1
|
Desmarez T, Brat P, Lassois L, Barral B, Hubert O. Assessing banana stalk susceptibility to pathogens and their virulence. MethodsX 2025; 14:103244. [PMID: 40083657 PMCID: PMC11903911 DOI: 10.1016/j.mex.2025.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
The purpose of this protocol is to assess (a) the virulence of fungi on banana stalks and (b) the susceptibility of a banana stalk cutting modality/cultivar to a pathogen. The principle, plant material used, duration and expected results are presented. The materials and the five procedural steps-stalk sampling, inoculum and plant material preparation, pathogen inoculation, incubation, and evaluation of stalk necrosis-are detailed. Inoculum virulence and banana stalk susceptibility to pathogenic fungi are determined by measuring the proportion of necrosis.
Collapse
Affiliation(s)
- T. Desmarez
- Liege University, Gembloux Agro Bio-Tech, Gembloux 5030, Belgium
| | - P. Brat
- CIRAD, Neufchâteau station, Capesterre-Belle-Eau, Sainte-Marie 97130, Guadeloupe
| | - L. Lassois
- Liege University, Gembloux Agro Bio-Tech, Gembloux 5030, Belgium
| | - B. Barral
- CIRAD, Neufchâteau station, Capesterre-Belle-Eau, Sainte-Marie 97130, Guadeloupe
| | - O. Hubert
- CIRAD, Neufchâteau station, Capesterre-Belle-Eau, Sainte-Marie 97130, Guadeloupe
| |
Collapse
|
2
|
Pan X, Yue Y, Zhao F, Song T, Xu B, Li Z, Qi Z, Yu J, Cao H, Yu M, Shen Q, Xu J, Xiong W, Liu Y. Rhizosphere microbes facilitate the break of chlamydospore dormancy and root colonization of rice false smut fungi. Cell Host Microbe 2025:S1931-3128(25)00138-6. [PMID: 40306271 DOI: 10.1016/j.chom.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Dormant chlamydospore germination of fungal pathogens directly affects disease occurrence and severity. The rice false smut (RFS) fungus Ustilaginoidea virens produces abundant chlamydospores, but their germination process and roles in plant infection remain unclear. Here, we found that soil-borne chlamydospores are a major source of U. virens inoculum and impact RFS development. Rhizosphere microbiome analysis of high-susceptibility (HS) and low-susceptibility (LS) rice varieties revealed that HS varieties recruited bacteria from the Sphingomonadaceae family, thereby facilitating the breakdown of chlamydospore dormancy through secreted exopolysaccharides. Hyphae formed by germinating chlamydospores grew on the root surfaces, invaded the root cortex, and grew intercellularly, potentially spreading further to aboveground plant parts. Furthermore, field experiments confirmed that treating the root with 30% prothioconazole and 20% zinc thiazole effectively reduced RFS incidence. Overall, these findings enhance our understanding of chlamydospore germination in natural environments and inform strategies for disease control.
Collapse
Affiliation(s)
- Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Yang Yue
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fengjuan Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Boting Xu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhi Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China; College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jinrong Xu
- Purdue University Department of Botany and Plant Pathology, West Lafayette, IN 47907, USA
| | - Wu Xiong
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China; College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China.
| |
Collapse
|
3
|
Cong Z, Ma Y, Zeng L, Wu Y, Chen Y, Liang L, Zhu J, Li H, Nie Y, Li Y. A Novel Effector FoUpe9 Enhances the Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4 by Inhibiting Plant Immunity. J Fungi (Basel) 2025; 11:308. [PMID: 40278128 PMCID: PMC12028529 DOI: 10.3390/jof11040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the most destructive disease of the banana. Effectors play a crucial role in Foc TR4-banana interaction; however, only a few effectors have been functionally characterized. Our previous secretome studies on Foc TR4 highlighted an uncharacterized protein without any conserved domains (named FoUpe9), which was predicted to be a candidate effector. Herein, bioinformatics analysis showed that FoUpe9 was highly conserved among Fusarium species. FoUpe9 was highly induced during the early infection stages in the banana. A yeast signal sequence trap assay showed that FoUpe9 is a secretory protein. FoUpe9 could inhibit cell death and ROS accumulation triggered by BAX through the Agrobacterium-mediated Nicotiana benthamiana expression system. Subcellular location showed that FoUpe9 was located in the nucleus and cytoplasm of N. benthamiana cells. Deletion of the FoUpe9 gene did not affect mycelial growth, conidiation, sensitivity to cell-wall integrity, or osmotic and oxidative stress, but significantly attenuated fungal virulence. FoUpe9 deletion diminished fungal colonization and induced ROS production and expression of SA-related defense genes in banana plants. These results suggest that FoUpe9 enhances Foc TR4 virulence by inhibiting host immune responses and provide new insights into the functions of the uncharacterized proteins, further enhancing our understanding of effector-mediated Foc TR4 pathogenesis.
Collapse
Affiliation(s)
- Zheng Cong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Yini Ma
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Lisha Zeng
- Dongguan Agricultural Research Centre, Dongguan 523106, China;
| | - Yaoyao Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Yaojun Chen
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Ludan Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Jie Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| |
Collapse
|
4
|
Singh S, Rai PK, Khan AA, Fatima S, Choure K, Joo JC, Pandey A. Whole genome analysis and biocontrol potential of endophytic Bacillus cereus EMS1 against Fusarium wilt in banana. World J Microbiol Biotechnol 2025; 41:119. [PMID: 40164911 DOI: 10.1007/s11274-025-04326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Endophytic bacteria are essential for promoting plant growth and increasing plant resilience to various environmental stresses. Although it is well-documented that several endophytic Bacillus species exhibit plant growth-promoting properties, this is the first report on the genome study of Bacillus cereus EMS1, isolated from Musa acuminata G9 in India. This study analyzed the genomics, plant growth traits, and fusarium wilt mitigation potential of Bacillus cereus EMS1. This analysis identified specific genomic features, including potential mechanisms contributing to plant growth promotion, which were also submitted to NCBI (Bioproject ID: PRJNA784269). The in vivo study showed that EMS1 mitigated the impact of Fusarium oxysporum f. sp. cubense on banana plants. Although it did not affect the number of leaves, other parameters influenced by pathogen infection and EMS1 treatment showed notable differences, including fresh weight (Fusarium oxysporum only: 15 g; EMS1 + Fusarium oxysporum: 21 g), dry weight (Fusarium oxysporum only: 1 g; EMS1 + Fusarium oxysporum: 4.7 g), and root length (Fusarium oxysporum only: 6.5 cm; EMS1 + Fusarium oxysporum: 9 cm). Additionally, genomic analysis revealed that the EMS1 genome contains distinctive genes linked to plant growth and antimicrobial activity. Overall, the findings highlight the potential of endophytic Bacillus cereus EMS1 in promoting plant growth and enhancing banana plant resistance against Fusarium oxysporum.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
| | - Piyush Kant Rai
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India.
| | - Jeong Chan Joo
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Deogyeong-daero, Giheung- gu, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Ashutosh Pandey
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
- University Center for Research and Development (UCRD), Chandigarh university, Punjab, 140413, Mohali, India
| |
Collapse
|
5
|
Villao L, Vargas J, Diez N, Magdama F, Santos-Ordóñez E. Optimization of a CRISPR-Cas9 in vitro protocol for targeting the SIX9 gene of Fusarium oxysporum f.sp. cubense race 1 associated with banana Fusarium wilt. FRONTIERS IN PLANT SCIENCE 2025; 16:1523884. [PMID: 40129747 PMCID: PMC11931044 DOI: 10.3389/fpls.2025.1523884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/06/2025] [Indexed: 03/26/2025]
Abstract
Introduction Fusarium wilt of bananas (Musa spp.), a threat to sustainable banana production worldwide, necessitates immediate action to control the disease. The current strategies are centered on preventing its spread or developing resistant varieties. However, very little is known about the genetic machinery used by the fungus to infect and kill banana plants. Therefore, research should the focused also in understanding the plant-pathogen molecular interaction by targeting virulent genes for knock-out in Fusarium. This study aims to standardize a gene editing protocol using CRISPR Cas9 technology in Fusarium oxysporum f.sp. cubense race 1 (Foc1); specifically, to induce targeted mutations on a particular effector gene, SIX9, of Foc1. Methods An in vitro protocol was optimized for the production of the Cas9 protein to target the SIX9 gene testing two gRNAs, by expression and purification of the Cas9, included in plasmids pHis-parallel1 and pMJ922, in E. coli BL21 Rosetta, independently. Results Results demonstrated that the produced Cas9 exhibits high enzymatic activity, comparable to the commercial standard. These findings underscore the robustness of the in-house enzyme and highlight its suitability for future research and biotechnological applications. Discussion This protocol facilitates the production of recombinant Cas9, enabling its use in various experimental settings and accelerating research in targeted gene editing, an area of significant relevance today. This protocol will support future studies on banana-Fusarium interaction by identifying candidate genes for disease resistance for the plant, or lack of virulence for the pathogen, by establishing the function of SIX effector proteins and evaluating the fungus's infection capacity through pathogenicity assays.
Collapse
Affiliation(s)
- Liliana Villao
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Jeffrey Vargas
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Nardy Diez
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Freddy Magdama
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Efrén Santos-Ordóñez
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| |
Collapse
|
6
|
Baruah A, Bora P, Damodaran T, Saikia B, Manoharan M, Patil P, Bhattacharyya A, Saikia A, Kumar A, Kumari S, Talukdar J, Dey U, Ahmed SS, Rahman N, Nath BC, Tabing R, Kumar S. Patho-Ecological Distribution and Genetic Diversity of Fusarium oxysporum f. sp. cubense in Malbhog Banana Belts of Assam, India. J Fungi (Basel) 2025; 11:195. [PMID: 40137233 PMCID: PMC11942760 DOI: 10.3390/jof11030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 03/27/2025] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is recognized as one of the most devastating diseases affecting banana cultivation worldwide. In India, Foc extensively affects Malbhog banana (AAB genomic group) production. In this study, we isolated 25 Foc isolates from wilt-affected Malbhog plantations inIndia. A pathogenicity test confirmed the identity of these isolates as Foc, the primary causative agent of wilt in bananas. The morpho-cultural characterization of Foc isolates showed large variations in colony morphological features, intensity, and pattern of pigmentation, chlamydospores, and conidial size. The molecular identification of these isolates using Race1- and Race4-specific primers established their identity as Race1 of Foc, with the absence of Tropical Race 4 of Foc. For a more comprehensive understanding of the genetic diversity of Foc isolates, we employed ISSR molecular typing, which revealed five major clusters. About 96% of the diversity within the Foc population indicated the presence of polymorphic loci in individuals of a given population evident from the results of Nei's genetic diversity, Shannon's information index, and the polymorphism information content values, apart from the analysis of molecular variance (AMOVA). The current findings provide significant insights toward the detection of Foc variants and, consequently, the deployment of effective management practices to keep the possible epidemic development of disease under control along the Malbhog banana growing belts of northeast India.
