accumulation of carbohydrates in the crown region. This study investigates the contributions of carbohydrate accumulation during a cold treatment among wheat lines that differ in their snow mold tolerance (SMT) or susceptibility (SMS) and freezing tolerance (FrT) or susceptibility (FrS). Two parent varieties and eight recombinant inbred lines (RILs) were analyzed. The selected RILs represent four combinations of tolerance: SMT/FrT, SMT/FrS, SMS/FrT, and SMS/FrS. It is hypothesized that carbohydrate accumulation and transcript expression will differ between sets of RILs. Liquid chromatography with a refractive index detector was used to quantify carbohydrate content at eight time points over the cold treatment period. Polysaccharide and sucrose content differed between SMT and SMS RILs at various time points, although there were no significant differences in glucose or fructose content. Glucose and fructose content differed between FrT and FrS RILs in this study, but no significant differences in polysaccharide or sucrose content. RNAseq was used to investigate differential transcript expression, followed by modular enrichment analysis, to reveal potential candidates for other mechanisms of tolerance, which included expected pathways such as oxidative stress, chitinase activity, and unexpected transcriptional pathways. These differences in carbohydrate accumulation and differential transcript expression begin to give insight into the differences of wheat lines when exposed to cold temperatures.
Collapse
|
27
|
López-Orenes A, Alba JM, Kant MR, Calderón AA, Ferrer MA. OPDA and ABA accumulation in Pb-stressed Zygophyllum fabago can be primed by salicylic acid and coincides with organ-specific differences in accumulation of phenolics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:612-621. [PMID: 32912492 DOI: 10.1016/j.plaphy.2020.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/02/2023]
Abstract
Salicylic acid (SA) is a well-known priming agent that is widely used to protect plants against stressing agents, including heavy metals as Pb. A better understanding of the mechanisms that enable plants to counteract Pb toxicity would help to select strategies for land reclamation programs. Here we used a metallicolous population of Zygophyllum fabago to assess the extent to which SA pretreatment modulates Pb-induced changes in phenol metabolism and stress-related phytohormone levels in roots and leaves. Our data revealed that accumulation of different phytohormones, lignin, soluble and wall-bound phenolics as well as peroxidase (PRX) activity in Pb-stressed plants differed after SA-pretreatment. Exposure to Pb led to the induction of soluble and cell wall-bound PRX activities, particularly those involved in the oxidation of coniferyl alcohol and ferulic acid, while pretreatment with SA reduced the Pb-induced stimulation of PRX activities in roots but increased them in leaves. SA-treatment by itself induced accumulation of ABA and the JA-precursor 12-oxo-phytodienoic acid (OPDA) in the roots. Pb in turn inhibited these SA-induced effects with the exception of OPDA accumulation that was primed by the pretreatment. The SA treatment also induced accumulation of OPDA in leaves but suppressed the accumulation of JA-Ile although with relatively small absolute changes. Notably, Pb-induced accumulation of ABA was primed in the leaves of SA-pretreated plants. Together our data suggest that priming of OPDA accumulation in the roots and of ABA in the leaves by SA-pretreatment may play important regulatory roles, possibly via regulating PRX activities, for Pb stress in plants.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Murcia, Spain; Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Juan M Alba
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Merijn R Kant
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Antonio A Calderón
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Murcia, Spain
| | - María A Ferrer
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Murcia, Spain.
| |
Collapse
|
28
|
Nazir F, Fariduddin Q, Khan TA. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. CHEMOSPHERE 2020; 252:126486. [PMID: 32234629 DOI: 10.1016/j.chemosphere.2020.126486] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a significant regulatory component interrelated with signal transduction in plants. The positive role of H2O2 in plants subjected to myriad of abiotic factors has led us to comprehend that it is not only a free radical, generated as a product of oxidative stress, but also helpful in the maintenance of cellular homeostasis in crop plants. Studies over the last two centuries has indicated that H2O2 is a key molecule which regulate photosynthesis, stomatal movement, pollen growth, fruit and flower development and leaf senescence. Exogenously-sourced H2O2 at nanomolar levels functions as a signalling molecule, facilitates seed germination, chlorophyll content, stomatal opening, and delays senescence, while at elevated levels, it triggers oxidative burst to organic molecules, which could lead to cell death. Furthermore, H2O2 is also known to interplay synergistically or antagonistically with other plant growth regulators such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid, nitric oxide and Ca2+ (as signalling molecules), and brassinosteroids (steroidal PGRs) under myriad of environmental stresses and thus, mediate plant growth and development and reactions to abiotic factors. The purpose of this review is to specify accessible knowledge on the role and dynamic mechanisms of H2O2 in mediating growth responses and plant resilience to HM stresses, and its crosstalk with other significant PGRs in controlling various processes. More recently, signal transduction by mitogen activated protein kinases and other transcription factors which attenuate HM stresses in plants have also been dissected.