Collapse
Affiliation(s)
- Anisha Baruah
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Popy Bora
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Thukkaram Damodaran
- ICAR-Central Institute of Subtropical Horticulture, Lucknow 226002, India; (T.D.)
| | - Bishal Saikia
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Muthukumar Manoharan
- ICAR-Central Institute of Subtropical Horticulture, Lucknow 226002, India; (T.D.)
| | - Prakash Patil
- All India Coordinated Research Project on Fruits, ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Ashok Bhattacharyya
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Ankita Saikia
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Alok Kumar
- ICAR-Central Institute of Subtropical Horticulture, Lucknow 226002, India; (T.D.)
| | - Sangeeta Kumari
- ICAR-Central Institute of Subtropical Horticulture, Lucknow 226002, India; (T.D.)
| | - Juri Talukdar
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Utpal Dey
- Krishi Vigyan Kendra, Sepahijala 799103, India;
| | - Shenaz Sultana Ahmed
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Naseema Rahman
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Bharat Chandra Nath
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Ruthy Tabing
- Biocontrol Laboratory, Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India; (A.B.); (B.S.); (J.T.)
| | - Sandeep Kumar
- ICAR-Central Institute of Subtropical Horticulture, Lucknow 226002, India; (T.D.)
| |
Collapse
|
7
|
Hadimani A, Raman T, Esack E, Loganathan M, Jaganathan D, Kantharaju V, Selvarajan R. Deciphering the microbiome dynamics in an effective banana Fusarium wilt biocontrol interaction system. 3 Biotech 2025; 15:59. [PMID: 39959709 PMCID: PMC11822171 DOI: 10.1007/s13205-025-04223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
This study explored the effects of bacterial and fungal biocontrol agents (consortia) on the microbiome of Fusarium wilt (Foc TR4)-infected Cavandish banana soils in terms of alteration of prevalence and abundance. The results showed a significant shift in microbial diversity, dominance, abundance, evenness, richness and composition core and indicator microbiome in response to soil applied consortia and untreated controls. A total of 2857 bacterial OTUs from 331 families across 40 phyla dominated with Bacillaceae (40.2%), Acidobacteriaceae (14.2%), Haloarculaceae (12.6%), and Paenibacillaceae (9.4%). There were 4,868 fungal OTUs from 520 families across 18 phyla dominant with Mortierellaceae (20.9%), Cortinariaceae (7.6%), Aspergillaceae (6.2%), Pandeidae (5.6%), and Pyronemataceae (5.0%). Alpha diversity analysis indicated that bacterial diversity varied across treatments where T2 has the highest OTUs, while fungal diversity remained relatively stable across the treatments. Beta diversity and PCoA analysis revealed the differences in community compositions across treatments in both bacterial and fungal microbiome. Bacterial communities in T3 and T5 were highly similar, whereas T4 had a notable difference in fungal communities. This study identified a total of 192 bacterial core OTUs dominated with Firmicutes, Proteobacteria, and Acidobacteriia. In the case of fungi, 59 core OTUs from Ascomycota, Basidiomycota, and Mucoromycota are the most abundant ones within the treatments. Venn diagram revealed unique, common and shared OTUs suggesting antagonistic interactions of the soil applied consortia. DESeq2 analysis revealed a significant shift of core microbiome, where positive fold changes in Betaproteobacteria for bacterial, and Fusarium sp. for fungi were noticeable. Heatmap analysis revealed the treatment-dependent differences in community composition where T2 has higher bacterial abundance and T4 has higher fungal abundance suggesting that the biocontrol treatments affect the soil microbiome differently depending on the combinations and the origins of the consortia. The indicator species analysis identified 37 bacterial and 34 fungal OTUs that were specific and indicative of particular treatments that suggest microbial consortia might be selectively enhancing the growth of functionally beneficial microbial populations of the soil that promote soil health and disease suppressiveness. This study recommends that the use of biocontrol agents in the form of consortia would not only expand the diversity of the soil microbiome but also improve the effectiveness and the sustainability of Fusarium wilt management. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04223-7.
Collapse
Affiliation(s)
- Amaresh Hadimani
- NRCB: National Research Centre for Banana, Thayanur, India Tamil Nadu
- University of Horticultural Sciences, Bagalkot, Kittur Rani Chennamma College of Horticulture, Arabhavi, Gokak, India
| | - Thangavelu Raman
- NRCB: National Research Centre for Banana, Thayanur, India Tamil Nadu
| | - Edwinraj Esack
- NRCB: National Research Centre for Banana, Thayanur, India Tamil Nadu
| | - M. Loganathan
- NRCB: National Research Centre for Banana, Thayanur, India Tamil Nadu
| | - Deepa Jaganathan
- NRCB: National Research Centre for Banana, Thayanur, India Tamil Nadu
| | - V. Kantharaju
- NRCB: National Research Centre for Banana, Thayanur, India Tamil Nadu
- University of Horticultural Sciences, Bagalkot, Kittur Rani Chennamma College of Horticulture, Arabhavi, Gokak, India
| | - R. Selvarajan
- NRCB: National Research Centre for Banana, Thayanur, India Tamil Nadu
| |
Collapse
|
8
|
Nguyen TT, Nguyen TT, Nguyen TH, Nguyen LT, Tran DT, Dinh ST, Vu TM, Nguyen CX. In silico and in vitro analyses reveal the potential use of Streptomyces parvulus VNUA74 as bioagent for sustainable banana production. Sci Rep 2025; 15:7049. [PMID: 40016314 PMCID: PMC11868398 DOI: 10.1038/s41598-024-83520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
Actinobacteria are well-known producers of diverse secondary metabolites by the presence of biosynthetic gene clusters (BGCs). Biological control of banana pathogens using antagonistic actinomycetes is recently considered a promising strategy. Therefore, this study aimed to assess the plant growth-promoting activities and the antagonistic potential of the newly identified Streptomyces sp. VNUA74 strain that isolated from banana rhizosphere in Hung Yen province, Vietnam. The morphological, biochemical and physiological characteristics together with the whole genome and 16S rRNA based taxonomic analyses confirmed that VNUA74 strain belongs to Streptomyces parvulus. In silico genome mining revealed that S. parvulus VNUA74 contains rich source of potential BGCs for secondary metabolites involved in antagonistic activities. Notably, eleven BGCs showed 100% similarity in gene contents with the known clusters possessing antibacterial and antifungal activities such as actimomycin D, germicidin, istamycins, albaflavenone, and cyclic Lanthipeptide SapB. The functional genome analysis also revealed genes participated in plant growth-promoting. Furthermore, in vitro biochemical assays indicated that S. parvulus VNUA74 exhibited strong antagonistic activities against a range of important phytopathogens on banana, including Fusarium oxysporum f. sp. cubense Tropical race 4, F. solani, F. oxysporum, Colletotrichum gloeosporioides, Corynespora cassiicola, Xanthomonas axonopodis, Ralstonia solanacearum and Clavibacter michiganensis. Finally, the VNUA74 strain showed notable enhancements of all examined growth traits of banana plantlets in the pot experiment. In summary, the results showed that the S. parvulus VNUA74 strain possesses multiple characteristics of being the effective biocontrol and biofertilizer agents for the sustainable production of banana and other agricultural crops. In further, the genomic approaches will provide an opportunity to discover novel bioactive compounds as well as manipulating novel gene clusters from S. parvulus VNUA74 strain.
Collapse
Affiliation(s)
- Trung Thanh Nguyen
- Center for Pharmaceutical Biotechnology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Vietnam
| | - Thu Thi Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, 12406, Vietnam
| | - Thuan Huy Nguyen
- Center for Pharmaceutical Biotechnology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Vietnam
| | - Loan Thanh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 70000, Vietnam
| | - Dao Thi Tran
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, 12406, Vietnam
| | - Son Truong Dinh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, 12406, Vietnam
| | - Thiet Minh Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 70000, Vietnam
| | - Canh Xuan Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, 12406, Vietnam.
| |
Collapse
|
9
|
Zhou T, Qiao Y, Wang L, Li Z, Zhang H, Zhang L, Liao S, Li M, Zhang C, Zhang W. Discovery of MK8383s with Antifungal Activity from Mangrove Endophytic Fungi Medicopsis sp. SCSIO 40440 Against Fusarium Wilt of Banana. Mar Drugs 2025; 23:88. [PMID: 39997212 PMCID: PMC11857101 DOI: 10.3390/md23020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 (TR4), poses a severe threat to the global banana industry. The screening of endophytic fungi from the mangrove plant led to the identification of Medicopsis sp. SCSIO 40440, which exhibited potent antifungal activity against Fusarium. The further fraction of the extract yielded ten compounds, including MK8383 (1) and nine new analogues, MK8383s B-J (2-10). The structures of 1-10 were elucidated using extensive spectroscopic data and single-crystal X-ray diffraction analysis. In vitro antifungal assays revealed that 1 showed strongly antifungal activities against Foc TR4, with an EC50 of 0.28 μg/mL, surpassing nystatin and hygromycin B (32 and 16 μg/mL, respectively). Pot experiments showed that 1 or spores of SCSIO 40440 could significantly reduce the virulence of Foc TR4 on Cavendish banana.