Collapse
Affiliation(s)
- Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tanveer Alam Khan
- Department of Plant Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| |
Collapse
|
29
|
Majláth I, Éva C, Tajti J, Khalil R, Elsayed N, Darko E, Szalai G, Janda T. Exogenous methylglyoxal enhances the reactive aldehyde detoxification capability and frost-hardiness of wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:75-85. [PMID: 32058896 DOI: 10.1016/j.plaphy.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 05/21/2023]
Abstract
Cold-acclimation is essential for the development of adequate frost-hardiness in cereals and therefore sudden freezes can cause considerable damage to the canopy. However, timely adding of an appropriate signal in the absence of cold acclimation may also harden wheat for the upcoming freeze. The feasibility of the promising signal molecule methylglyoxal was tested here for such applications and the signal mechanism was studied in bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum). Spraying with 10 mM methylglyoxal did not decrease the fresh weight and photosynthetic parameters in most wheat varieties at growth temperature (21 °C). Photosynthetic parameters even improved and chlorophyll content increased in some cases. Increased transcript level of glutathione-S-transferases and omega-3 fatty acid desaturases was detected by qPCR 6 h after the last methylglyoxal spray. Aldo-keto reductase and glyoxalase enzyme activities, as well as sorbitol content of wheat plants increased 24 h after the last 10 mM methylglyoxal spray in most of the cultivars. These mechanisms may explain the increased freezing survival of methylglyoxal pretreated wheat plants from less than 10% to over 30%. Our results demonstrate that exogenous methylglyoxal treatment can be safely added to wheat plants as preparatory treatment without detrimental effects but inducing some of the stress-protective mechanisms, which contribute to frost-hardiness.
Collapse
Affiliation(s)
- Imre Majláth
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary.
| | - Csaba Éva
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary.
| | - Judit Tajti
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary.
| | - Radwan Khalil
- Botany Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Nesma Elsayed
- Botany Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Eva Darko
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary.
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary.
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary.
| |
Collapse
|
30
|
Scartazza A, Fambrini M, Mariotti L, Picciarelli P, Pugliesi C. Energy conversion processes and related gene expression in a sunflower mutant with altered salicylic acid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:122-132. [PMID: 31958679 DOI: 10.1016/j.plaphy.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Salicylic acid (SA) is involved in several responses associated with plant development and defence against biotic and abiotic stress, but its role on photosynthetic regulation is still under debate. This work investigated energy conversion processes and related gene expression in the brachytic mutant of sunflower lingering hope (linho). This mutant was characterized by a higher ratio between the free SA form and its conjugate form SA O-β-D-glucoside (SAG) compared to wild type (WT), without significant changes in the endogenous level of abscisic acid and hydrogen peroxide. The mutant showed an inhibition of photosynthesis due to a combination of both stomatal and non-stomatal limitations, although the latter seemed to play a major role. The reduced carboxylation efficiency was associated with a down-regulation of the gene expression for both the large and small subunits of Rubisco and the Rubisco activase enzyme. Moreover, linho showed an alteration of photosystem II (PSII) functionality, with reduced PSII photochemistry, increased PSII excitation pressure and decreased thermal energy dissipation of excessive light energy. These responses were associated with a lower photosynthetic pigments concentration and a reduced expression of genes encoding for light-harvesting chlorophyll a/b binding proteins (i.e. HaLhcA), chlorophyll binding subunits of PSII proteins (i.e. HaPsbS and HaPsbX), phytoene synthase enzyme and a different expression level for genes related to PSII repair cycle, such as HaPsbA and HaPsbD. The concomitant stimulation of respiratory metabolism, suggests that linho activated a coordinate modulation of chloroplast and mitochondria activities to compensate the energy imbalance and regulate energy conversion processes.