Collapse
Affiliation(s)
- Tianyu Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
| | - Yulei Qiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Haibo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minhui Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Guo L, Wang J, Zhou Y, Liang C, Liu L, Yang Y, Huang J, Yang L. Foisc1 regulates growth, conidiation, sensitivity to salicylic acid, and pathogenicity of Fusarium oxysporum f. sp. cubense tropical race 4. Microbiol Res 2025; 291:127975. [PMID: 39608178 DOI: 10.1016/j.micres.2024.127975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The secreted isochorismatases derived from certain filamentous pathogens play vital roles in the infection of host plants by lowering salicylic acid (SA) levels and suppressing SA-mediated defense pathway. However, it remains unclear whether the fungus Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4), which causes vascular wilt in bananas, utilizes isochorismatases to modulate SA levels in the host and subvert the banana defense system for successful infection. In the current study, we selected and functionally characterized the foisc1 gene, one of 10 putative isochorismatase-encoding genes in FocTR4 that showed significant upregulation during early stages of infection. Deletion of foisc1 resulted in enhanced vegetative growth and conidiation, increased sensitivity to SA, reduced colonization within host plants, as well as impaired pathogenicity. Conversely, complementation restored phenotypes similar to those observed in the wild-type strain. Furthermore, deletion of foisc1 led to a notable rise in activities of defense-related enzymes such as catalase, peroxidase, and phenylalnine ammonialyase; along with an upregulated expression of several defense-related genes including PR genes and NPR1 genes within hosts' tissues. The non-secretory nature of Foisc1 protein was confirmed and its absence did not affect SA levels within host plants. Transcriptome analysis revealed that deletion of foisc1 resulted in decreased expression levels for numerous genes associated with pathogenicity including those involved in fusaric acid biosynthesis and effector genes as well as a catechol 1,2-dioxygenase gene essential for SA degradation; while increasing expression levels for numerous genes associated with hyphal growth and conidiation were observed instead. Therefore, our findings suggest that Foisc1 may influence hyphal growth, conidiation, sensitivity to SA, and pathogenicity of FocTR4 through modulation of various genes implicated in these processes. These findings provide valuable insights into the pathogenesis of FocTR4, and create a groundwork for the future development of innovative control strategies targeting vascular wilt disease of banana.
Collapse
Affiliation(s)
- Lijia Guo
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China.
| | - Jun Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - You Zhou
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Changcong Liang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Lei Liu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Yang Yang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Junsheng Huang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Laying Yang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China.
| |
Collapse
|
11
|
Matthews MC, van der Linden J, Robène I, Rozsasi S, Coetzee B, Campa M, Burger J, Akwuruoha UN, Madufor NJ, Perold W, Opara UL, Viljoen A, Mostert D. A combined recombinase polymerase amplification CRISPR/Cas12a assay for detection of Fusarium oxysporum f. sp. cubense tropical race 4. Sci Rep 2025; 15:2436. [PMID: 39828694 PMCID: PMC11743600 DOI: 10.1038/s41598-025-85633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The soilborne pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is currently devastating banana production worldwide. Once introduced, it is not possible to eradicate the pathogen from soils where it can survive for decades. The only management option available then is to replace Foc TR4-susceptible with -resistant varieties. Timely detection of the pathogen, however, is an important strategy to prevent the introduction of Foc TR4 into new areas and prevent its spread from infested sites. In this study, a single-tube detection technique was developed by combining recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a technology (RPA-Cas12a) for detection of Foc TR4. The RPA-Cas12a assay was conducted isothermally, had a sensitivity of up to 10 fg target DNA and did not cross react with any of the 76 non-target isolates included in the specificity testing. The RPA-Cas12a assay detected Foc TR4 from naturally infected banana samples collected in the field and visualization was possible with the naked eye under LED blue light transillumination. The method can be integrated with inexpensive fluorescent or electronic detection devices to accelerate Foc TR4 in-field detection and, thereby, fast-track disease containment strategies.
Collapse
Affiliation(s)
- Megan Ceris Matthews
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Jos van der Linden
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Isabelle Robène
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Samuel Rozsasi
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Beatrix Coetzee
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
- School for Data Science and Computational Thinking, Stellenbosch University, Matieland, 7602, South Africa
| | - Manuela Campa
- Department of Genetics, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Johan Burger
- Department of Genetics, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Uzoma Nobel Akwuruoha
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Stellenbosch University, Matieland, 7602, South Africa
| | - Ndubuisi Johnkennedy Madufor
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Stellenbosch University, Matieland, 7602, South Africa
| | - Willem Perold
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Stellenbosch University, Matieland, 7602, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Altus Viljoen
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Diane Mostert
- Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa.
| |
Collapse
|
12
|
Gómez-Lama Cabanás C, Mercado-Blanco J. Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens. J Fungi (Basel) 2025; 11:77. [PMID: 39852495 PMCID: PMC11766565 DOI: 10.3390/jof11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
This review delves into innovative technologies to improve the control of vascular fungal plant pathogens. It also briefly summarizes traditional biocontrol approaches to manage them, addressing their limitations and emphasizing the need to develop more sustainable and precise solutions. Powerful tools such as next-generation sequencing, meta-omics, and microbiome engineering allow for the targeted manipulation of microbial communities to enhance pathogen suppression. Microbiome-based approaches include the design of synthetic microbial consortia and the transplant of entire or customized soil/plant microbiomes, potentially offering more resilient and adaptable biocontrol strategies. Nanotechnology has also advanced significantly, providing methods for the targeted delivery of biological control agents (BCAs) or compounds derived from them through different nanoparticles (NPs), including bacteriogenic, mycogenic, phytogenic, phycogenic, and debris-derived ones acting as carriers. The use of biodegradable polymeric and non-polymeric eco-friendly NPs, which enable the controlled release of antifungal agents while minimizing environmental impact, is also explored. Furthermore, artificial intelligence and machine learning can revolutionize crop protection through early disease detection, the prediction of disease outbreaks, and precision in BCA treatments. Other technologies such as genome editing, RNA interference (RNAi), and functional peptides can enhance BCA efficacy against pathogenic fungi. Altogether, these technologies provide a comprehensive framework for sustainable and precise management of fungal vascular diseases, redefining pathogen biocontrol in modern agriculture.
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Department of Crop Protection, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jesús Mercado-Blanco
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain;
| |
Collapse
|
13
|
Thangavelu R, Amaresh H, Gopi M, Loganathan M, Nithya B, Ganga Devi P, Anuradha C, Thirugnanavel A, Patil KB, Blomme G, Selvarajan R. Geographical Distribution, Host Range and Genetic Diversity of Fusarium oxysporum f. sp. cubense Causing Fusarium Wilt of Banana in India. J Fungi (Basel) 2024; 10:887. [PMID: 39728383 DOI: 10.3390/jof10120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Fusarium wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by Fusarium oxysporum f. sp. cubense (Foc), the cause of Fusarium wilt. Currently, knowledge of disease incidence, affected varieties, and the geographical spread of Foc races in India are only scantily available. An extensive field survey was conducted in 53 districts of 16 major banana-growing states of and one union territory of India that covered both tropical and subtropical regions. Disease incidence ranged from 0 to 95% on farms, with Cavendish bananas (AAA) most affected. No Fusarium wilt symptoms due to Foc R1 were observed in Nendran (AAB) or Red Banana (AAA) in South India. During the survey, 293 Foc isolates were collected from Cavendish, Pisang Awak (ABB), Silk (AAB), Monthan (ABB), Neypoovan (AB), and Mysore (AAB) bananas. Isolate diversity was assessed through Vegetative Compatibility Group (VCG) analyses, sequencing of EF1α gene sequences, phylogenetic analyses, and characterisation by SIX gene composition. Thirteen VCGs were identified, of which VCGs 0124, 0125, 01220, and 01213/16 were dominant and infected Cavendish bananas. Phylogenetic analysis divided the Indian Foc isolates into race 1 (R1), subtropical race 4 (STR4), and tropical race 4 (TR4). Secreted in Xylem (SIX) gene analyses indicated that the effector genes SIX4 and SIX6 were present in the VCGs 0124, 0124/5, 0125, and 01220 of race 1, SIX7 was present only in Foc STR4, and SIX8 was found only in Foc R4 (TR4 and STR4) isolates. Insights into the geographical distribution of Foc races, and their interactions with banana varieties, can guide integrated disease management intervention strategies across India.
Collapse
Affiliation(s)
- Raman Thangavelu
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Hadimani Amaresh
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Muthukathan Gopi
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Murugan Loganathan
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Boopathy Nithya
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Perumal Ganga Devi
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | - Chelliah Anuradha
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| | | | | | - Guy Blomme
- Bioversity International, c/o ILRI, Addis Ababa P.O. Box 5689, Ethiopia
| | - Ramasamy Selvarajan
- ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India
| |
Collapse
|
14
|
Mascarenhas MS, Nascimento FDS, Schittino LMP, Galinari LB, Lino LSM, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, Santos-Serejo JAD, Amorim EP. Construction and Validation of CRISPR/Cas Vectors for Editing the PDS Gene in Banana ( Musa spp.). Curr Issues Mol Biol 2024; 46:14422-14437. [PMID: 39727993 DOI: 10.3390/cimb46120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024] Open
Abstract
Bananas and plantains are important staple food crops affected by biotic and abiotic stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development of cultivars with high tolerance to stresses. This study sought to develop a protocol for the construction of vectors for gene knockout. Here we use the phytoene desaturase (PDS) gene as a case study in Prata-Anã banana by the nonhomologous end junction (NHEJ) method. PDS is a key gene in the carotenoid production pathway in plants and its knockout leads to easily visualized phenotypes such as dwarfism and albinism in plants. Agrobacterium-mediated transformation delivered CRISPR/Cas9 constructs containing gRNAs were inserted into embryogenic cell suspension cultures. This is the first study to provide an effective method/protocol for constructing gene knockout vectors, demonstrating gene editing potential in a Brazilian banana variety. The constitutive (CaMV 35S) and root-specific vectors were successfully assembled and confirmed in transformed Agrobacterium by DNA extraction and PCR. The specificity of transformation protocols makes it possible to use the CRISPR-Cas9 technique to develop Prata-Anã banana plants with enhanced tolerance/resistance to major biotic and abiotic factors.
Collapse
Affiliation(s)
| | | | | | - Livia Batista Galinari
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa 36507-900, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu L, Wang C, Yin K, Ni M, Ding Y, Li C, Zheng SJ. The Dual Effect of Selenium Application in Reducing Fusarium Wilt Disease Incidence in Banana and Producing Se-Enriched Fruits. PLANTS (BASEL, SWITZERLAND) 2024; 13:3435. [PMID: 39683228 DOI: 10.3390/plants13233435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Fusarium wilt disease severely constrains the global banana industry. The highly destructive disease is caused by Fusarium oxysporum f. sp. cubense, especially its virulent tropical race 4 (Foc TR4). Selenium (Se), a non-essential mineral nutrient in higher plants, is known to enhance plant resistance against several fungal pathogens. The experiments we conducted showed that selenium (≥10 mg/L) dramatically inhibited the growth of Foc TR4 mycelia and promoted plant growth. The further study we performed recorded a substantial reduction in the disease index (DI) of banana plants suffering from Foc TR4 when treated with selenium. The selenium treatments (20~160 mg/L) demonstrated significant control levels, with recorded symptom reductions ranging from 42.4% to 65.7% in both greenhouse and field trials. The DI was significantly negatively correlated with the total selenium content (TSe) in roots. Furthermore, selenium treatments enhanced the antioxidant enzyme activities of peroxidase (POD), polyphenol oxidase (PPO), and glutathione peroxidase (GSH-Px) in banana. After two applications of selenium (100 and 200 mg/plant) in the field, the TSe in banana pulps increased 23.7 to 25.9-fold and achieved the Se enrichment standard for food. The results demonstrate that selenium applications can safely augment root TSe levels, both reducing Fusarium wilt disease incidence and producing Se-enriched banana fruits. For the first time, this study has revealed that selenium can significantly reduce the damage caused by soil-borne pathogens in banana by increasing the activities of antioxidant enzymes and inhibiting fungal growth.
Collapse
Affiliation(s)
- Lina Liu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, China
| | - Chengye Wang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Kesuo Yin
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ming Ni
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yue Ding
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, China
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Bioversity International, Kunming 650205, China
| |
Collapse
|
16
|
Ferreira CF, Chen A, Aitken EAB, Swennen R, Uwimana B, Rocha ADJ, Soares JMDS, Ramos APDS, Amorim EP. Toward Marker-Assisted Selection in Breeding for Fusarium Wilt Tropical Race-4 Type Resistant Bananas. J Fungi (Basel) 2024; 10:839. [PMID: 39728335 DOI: 10.3390/jof10120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
Fusarium wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of Fusarium oxysporum f. sp. cubense (Foc) belonging to the Subtropical Race 4 (STR4) and Tropical Race 4 (TR4). The wild banana diploid Musa acuminata ssp. malaccensis (AA, 2n = 22) carries resistance to Foc TR4. A previous study using segregating populations derived from M. acuminata ssp. malaccensis identified a quantitative trait locus (QTL) (12.9 cM) on the distal part of the long arm of chromosome 3, conferring resistance to both Foc TR4 and STR4. An SNP marker, based on the gene Macma4_03_g32560 of the reference genome 'DH-Pahang' v4, detected the segregation of resistance to Foc STR4 and TR4 at this locus. Using this marker, we assessed putative TR4 resistance sources in 123 accessions from the breeding program in Brazil, which houses one of the largest germplasm collections of Musa spp. in the world. The resistance marker allele was detected in a number of accessions, including improved diploids and commercial cultivars. Sequencing further confirmed the identity of the SNP at this locus. Results from the marker screening will assist in developing strategies for pre-breeding Foc TR4-resistant bananas. This study represents the first-ever report of marker-assisted screening in a comprehensive collection of banana accessions in South America. Accessions carrying the resistance marker allele will be validated in the field to confirm Foc TR4 resistance.
Collapse
Affiliation(s)
- Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Rua Embrapa s/n CP 007, Bairro Chapadinha, Cruz das Almas 44380-000, Bahia, Brazil
| | - Andrew Chen
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Elizabeth A B Aitken
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Rony Swennen
- International Institute of Tropical Agriculture, Banana Breeding, Kampala P.O. Box 7878, Uganda
- Department of Biosystems, KU Leuven University, Willem De Croylaan 42, bus 2455, 3001 Leuven, Belgium
| | - Brigitte Uwimana
- International Institute of Tropical Agriculture, Banana Breeding, Kampala P.O. Box 7878, Uganda
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil
| | | | | | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Rua Embrapa s/n CP 007, Bairro Chapadinha, Cruz das Almas 44380-000, Bahia, Brazil
| |
Collapse
|
17
|
Chen A, Chou TY, Chen Y, Fallatah SMA, Anderson J, Sun J, Cosgrove H, Gao S, Ferguson BJ, Soper A, Gardiner DM, Aitken EAB. Histological Dissection of Fusarium-Banana Interaction Using a GFP-Tagged Subtropical Race 4 Strain of Fusarium oxysporum f. sp. cubense on Banana Cultivars with Differing Levels of Resistance. Microorganisms 2024; 12:2472. [PMID: 39770675 PMCID: PMC11727742 DOI: 10.3390/microorganisms12122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/05/2025] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), poses a significant threat to global banana production. This study used a GFP-tagged subtropical race 4 strain of Foc (GFP-Foc-STR4) to trace the pathogen's movement in different banana cultivars. These include a race 4 resistant cultivar FHIA25 and the Cavendish somaclone 'GCTCV119', as well as susceptible cultivars including 'Lady Finger', 'FHIA02', and 'Williams' Cavendish. GFP localization revealed that GFP-Foc-STR4 was able to infect all tested cultivars, moving from the roots to the rhizome and aerial parts of the plant. Tyloses formation in root and rhizome vasculature, visualised with GFP autofluorescence and confirmed by scanning electron microscopy, was found to restrict Foc within the xylem vessels, slowing its spread but not fully preventing infection. This containment mechanism contributes to the host tolerance of 'FHIA25' and 'GCTCV119', though it does not confer complete immunity. The use of the fluorescently tagged Foc strain provides valuable insight into the infection process, and supports efforts in the integrated management of Fusarium wilt of banana.
Collapse
Affiliation(s)
- Andrew Chen
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Ting-Yan Chou
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Yi Chen
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Sumayyah M. A. Fallatah
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Jay Anderson
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Jiaman Sun
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Harry Cosgrove
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Siyuan Gao
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Brett J. Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Amelie Soper
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Elizabeth A. B. Aitken
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia; (T.-Y.C.); (Y.C.); (S.M.A.F.); (J.A.); (J.S.); (H.C.); (A.S.)
| |
Collapse
|
18
|
Du W, Dai P, Zhang M, Yang G, Huang W, Liang K, Li B, Cao K, Hu T, Wang Y, Meng X, Wang S. Effects of Two Trichoderma Strains on Apple Replant Disease Suppression and Plant Growth Stimulation. J Fungi (Basel) 2024; 10:804. [PMID: 39590723 PMCID: PMC11595690 DOI: 10.3390/jof10110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Fusarium oxysporum, the pathogen responsible for apple replant disease (ARD), is seriously threatening the apple industry globally. We investigated the antagonistic properties of Trichoderma strains against F. oxysporum HS2, aiming to find a biological control solution to minimize the dependence on chemical pesticides. Two of the thirty-one Trichoderma strains assessed through plate confrontation assays, L7 (Trichoderma atroviride) and M19 (T. longibrachiatum), markedly inhibited = F. oxysporum, with inhibition rates of 86.02% and 86.72%, respectively. Applying 1 × 106 spores/mL suspensions of these strains notably increased the disease resistance in embryonic mung bean roots. Strains L7 and M19 substantially protected Malus robusta Rehd apple rootstock from ARD; the plant height, stem diameter, leaf number, chlorophyll content, and defense enzyme activity were higher in the treated plants than in the controls in both greenhouse and field trials. The results of fluorescent labeling confirmed the effective colonization of these strains of the root soil, with the number of spores stabilizing over time. At 56 days after inoculation, the M19 and L7 spore counts in various soils confirmed their persistence. These results underscore the biocontrol potential of L7 and M19 against HS2, offering valuable insights into developing sustainable ARD management practices.
Collapse
Affiliation(s)
- Wen Du
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Pengbo Dai
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Mingyi Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Guangzhu Yang
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.Y.); (W.H.)
| | - Wenjing Huang
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.Y.); (W.H.)
| | - Kuijing Liang
- College of Life Science, Hengshui University, Hengshui 053000, China;
| | - Bo Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Keqiang Cao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Tongle Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Yanan Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Xianglong Meng
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Shutong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (W.D.); (P.D.); (M.Z.); (B.L.); (K.C.); (T.H.); (Y.W.); (X.M.)
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| |
Collapse
|
19
|
Cabutaje EM, Seki K, Kodama M, Arie T, Ueno K, Cruz TEED, Ishihara A. Coprinolide, a novel antifungal tricyclic polyketide with a rare furanone-fused chromene skeleton isolated from the mushroom Coprinus comatus. JOURNAL OF PESTICIDE SCIENCE 2024; 49:243-254. [PMID: 39877878 PMCID: PMC11770137 DOI: 10.1584/jpestics.d24-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/27/2024] [Indexed: 01/31/2025]
Abstract
A search for antifungal compounds from the mushroom Coprinus comatus using a bioassay-guided chromatographic fractionation approach led to the discovery of a novel polyketide harboring a rare 3,3a,9,9a-tetrahydro-1H-furo[3,4-b]chromen-1-one skeleton. The novel compound was named coprinolide. The inhibitory activity and fungicidal potential of coprinolide were evaluated against five economically important plant-pathogenic fungi. Coprinolide showed inhibitory effects on conidial germination and germ tube elongation of all tested fungi. The strongest effect was observed for Colletotrichum orbiculare with half-maximal inhibitory concentrations of 7.1 ppm and 8.2 ppm for conidial germination and germ tube elongation, respectively. Furthermore, coprinolide exhibited fungicidal activity against the tested fungi by inhibiting conidial germination to conidial death as confirmed by fluorescence microscopy using fluorescein diacetate and propidium iodide. These findings showed the potential of the mushroom as a source of a novel bioactive compound with promising agricultural application as an antifungal agent against different plant-pathogenic fungi.
Collapse
Affiliation(s)
| | - Kota Seki
- Graduate School of Sustainability Sciences, Tottori University
| | | | - Tsutomu Arie
- Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | | | | | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University
- International Platform for Dryland Research and Education, Tottori University
| |
Collapse
|
20
|
Liu S, Yang W, Yang X, Gong R, Xiang D, Li C. Integrated control of Fusarium wilt in banana by Bacillus velezensis EB1 and potassium sorbate. BMC Microbiol 2024; 24:457. [PMID: 39506643 PMCID: PMC11539603 DOI: 10.1186/s12866-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a widely distributed soilborne disease that poses a serious threat to banana production. Many control measures have been implemented but have not been effective. Here, we evaluated a combined strategy for Fusarium wilt control that involves a biological agent (Bacillus velezensis strain EB1) and a bioactive compound (potassium sorbate). Our results showed that potassium sorbate inhibited Foc TR4 in a dose-dependent manner. Potassium sorbate did not limit the growth of EB1 in vitro; instead, it promoted the growth and antagonistic ability of EB1 by upregulating the expression of antagonism-related genes. In greenhouse experiments, the combined application of EB1 and potassium sorbate significantly reduced the disease index of Fusarium wilt by suppressing fungal growth in the roots and promoting plant growth. Overall, our results demonstrated that potassium sorbate and B. velezensis EB1 can be used together for the sustainable management of banana Fusarium wilt.