Collapse
Affiliation(s)
- Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Moruzzi 1, I-56124, Pisa, Italy.
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy.
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| |
Collapse
|
31
|
Koo YM, Heo AY, Choi HW. Salicylic Acid as a Safe Plant Protector and Growth Regulator. THE PLANT PATHOLOGY JOURNAL 2020; 36:1-10. [PMID: 32089657 PMCID: PMC7012573 DOI: 10.5423/ppj.rw.12.2019.0295] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 05/17/2023]
Abstract
Since salicylic acid (SA) was discovered as an elicitor of tobacco plants inducing the resistance against Tobacco mosaic virus (TMV) in 1979, increasing reports suggest that SA indeed is a key plant hormone regulating plant immunity. In addition, recent studies indicate that SA can regulate many different responses, such as tolerance to abiotic stress, plant growth and development, and soil microbiome. In this review, we focused on the recent findings on SA's effects on resistance to biotic stresses in different plant-pathogen systems, tolerance to different abiotic stresses in different plants, plant growth and development, and soil microbiome. This allows us to discuss about the safe and practical use of SA as a plant defense activator and growth regulator. Crosstalk of SA with different plant hormones, such as abscisic acid, ethylene, jasmonic acid, and auxin in different stress and developmental conditions were also discussed.
Collapse
Affiliation(s)
| | | | - Hyong Woo Choi
- Corresponding author: Phone) +82-54-829-5509, FAX) +82-54-820-6320, E-mail)
| |
Collapse
|
32
|
Zaid A, Mohammad F, Wani SH, Siddique KMH. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:575-587. [PMID: 31129436 DOI: 10.1016/j.ecoenv.2019.05.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 05/13/2019] [Indexed: 05/07/2023]
Abstract
The present study identified inverse relationships between nickel (Ni) levels and growth, photosynthesis and physio-biochemical attributes, but increasing levels of Ni stress enhanced methylglyoxal, electrolyte leakage, hydrogen peroxide, and lipid peroxidation content. Exogenous application of salicylic acid (SA) (10-5 M) ameliorated the ill-effects of Ni by restoring growth, photosynthesis and physio-biochemical attributes and increasing the activities of enzymes associated with antioxidant systems, especially the ascorbate-glutathione (AsA-GSH) cycle and glyoxalase system. In addition, SA application to Ni-stressed plants had an additive effect on the activities of the ascorbate and glutathione pools, and the AsA-GSH cycle enzymes (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase), superoxide dismutase, catalase, glutathione S-transferase, and osmolyte biosynthesis). This trend also follows in glyoxalase system viz. glyoxalase I and glyoxalase II enzymes. Nevertheless, exogenous SA supplementation restored mineral nutrient contents. Principal component analysis showed that growth, photosynthesis, and mineral nutrient parameters were positively correlated with each other and negatively correlated with antioxidant enzymes and oxidative stress biomarkers. Hence, SA is an alternative compound with potential application in the phytoremediation of Ni.
Collapse
Affiliation(s)
- Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani Anantnag, 192101, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K, India
| | - Kadambot M H Siddique
- The UWA Institute of Agriculture, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| |
Collapse
|
33
|
Pokotylo I, Kravets V, Ruelland E. Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling. Int J Mol Sci 2019; 20:E4377. [PMID: 31489905 PMCID: PMC6769663 DOI: 10.3390/ijms20184377] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Salicylic acid (SA) is a phytohormone that plays important roles in many aspects of plant life, notably in plant defenses against pathogens. Key mechanisms of SA signal transduction pathways have now been uncovered. Even though details are still missing, we understand how SA production is regulated and which molecular machinery is implicated in the control of downstream transcriptional responses. The NPR1 pathway has been described to play the main role in SA transduction. However, the mode of SA perception is unclear. NPR1 protein has been shown to bind SA. Nevertheless, NPR1 action requires upstream regulatory events (such as a change in cell redox status). Besides, a number of SA-induced responses are independent from NPR1. This shows that there is more than one way for plants to perceive SA. Indeed, multiple SA-binding proteins of contrasting structures and functions have now been identified. Yet, all of these proteins can be considered as candidate SA receptors and might have a role in multinodal (decentralized) SA input. This phenomenon is unprecedented for other plant hormones and is a point of discussion of this review.