Collapse
Affiliation(s)
- Siwen Liu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Wenlong Yang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaofang Yang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dandan Xiang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Chunyu Li
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.
| |
Collapse
|
21
|
Ritter T, Álvarez D, Mosquera LE, Martey E, Mockshell J. A socioeconomic and cost benefit analysis of Tropical Race 4 (TR4) prevention methods among banana producers in Colombia. PLoS One 2024; 19:e0311243. [PMID: 39475916 PMCID: PMC11524470 DOI: 10.1371/journal.pone.0311243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
The global banana industry faces a significant threat from Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). While prior research has concentrated on TR4's dissemination, reproductive conditions, and resistant banana varieties, this study employs a socioeconomic and cost-benefit analysis to explore the vulnerability of banana producers to TR4 in Colombia. It assesses the financial viability of current monitoring strategies and estimates potential losses in the event of TR4 spreading within the study area. Interviews were conducted with producers and key stakeholders in Colombia's top two banana-producing departments, Antioquia and Magdalena. The findings reveal that farming systems are highly vulnerable to TR4, particularly due to the prevalent use of corms. Producers employ preventive measures such as cement paths, fences, disinfecting stations, and footbaths to counteract TR4's spread. A cost-benefit analysis indicates that the benefits of these prevention methods significantly outweigh the associated costs, with a net present value of implementing prevention strategies per hectare of $95,389 USD and $112,527 USD in Magdalena and Antioquia and a benefit-cost ratio of 3.1 and 4.2, respectively. Considering the substantial impact TR4 could have in Colombia if it becomes more widespread, we recommend widespread adoption of preventive measures, including the construction and utilization of cement paths and disinfectant methods on all banana farms. Additionally, to enhance awareness and early detection, we propose leveraging technology, such as mobile applications (apps) and chat groups, to empower farmers in identifying and preventing the spread of TR4.
Collapse
Affiliation(s)
- Thea Ritter
- Performance, Innovation and Strategic Analysis for Impact (PISA4Impact), Applied Economics and Impact Evaluation, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Diego Álvarez
- Performance, Innovation and Strategic Analysis for Impact (PISA4Impact), Applied Economics and Impact Evaluation, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Leslie Estefany Mosquera
- Performance, Innovation and Strategic Analysis for Impact (PISA4Impact), Applied Economics and Impact Evaluation, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Edward Martey
- Performance, Innovation and Strategic Analysis for Impact (PISA4Impact), Applied Economics and Impact Evaluation, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
- Socioeconomics Section, CSIR-Savanna Agricultural Research Institute, Nyankpala, Ghana
| | - Jonathan Mockshell
- Performance, Innovation and Strategic Analysis for Impact (PISA4Impact), Applied Economics and Impact Evaluation, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| |
Collapse
|
22
|
Sampaio JR, Oliveira WDDS, Nascimento FDS, Junior LCDS, Rebouças TA, Moreira RFC, Ramos APDS, dos Santos-Serejo JA, Amorim EP, Ferreira CF. Calcium-Binding Protein and Polymorphism in Musa spp. Somaclones Resistant to Fusarium oxysporum. Curr Issues Mol Biol 2024; 46:12119-12132. [PMID: 39590313 PMCID: PMC11593143 DOI: 10.3390/cimb46110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
The fresh fruits of 'Grande Naine' (Cavendish AAA-Musa spp.) dominate the world market, especially in countries with a population in a situation of social vulnerability. However, Fusarium wilt, caused by the fungus Fusarium oxysporum f.sp. cubense race 4 Subtropical (Foc ST4), emerges as a serious threat to banana production, requiring the development of resistant cultivars based on biotechnological strategies, such as the induction of mutation in tissue culture. This study aimed to identify and characterize genetic variation in somaclones resistant to Fusarium oxysporum f.sp. cubense subtropical race 4 (Foc ST4), derived from 'Grand Naine' bananas, by molecular markers based on retrotransposons IRAP (Inter-retrotransposon Amplified Polymorphism) and REMAP (Retrotransposon-Microsatellite Amplified Polymorphism). Nine combinations of IRAP and six combinations of REMAP primers were used. The low number of polymorphic bands did not allow for genetic diversity studies; however, ten polymorphic bands between the somaclones and control were sequenced. Of these, three presented good base calling and were aligned, namely, 1AF, 2AF, and 3AF bands. Only the 1AF band presented function related to stress response with homology to a calcium-binding protein. These proteins act early in plant infection as secondary messengers activated by pathogen-associated molecular patterns (PAMPs), initiating the cascade of plant defense signals. The fact that this band is present in all somaclones reinforces previous assessments of their resistance to Foc ST4. The use of markers IRAP and REMAP produced polymorphic bands that can, through future primer design and field validations, accelerate the identification of resistant banana genotypes for use in banana genetic breeding programs.
Collapse
Affiliation(s)
- Juliana Rodrigues Sampaio
- Department of Agricultural, Environmental and Biological Sciencies, Federal University of Recôncavo da Bahia, Rua Rui Barbosa, 710-Centro, Cruz das Almas 44380-000, BA, Brazil; (J.R.S.); (L.C.d.S.J.); (R.F.C.M.)
| | | | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/no, Chapadinha, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (T.A.R.); (A.P.d.S.R.); (J.A.d.S.-S.); (E.P.A.)
| | - Luiz Carlos de Souza Junior
- Department of Agricultural, Environmental and Biological Sciencies, Federal University of Recôncavo da Bahia, Rua Rui Barbosa, 710-Centro, Cruz das Almas 44380-000, BA, Brazil; (J.R.S.); (L.C.d.S.J.); (R.F.C.M.)
| | - Tamyres Amorim Rebouças
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/no, Chapadinha, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (T.A.R.); (A.P.d.S.R.); (J.A.d.S.-S.); (E.P.A.)
| | - Ricardo Franco Cunha Moreira
- Department of Agricultural, Environmental and Biological Sciencies, Federal University of Recôncavo da Bahia, Rua Rui Barbosa, 710-Centro, Cruz das Almas 44380-000, BA, Brazil; (J.R.S.); (L.C.d.S.J.); (R.F.C.M.)
| | - Andresa Priscila de Souza Ramos
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/no, Chapadinha, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (T.A.R.); (A.P.d.S.R.); (J.A.d.S.-S.); (E.P.A.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/no, Chapadinha, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (T.A.R.); (A.P.d.S.R.); (J.A.d.S.-S.); (E.P.A.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/no, Chapadinha, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (T.A.R.); (A.P.d.S.R.); (J.A.d.S.-S.); (E.P.A.)
| | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/no, Chapadinha, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (T.A.R.); (A.P.d.S.R.); (J.A.d.S.-S.); (E.P.A.)
| |
Collapse
|
23
|
Mishra S, Srivastava A, Singh A, Pandey GC, Srivastava G. An overview of symbiotic and pathogenic interactions at the fungi-plant interface under environmental constraints. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1363460. [PMID: 39524061 PMCID: PMC11544544 DOI: 10.3389/ffunb.2024.1363460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
The complex and dynamic interactions between fungi and plants constitute a critical arena in ecological science. In this comprehensive review paper, we explore the multifaceted relationships at the fungi-plant interface, encompassing both mutualistic and antagonistic interactions, and the environmental factors influencing these associations. Mutualistic associations, notably mycorrhizal relationships, play a pivotal role in enhancing plant health and ecological balance. On the contrary, fungal diseases pose a significant threat to plant health, agriculture, and natural ecosystems, such as rusts, smuts, powdery mildews, downy mildews, and wilts, which can cause extensive damage and lead to substantial economic losses. Environmental constraints encompassing abiotic and biotic factors are elucidated to understand their role in shaping the fungi-plant interface. Temperature, moisture, and soil conditions, along with the presence of other microbes, herbivores, and competing plants, significantly influence the outcome of these interactions. The interplay between mutualism and antagonism is emphasised as a key determinant of ecosystem health and stability. The implications of these interactions extend to overall ecosystem productivity, agriculture, and conservation efforts. The potential applications of this knowledge in bioremediation, biotechnology, and biocontrol strategies emphasise the importance of adapting to climate change. However, challenges and future directions in this field include the impacts of climate change, emerging fungal pathogens, genomic insights, and the role of the fungi-plant interface in restoration ecology. Hence, this review paper provides a comprehensive overview of fungi-plant interactions, their environmental influences, and their applications in agriculture, conservation, and ecological restoration.
Collapse
Affiliation(s)
- Sunishtha Mishra
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Anukriti Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Ajeet Singh
- Department of Botany, Government Adarsh Girls College Sheopur, Madhya Pradesh, India
| | | | - Garima Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
24
|
Huang K, Sun X, Li Y, Xu P, Li N, Wu X, Pang M, Sui Y. Fusarium as potential pathogenic fungus of Ginger (Zingiber officinale Roscoe) wilt disease. NPJ Sci Food 2024; 8:72. [PMID: 39358372 PMCID: PMC11446917 DOI: 10.1038/s41538-024-00312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The wilt disease of ginger, caused by various Fusarium species, imperils the cultivation of this valuable crop. However, the pathogenic mechanisms and epidemiology of ginger wilt remain elusive. Here, we investigate the association between ginger rhizome health and the prevalence of Fusarium conidia, as well as examine fungal community composition in symptomatic and asymptomatic ginger tissues. Our findings show that diseased rhizomes have reduced tissue firmness, correlating negatively with Fusarium conidia counts. Pathogenicity assays confirmed that both Fusarium oxysporum and Fusarium solani are capable of inducing wilt symptoms in rhizomes and sterile seedlings. Furthermore, Fungal community profiling revealed Fusarium to be the dominant taxon across all samples, yet its relative abundance was significantly different between symptomatic and asymptomatic tissues. Specifically, there is a higher incidence of Fusarium amplicon sequence variants (ASVs) in symptomatic above-ground parts. Our results unequivocally implicate F. oxysporum or F. solani as the etiological agents responsible for ginger wilt and demonstrate that Fusarium is the principal fungal pathogen associated with this disease. These findings provide critical insights for efficacious disease management practices within the ginger industry.
Collapse
Affiliation(s)
- Ke Huang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Xiangcheng Sun
- West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yujing Li
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, 404120, China
| | - Panpan Xu
- West China Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Na Li
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China
| | - Xuehong Wu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ming Pang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China.
| | - Yuan Sui
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts & Sciences, Yongchuan, 402160, China.
| |
Collapse
|
25
|
Rajakumar P, Baharum NA, Lutfi AI, Sadali NM, Mispan MS, Kuang LL, Ling YS, Khalid N, Rejab NA. Assessing Cold Plasma's Impact on Banana Growth and Fusarium Wilt Control. THE PLANT PATHOLOGY JOURNAL 2024; 40:463-474. [PMID: 39397301 PMCID: PMC11471925 DOI: 10.5423/ppj.oa.05.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 10/15/2024]
Abstract
Bananas (Musa spp.), which serve millions of people worldwide, face a serious threat from Fusarium wilt (FW) disease caused by Fusarium oxysporum f. sp. cubense (Foc). Developing disease-resistant varieties particularly through breeding is challenging due to banana's seedless nature (parthenocarpic). As an alternative, cold plasma (CP) technology, has the potential to be used for crop improvement. Our study demonstrates a favourable impact of CP on the growth performance of banana (Berangan cultivar, AAA) in terms of height, leaf number and stem diameter. CP-treated plants also displayed delayed disease progression as well as lower disease severity indicated by slightly lower value of leaf symptoms index and rhizome discoloration index compared to the control plants. Additionally, quantitative real-time polymerase chain reaction analysis revealed differential expression of several defence (PR1, WRKY22, PAL, and CEBiP) and growth (Cytochrome P450, NAC68, and CAT) related genes in CP-treated plants, particularly in conjunction with Foc infection. These findings shed light on the potential use of CP in managing FW in banana and offer insights into possible mechanism behind improved traits.
Collapse
Affiliation(s)
- Priya Rajakumar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nadiya Akmal Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Afiqah Insyirah Lutfi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Najiah Mohd Sadali
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhamad Shakirin Mispan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lim Lian Kuang
- Plasma Technology Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yap Seong Ling
- Plasma Technology Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norzulaani Khalid
- Universiti Malaya-Wales, Faculty of Arts and Science, 50480 Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
He J, Zhong J, Jin L, Long Y, Situ J, He C, Kong G, Jiang Z, Li M. A virulent milRNA inhibits host immunity by silencing a host receptor-like kinase MaLYK3 and facilitates infection by Fusarium oxysporum f. sp. cubense. MOLECULAR PLANT PATHOLOGY 2024; 25:e70016. [PMID: 39394779 PMCID: PMC11470196 DOI: 10.1111/mpp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
MicroRNA-like RNAs (milRNAs) play a significant role in the infection process by plant-pathogenic fungi. However, the specific functions and regulatory mechanisms of fungal milRNAs remain insufficiently elucidated. This study investigated the function of Foc-milR138, an infection-induced milRNA secreted by Fusarium oxysporum f. sp. cubense (Foc), which is the causal agent of Fusarium wilt of banana. Initially, through precursor gene knockout and phenotypic assessments, we confirmed that Foc-milR138 acts as a virulent milRNA prominently upregulated during the early stages of Foc infection. Subsequent bioinformatic analyses and transient expression assays in Nicotiana benthamiana leaves identified a host receptor-like kinase gene, MaLYK3, as the direct target of Foc-milR138. Functional investigations of MaLYK3 revealed its pivotal role in triggering immune responses of N. benthamiana by upregulating a suite of resistance genes, bolstering reactive oxygen species (ROS) accumulation and callose deposition, thereby fortifying disease resistance. This response was markedly subdued upon co-expression with Foc-milR138. Expression pattern analysis further verified the specific suppression of MaLYK3 by Foc-milR138 during the early root infection by Foc. In conclusion, Foc secretes a virulent milRNA (Foc-milR138) to enter the host banana cells and inhibit the expression of the plant surface receptor-like kinase MaLYK3, subverting the disease resistance activated by MaLYK3, and ultimately facilitating pathogen invasion. These findings shed light on the roles of fungal milRNAs and their targets in resistance and pathogenicity, offering promising avenues for the development of disease-resistant banana cultivars.
Collapse
Affiliation(s)
- Jiahui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Jiaqi Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Longqi Jin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Yike Long
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Chengcheng He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Minhui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
27
|
Blomme G, Mahuku G, Kearsley E, Dita M. Towards the Integrated Management of Fusarium Wilt of Banana. J Fungi (Basel) 2024; 10:683. [PMID: 39452635 PMCID: PMC11508314 DOI: 10.3390/jof10100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
This Special Issue contains a selection of papers dealing with Fusarium wilt of banana (FWB), with a special focus on the Fusarium strain Tropical Race 4 (TR4), and explores (1) options for effective integrated management strategies, (2) the detection and development of disease-resistant cultivars, and (3) the distribution and diversity of the pathogen [...].
Collapse
Affiliation(s)
- Guy Blomme
- The Alliance of Bioversity International and CIAT, c/o ILRI, Addis Ababa P.O. Box 5689, Ethiopia
| | - George Mahuku
- The International Institute of Tropical Agriculture (IITA), Kampala P.O. Box 7878, Uganda
| | | | - Miguel Dita
- The Alliance of Bioversity International and CIAT, Sao Paulo 71600-500, Brazil;
| |
Collapse
|
28
|
Lu J, Huang Y, Liu R, Liang Y, Zhang H, Shen N, Yang D, Jiang M. Antimicrobial mechanisms and antifungal activity of compounds generated by banana rhizosphere Pseudomonas aeruginosa Gxun-2 against fusarium oxysporum f. sp. cubense. Front Microbiol 2024; 15:1456847. [PMID: 39386368 PMCID: PMC11461210 DOI: 10.3389/fmicb.2024.1456847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Fusarium wilt of banana, also recognized as Panama disease, is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (FOC TR4). In recent years, strategies utilizing biocontrol agents, comprising antifungal microorganisms and their associated bioactive compounds from various environments, have been implemented to control this destructive disease. Our previous study showed that Pseudomonas aeruginosa Gxun-2 had significant antifungal effects against FOC TR4. However, there has been little scientific investigation of the antibacterial or antifungal activity. The aim of this study was to isolate, identify and evaluate the inhibition strength of active compounds in P. aeruginosa Gxun-2, so as to explain the mechanism of the strain inhibition on FOC TR4 from the perspective of compounds. Methods The main antibacterial compounds of strain Gxun-2 were isolated, purified and identified using by fermentation extraction, silica gel column chromatography, thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) techniques. The effect of the compounds on the mycelial growth, morphology and spore germination of strain FOC TR4 was observed by 96-well plate method and AGAR diffusion method. Results Among the metabolites produced by the strain, four antifungal compounds which were identified phenazine (C12H8N2), phenazine-1-carboxylic acid (PCA) (C13H8N2O2), 2-acetamidophenol (C8H9NO2) and aeruginaldehyde (C10H7NO2S) were identified through HPLC and NMR. Of these compounds, phenazine and PCA exhibited the most pronounced inhibitory effects on the spore germination and mycelial growth of FOC TR4. Phenazine demonstrated potent antifungal activity against FOC TR4 with a minimum inhibitory concentration (MIC) of 6.25 mg/L. The half-maximal effective concentration (EC50) was calculated to be 26.24 mg/L using the toxicity regression equation. PCA exhibited antifungal activity against FOC TR4 with an MIC of 25 mg/L and an EC50 of 89.63 mg/L. Furthermore, phenazine and PCA triggered substantial morphological transformations in the mycelia of FOC TR4, encompassing folding, bending, fracturing, and diminished spore formation. Discussion These findings indicate that strain Gxun-2 plays a crucial role in controlling FOC TR4 pathogenesis, predominantly through producing the antifungal compounds phenazine and PCA, and possesses potential as a cost-efficient and sustainable biocontrol agent against Fusarium wilt of banana in forthcoming times.
Collapse
Affiliation(s)
- Junming Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Rui Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ying Liang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
29
|
Vignassa M, Soria C, Durand N, Poss C, Meile JC, Chillet M, Schorr-Galindo S. Modulation of Growth and Mycotoxigenic Potential of Pineapple Fruitlet Core Rot Pathogens during In Vitro Interactions. Toxins (Basel) 2024; 16:344. [PMID: 39195754 PMCID: PMC11360085 DOI: 10.3390/toxins16080344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Pineapple Fruitlet Core Rot (FCR) is a fungal disease characterized by a multi-pathogen pathosystem. Recently, Fusarium proliferatum, Fusarium oxysporum, and Talaromyces stollii joined the set of FCR pathogens until then exclusively attributed to Fusarium ananatum. The particularity of FCR relies on the presence of healthy and diseased fruitlets within the same infructescence. The mycobiomes associated with these two types of tissues suggested that disease occurrence might be triggered by or linked to an ecological chemical communication-promoting pathogen(s) development within the fungal community. Interactions between the four recently identified pathogens were deciphered by in vitro pairwise co-culture bioassays. Both fungal growth and mycotoxin production patterns were monitored for 10 days. Results evidenced that Talaromyces stollii was the main fungal antagonist of Fusarium species, reducing by 22% the growth of Fusarium proliferatum. A collapse of beauvericin content was observed when FCR pathogens were cross-challenged while fumonisin concentrations were increased by up to 7-fold. Antagonism between Fusarium species and Talaromyces stollii was supported by the diffusion of a red pigmentation and droplets of red exudate at the mycelium surface. This study revealed that secondary metabolites could shape the fungal pathogenic community of a pineapple fruitlet and contribute to virulence promoting FCR establishment.
Collapse
Affiliation(s)
- Manon Vignassa
- CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Réunion, France (C.S.); (J.-C.M.); (M.C.)
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France; (N.D.); (C.P.)
| | - Christian Soria
- CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Réunion, France (C.S.); (J.-C.M.); (M.C.)
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France; (N.D.); (C.P.)
| | - Noël Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France; (N.D.); (C.P.)
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Charlie Poss
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France; (N.D.); (C.P.)
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Jean-Christophe Meile
- CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Réunion, France (C.S.); (J.-C.M.); (M.C.)
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France; (N.D.); (C.P.)
| | - Marc Chillet
- CIRAD, UMR Qualisud, F-97410 Saint-Pierre, Réunion, France (C.S.); (J.-C.M.); (M.C.)
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France; (N.D.); (C.P.)