Collapse
Affiliation(s)
- Igor Pokotylo
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
- Université Paris-Est, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 94010 Créteil, France
| | - Volodymyr Kravets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
| | - Eric Ruelland
- Université Paris-Est, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 94010 Créteil, France.
- CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, 94010 Créteil, France.
| |
Collapse
|
34
|
Pál M, Ivanovska B, Oláh T, Tajti J, Hamow KÁ, Szalai G, Khalil R, Vanková R, Dobrev P, Misheva SP, Janda T. Role of polyamines in plant growth regulation of Rht wheat mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:189-202. [PMID: 30798173 DOI: 10.1016/j.plaphy.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 05/27/2023]
Abstract
Besides their protective role, polyamines also serve as signalling molecules. However, further studies are needed to elucidate the polyamine signalling pathways, especially to identify polyamine-regulated mechanisms and their connections with other regulatory molecules. Reduced height (Rht) genes in wheat are often used in breeding programs to increase harvest index. Some of these genes are encoding DELLA proteins playing role in gibberellic acid signalling. The aim of the present paper was to reveal how the mutations in Rht gene modify the polyamine-regulated processes in wheat. Wild type and two Rht mutant genotypes (Rht 1: semi-dwarf; Rht 3: dwarf mutants) were treated with polyamines. Polyamine treatments differently influenced the polyamine metabolism, the plant growth parameters and certain hormone levels (salicylic acid and abscisic acid) in these genotypes. The observed distinct metabolism of Rht 3 may more likely reflect more intensive polyamine exodus from putrescine to spermidine and spermine, and the catabolism of the higher polyamines. The lower root to shoot translocation of putrescine can contribute to the regulation of polyamine pool, which in turn may be responsible for the observed lack of growth inhibition in Rht 3 after spermidine and spermine treatments. Lower accumulation of salicylic acid and abscisic acid, plant hormones usually linked with growth inhibition, in leaves may also be responsible for the diminished negative effect of higher polyamines on the shoot growth parameters observed in Rht 3. These results provide an insight into the role of polyamines in plant growth regulation based on the investigation of gibberellin-insensitive Rht mutants.
Collapse
Affiliation(s)
- Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary.
| | - Beti Ivanovska
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Tímea Oláh
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Judit Tajti
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Kamirán Áron Hamow
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary; Plant Protection Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | - Radwan Khalil
- Botany Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Academy of Sciences, 16502, Prague, Czech Republic
| | - Petr Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Academy of Sciences, 16502, Prague, Czech Republic
| | - Svetlana P Misheva
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| |
Collapse
|
35
|
He M, He CQ, Ding NZ. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1771. [PMID: 30581446 PMCID: PMC6292871 DOI: 10.3389/fpls.2018.01771] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 05/19/2023]
Abstract
Abiotic stresses, such as low or high temperature, deficient or excessive water, high salinity, heavy metals, and ultraviolet radiation, are hostile to plant growth and development, leading to great crop yield penalty worldwide. It is getting imperative to equip crops with multistress tolerance to relieve the pressure of environmental changes and to meet the demand of population growth, as different abiotic stresses usually arise together in the field. The feasibility is raised as land plants actually have established more generalized defenses against abiotic stresses, including the cuticle outside plants, together with unsaturated fatty acids, reactive species scavengers, molecular chaperones, and compatible solutes inside cells. In stress response, they are orchestrated by a complex regulatory network involving upstream signaling molecules including stress hormones, reactive oxygen species, gasotransmitters, polyamines, phytochromes, and calcium, as well as downstream gene regulation factors, particularly transcription factors. In this review, we aimed at presenting an overview of these defensive systems and the regulatory network, with an eye to their practical potential via genetic engineering and/or exogenous application.
Collapse
Affiliation(s)
| | | | - Nai-Zheng Ding
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|