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France; (N.D.); (C.P.)
| |
Collapse
|
30
|
de Castro Costa É, Bastos LS, Gomes TG, Miller RNG. Reference genes for RT-qPCR analysis in Musa acuminata genotypes contrasting in resistance to Fusarium oxysporum f. sp. cubense subtropical race 4. Sci Rep 2024; 14:16578. [PMID: 39020014 PMCID: PMC11255279 DOI: 10.1038/s41598-024-67538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Banana (Musa spp.) is the most widely consumed fruit globally. Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is a highly threatening disease to banana production. Resistance genes to Foc exist in wild Musa genotypes such as Musa acuminata subsp. burmannicoides var. Calcutta 4. Whilst real-time PCR (RT-qPCR) is appropriate for accurate analysis of gene expression in pathways involved in host defence responses, reference genes with stable expression under specific biotic stress conditions and host tissue types are necessary for normalization of sample variation. In this context, the stability in potential host reference genes ACT1, APT, EF1α, GAPDH, αTUB, RAN, UBIQ1, UBIQ2, βTUB1, βTUB3, L2 and ACTA1 was evaluated in total RNA samples from root tissues in Calcutta 4 (resistant) and Musa sp. cultivar Prata-anã (susceptible) extracted during interaction with Foc subtropical race 4 (STR4). Expression stability was calculated using the algorithms geNorm, NormFinder and BestKeeper. βTUB3 and L2 were identified as the most stable in Calcutta 4, with ACTA1 and GAPDH the most stable in Prata-anã. These reference genes for analysis of gene expression modulation in the Musa-Foc STR4 pathosystem are fundamental for advancing understanding of host defence responses to this important pathogen.
Collapse
Affiliation(s)
- Érica de Castro Costa
- Departamento de Fitopatologia, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Lucas Santos Bastos
- Departamento de Fitopatologia, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Taísa Godoy Gomes
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Robert Neil Gerard Miller
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
31
|
Munhoz T, Vargas J, Teixeira L, Staver C, Dita M. Fusarium Tropical Race 4 in Latin America and the Caribbean: status and global research advances towards disease management. FRONTIERS IN PLANT SCIENCE 2024; 15:1397617. [PMID: 39081528 PMCID: PMC11286425 DOI: 10.3389/fpls.2024.1397617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Fusarium wilt of banana (FWB), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), poses an undeniable threat to global banana production. This disease has intensified in recent years, with the tropical race 4 (TR4) strain spreading rapidly. Since 2018, the number of affected countries has increased from 16 to 23, presenting a significant challenge to researchers, producers, and National Plant Protection Organizations (NPPOs) worldwide. The potential impact of TR4 in Latin America and the Caribbean (LAC) is particularly concerning. This region boasts seven of the top ten banana-exporting countries, and bananas and plantains are crucial for food security and income generation. In Colombia, where TR4 was detected in 2019, the disease has already spread from La Guajira to Magdalena, and it is currently affecting 20 large commercial export farms. In Peru, the disease was detected in 2021 and although still restricted to the northern region, flood irrigation and heavy rains associated with the Yaku cyclone, boosted pathogen spread, and more than 400 small organic banana farmers are currently affected. In Venezuela, TR4 detection occurred in 2023, with plantations across three states and five municipalities now affected. Worryingly, TR4 has also been confirmed in plantains, a staple food in the region. Current national responses in LAC primarily rely on preventive and reactive measures: preventing initial incursions and containing outbreaks to avoid further spread. However, the disease's relentless progression suggests that its eventual presence in all banana-producing areas is likely. Therefore, exploring alternative management approaches beyond pathogen exclusion becomes crucial, both in affected and disease-free regions. This paper examines the current spread of TR4, focusing on epidemiological aspects and recent research-based management options. Key epidemiological features were highlighted, drawing practical examples from various scales (plots to landscapes) and utilizing experiences from LAC's fight against TR4. The paper also reviews field-tested approaches in biosecurity, biological control, resistant varieties, soil health, and integrated disease management, acknowledging the specific challenges faced by smallholder settings. In each section research initiatives were analyzed, identifying gaps, and proposing directions to minimize TR4 impact and accelerate the development of sustainable solutions for managing this devastating disease.
Collapse
Affiliation(s)
- Thayne Munhoz
- Laboratório de Microbiologia Ambiental, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Jorge Vargas
- Biodiversity for Food and Agriculture, 2 Centro Internacional de Agricultura Tropical, Cali, Colombia
| | - Luiz Teixeira
- Centro de Solos e Pesquisas de Fertilizantes, Instituto Agronômico, Campinas, Brazil
| | - Charles Staver
- Facultad de Agronomía, Universidad Veracruzana, Xalapa, Mexico
| | - Miguel Dita
- Biodiversity for Food and Agriculture, Bioversity International, Cali, Colombia
| |
Collapse
|
32
|
Muhorakeye MC, Namikoye ES, Khamis FM, Wanjohi W, Akutse KS. Biostimulant and antagonistic potential of endophytic fungi against fusarium wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici. Sci Rep 2024; 14:15365. [PMID: 38965302 PMCID: PMC11224277 DOI: 10.1038/s41598-024-66101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Endophytic fungal-based biopesticides are sustainable and ecologically-friendly biocontrol agents of several pests and diseases. However, their potential in managing tomato fusarium wilt disease (FWD) remains unexploited. This study therefore evaluated effectiveness of nine fungal isolates against tomato fusarium wilt pathogen, Fusarium oxysporum f. sp. lycopersici (FOL) in vitro using dual culture and co-culture assays. The efficacy of three potent endophytes that inhibited the pathogen in vitro was assessed against FWD incidence, severity, and ability to enhance growth and yield of tomatoes in planta. The ability of endophytically-colonized tomato (Solanum lycopersicum L.) plants to systemically defend themselves upon exposure to FOL were also assessed through defence genes expression using qPCR. In vitro assays showed that endophytes inhibited and suppressed FOL mycelial growth better than entomopathogenic fungi (EPF). Endophytes Trichoderma asperellum M2RT4, Hypocrea lixii F3ST1, Trichoderma harzianum KF2R41, and Trichoderma atroviride ICIPE 710 had the highest (68.84-99.61%) suppression and FOL radial growth inhibition rates compared to EPF which exhibited lowest (27.05-40.63%) inhibition rates. Endophytes T. asperellum M2RT4, H. lixii F3ST1 and T. harzianum KF2R41 colonized all tomato plant parts. During the in planta experiment, endophytically-colonized and FOL-infected tomato plants showed significant reduction of FWD incidence and severity compared to non-inoculated plants. In addition, these endophytes contributed to improved growth promotion parameters and yield. Moreover, there was significantly higher expression of tomato defence genes in T. asperellum M2RT4 colonized than in un-inoculated tomato plants. These findings demonstrated that H. lixii F3ST1 and T. asperellum M2RT4 are effective biocontrol agents against FWD and could sustainably mitigate tomato yield losses associated with fusarium wilt.
Collapse
Affiliation(s)
- Marie Cecile Muhorakeye
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Agricultural Science and Technology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
- Rwanda Polytechnic, Integrated Polytechnic Regional College (IPRC) Musanze, P.O. Box 226, Musanze, Rwanda
| | - Everlyne Samita Namikoye
- Department of Agricultural Science and Technology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Waceke Wanjohi
- Department of Agricultural Science and Technology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Komivi S Akutse
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Unit of Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
33
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
34
|
Ferrario E, Kallio JP, Emdadi M, Strømland Ø, Rack JGM, Ziegler M. Evolution of fungal tuberculosis necrotizing toxin (TNT) domain-containing enzymes reveals divergent adaptations to enhance NAD cleavage. Protein Sci 2024; 33:e5071. [PMID: 38895984 PMCID: PMC11187862 DOI: 10.1002/pro.5071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Tuberculosis necrotizing toxin (TNT) is a protein domain discovered on the outer membrane of Mycobacterium tuberculosis (Mtb), and the fungal pathogen Aspergillus fumigatus. TNT domains have pure NAD(P) hydrolytic activity, setting them apart from other NAD-cleaving domains such as ADP-ribosyl cyclase and Toll/interleukin-1 receptor homology (TIR) domains which form a wider set of products. Importantly, the Mtb TNT domain has been shown to be involved in immune evasion via depletion of the intracellular NAD pool of macrophages. Therefore, an intriguing hypothesis is that TNT domains act as "NAD killers" in host cells facilitating pathogenesis. Here, we explore the phylogenetic distribution of TNT domains and detect their presence solely in bacteria and fungi. Within fungi, we discerned six TNT clades. In addition, X-ray crystallography and AlphaFold2 modeling unveiled clade-specific strategies to promote homodimer stabilization of the fungal enzymes, namely, Ca2+ binding, disulfide bonds, or hydrogen bonds. We show that dimer stabilization is a requirement for NADase activity and that the group-specific strategies affect the active site conformation, thereby modulating enzyme activity. Together, these findings reveal the evolutionary lineage of fungal TNT enzymes, corroborating the hypothesis of them being pure extracellular NAD (eNAD) cleavers, with possible involvement in microbial warfare and host immune evasion.
Collapse
Affiliation(s)
| | | | - Mahdi Emdadi
- Department of BiomedicineUniversity of BergenBergenNorway
| | | | | | | |
Collapse
|
35
|
Kumari R, Kumar V, Arukha AP, Rabbee MF, Ameen F, Koul B. Screening of the Biocontrol Efficacy of Potent Trichoderma Strains against Fusarium oxysporum f.sp. ciceri and Scelrotium rolfsii Causing Wilt and Collar Rot in Chickpea. Microorganisms 2024; 12:1280. [PMID: 39065049 PMCID: PMC11278996 DOI: 10.3390/microorganisms12071280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chickpeas contribute to half of the pulses produced in India and are an excellent source of protein, fibers, carbohydrates, minerals, and vitamins. However, the combination of the wilt and root rot diseases drastically lowers its yield. The use of antagonist microbes that restrict the growth of other phytopathogens is an ecofriendly approach to combat the serious threats raised by the plant pathogens. Trichoderma spp. are well known as biocontrol agents, especially against soil- and seed-borne phytopathogens. In this study, 21 Trichoderma isolates that were collected from different rhizospheric soils were evaluated against two notorious soil-borne pathogens, such as Fusarium oxysproum f.sp. ciceri and Sclerotium rolfsii. The maximum percentage of inhibition against the tested pathogens was observed in Trichoderma isolate PBT13 (72.97%, 61.1%) followed by PBT3 (72.23%, 59.3%). The mycelial extension rate method, dual culture (antagonism), production of cell-wall degrading enzymes (CWDs), and antifungal metabolites (by GC-MS) were used as selection criteria for potent Trichoderma isolates. Among the 21 isolates, PBT3, PBT4, PBT9, and PBT13 exhibited high antagonistic activity, production of antifungal metabolites, and chitinase and β-1,3-glucanase activity. These four species were subjected to molecular characterization using an internal transcribed spacer (ITS 1 and ITS4). The results of molecular characterization identified the four species as T. virnes, T. asperellum, T. lixii, and T. harzianum. Moreover, significant chitinase and β-1,3-glucanase activities of all Trichoderma isolates were recorded in the growth medium. Trichoderma harzianum (isolate PBT13) was found to exhibit the highest chitinase activity in terms of zone formation (4.40 ± 0.17 cm), whereas Trichoderma virens (isolate PBT3) exhibited the highest β-1,3-glucanase activity1.511 μmole/min. A GC-MS analysis of ethyl extracts from two isolates of Trichoderma (PBT9, PBT13) revealed the presence of 28 VOCs. Overall, this study suggests that these four Trichoderma strains are promising biological control agents (BCAs) and could be developed as bio-pesticides after stringent field trials for the management of soil-borne diseases of chickpeas.
Collapse
Affiliation(s)
- Ranjna Kumari
- Department of Botany, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Vipul Kumar
- Department of Plant Pathology, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Ananta Prasad Arukha
- Department of Nephrology and Hypertension, Mayo Medical Sciences, Rochester, MN 55902, USA;
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Bhupendra Koul
- Department of Botany, Lovely Professional University, Phagwara 144411, Punjab, India;
| |
Collapse
|
36
|
Martorelli I, Pooryousefi A, van Thiel H, Sicking FJ, Ramackers GJ, Merckx V, Verbeek FJ. Multiple graphical views for automatically generating SQL for the MycoDiversity DB; making fungal biodiversity studies accessible. Biodivers Data J 2024; 12:e119660. [PMID: 38933486 PMCID: PMC11199959 DOI: 10.3897/bdj.12.e119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Fungi is a highly diverse group of eukaryotic organisms that live under an extremely wide range of environmental conditions. Nowadays, there is a fundamental focus on observing how biodiversity varies on different spatial scales, in addition to understanding the environmental factors which drive fungal biodiversity. Metabarcoding is a high-throughput DNA sequencing technology that has positively contributed to observing fungal communities in environments. While the DNA sequencing data generated from metabarcoding studies are available in public archives, this valuable data resource is not directly usable for fungal biodiversity investigation. Additionally, due to its fragmented storage and distributed nature, it is not immediately accessible through a single user interface. We developed the MycoDiversity DataBase User Interface (https://mycodiversity.liacs.nl) to provide direct access and retrieval of fungal data that was previously inaccessible in the public domain. The user interface provides multiple graphical views of the data components used to reveal fungal biodiversity. These components include reliable geo-location terms, the reference taxonomic scientific names associated with fungal species and the standard features describing the environment where they occur. Direct observation of the public DNA sequencing data in association with fungi is accessible through SQL search queries created by interactively manipulating topological maps and dynamic hierarchical tree views. The search results are presented in configurable data table views that can be downloaded for further use. With the MycoDiversity DataBase User Interface, we make fungal biodiversity data accessible, assisting researchers and other stakeholders in using metabarcoding studies for assessing fungal biodiversity.
Collapse
Affiliation(s)
- Irene Martorelli
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Aram Pooryousefi
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Haike van Thiel
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Floris J Sicking
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Guus J Ramackers
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Vincent Merckx
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, NetherlandsInstitute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdamNetherlands
| | - Fons J Verbeek
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| |
Collapse
|
37
|
Gao C, Lan Y, Zhan Y, Li Y, Jiang J, Li Y, Zhang L, Fan X. Preparation of porous biochar from fusarium wilt-infected banana straw for remediation of cadmium pollution in water bodies. Sci Rep 2024; 14:13821. [PMID: 38879683 PMCID: PMC11180127 DOI: 10.1038/s41598-024-63954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
The problem of cadmium pollution and its control is becoming increasingly severe issue in the world. Banana straw is an abundant bio raw material, but its burning or discarding in field not only causes pollution but also spreads fusarium wilt. The objective of this paper is to utilize biochar derived from the wilt-infected banana straw for remediation of Cd(II) pollution while to eliminate the pathogen. The activity of wilt pathogen in biochar was determined by PDA petri dish test. The Cd(II) adsorption of the biochar was determined by batch adsorption experiments. The effects of KOH concentration (0.25, 0.5 and 0.75 M) on the physicochemical characteristics of the biochar were also observed by BET, SEM, FTIR, XRD and XPS. Results showed that pristine banana straw biochar (PBBC) did not harbor any pathogen. The specific surface area (SSA) and Cd(II) adsorption capacity of 0.75 M KOH modified banana straw biochar (MBBC0.75M) were increased by 247.2% and 46.1% compared to that of PBBC, respectively. Cd(II) adsorption by MBBC0.75M was suitable to be described by the pseudo-second-order kinetic model and Freundlich isotherm. After Cd(II) adsorption, the CdCO3 were confirmed by XRD and observed through SEM. The weakness and shift of oxygen-containing functional groups in MBBC0.75M after Cd(II) adsorption implied that those groups were complexed with Cd(II). The results showed that pyrolysis could not only eliminate banana fusarium wilt, but also prepare porous biochar with the wilt-infected banana straw. The porous biochar possessed the potential to adsorb Cd(II) pollutants.
Collapse
Affiliation(s)
- Chengxiang Gao
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Yi Lan
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Yaowei Zhan
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Yuechen Li
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Jiaquan Jiang
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Yuanqiong Li
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Lidan Zhang
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China.
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China.
| | - Xiaolin Fan
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China.
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China.
| |
Collapse
|
38
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
39
|
Izquierdo-García LF, Carmona-Gutiérrez SL, Moreno-Velandia CA, Villarreal-Navarrete ADP, Burbano-David DM, Quiroga-Mateus RY, Gómez-Marroquín MR, Rodríguez-Yzquierdo GA, Betancourt-Vásquez M. Microbial-Based Biofungicides Mitigate the Damage Caused by Fusarium oxysporum f. sp. cubense Race 1 and Improve the Physiological Performance in Banana. J Fungi (Basel) 2024; 10:419. [PMID: 38921405 PMCID: PMC11204473 DOI: 10.3390/jof10060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Fusarium wilt of banana (FWB) is the most limiting disease in this crop. The phytosanitary emergency caused by FWB since 2019 in Colombia has required the development of ecofriendly control methods. The aim of this study was to test the effectiveness of microbial-based biofungicides against FWB caused by Fusarium oxysporum f. sp. cubense race 1 (Foc R1) and correlate such effect with plant physiological parameters. Five Trichoderma (T1 to T4 and T9) and four Bacillus (T5 to T8)-based biofungicides were evaluated in pot experiments. In vitro, dual confrontation tests were also carried out to test whether the in vitro effects on Foc growth were consistent with the in vivo effects. While Trichoderma-based T3, T4, and T9, and Bacillus-based T8, significantly reduced the growth of Foc R1 in vitro, Trichoderma-based T1, T3, T4, and T9 temporarily reduced the Foc population in the soil. However, the incidence progress of FWB was significantly reduced by Bacterial-based T7 (74% efficacy) and Trichoderma-based T2 (50% efficacy). The molecular analysis showed that T7 prevented the inner tissue colonization by Foc R1 in 80% of inoculated plants. The T2, T4, T7, and T9 treatments mitigated the negative effects caused by Foc R1 on plant physiology and growth. Our data allowed us to identify three promising treatments to control FWB, reducing the progress of the disease, delaying the colonization of inner tissue, and mitigating physiological damages. Further studies should be addressed to determine the modes of action of the biocontrol agents against Foc and validate the utilization in the field.
Collapse
Affiliation(s)
- Luisa Fernanda Izquierdo-García
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Centro de Investigación Tibaitatá, Km 14 vía Bogotá a Mosquera, Mosquera, Cundinamarca 250047, Colombia; (S.L.C.-G.); (A.d.P.V.-N.); (D.M.B.-D.); (R.Y.Q.-M.); (M.R.G.-M.); (G.A.R.-Y.); (M.B.-V.)
| | | | - Carlos Andrés Moreno-Velandia
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Centro de Investigación Tibaitatá, Km 14 vía Bogotá a Mosquera, Mosquera, Cundinamarca 250047, Colombia; (S.L.C.-G.); (A.d.P.V.-N.); (D.M.B.-D.); (R.Y.Q.-M.); (M.R.G.-M.); (G.A.R.-Y.); (M.B.-V.)
| | | | | | | | | | | | | |
Collapse
|
40
|
Ruan YN, Nong C, Jintrawet A, Fan H, Fu L, Zheng SJ, Li S, Wang ZY. A smooth vetch ( Vicia villosa var.) strain endogenous to the broad-spectrum antagonist Bacillus siamensis JSZ06 alleviates banana wilt disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1410197. [PMID: 38978518 PMCID: PMC11229777 DOI: 10.3389/fpls.2024.1410197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), poses a significant threat to banana production globally, thereby necessitating effective biocontrol methods to manage this devastating disease. This study investigates the potential of Bacillus siamensis strain JSZ06, isolated from smooth vetch, as a biocontrol agent against Foc TR4. To this end, we conducted a series of in vitro and in vivo experiments to evaluate the antifungal activity of strain JSZ06 and its crude extracts. Additionally, genomic analyses were performed to identify antibiotic synthesis genes, while metabolomic profiling was conducted to characterize bioactive compounds. The results demonstrated that strain JSZ06 exhibited strong inhibitory activity against Foc TR4, significantly reducing mycelial growth and spore germination. Moreover, scanning and transmission electron microscopy revealed substantial ultrastructural damage to Foc TR4 mycelia treated with JSZ06 extracts. Genomic analysis identified several antibiotic synthesis genes, and metabolomic profiling revealed numerous antifungal metabolites. Furthermore, in pot trials, the application of JSZ06 fermentation broth significantly enhanced banana plant growth and reduced disease severity, achieving biocontrol efficiencies of 76.71% and 79.25% for leaves and pseudostems, respectively. In conclusion, Bacillus siamensis JSZ06 is a promising biocontrol agent against Fusarium wilt in bananas, with its dual action of direct antifungal activity and plant growth promotion underscoring its potential for integrated disease management strategies.
Collapse
Affiliation(s)
- Yan-Nan Ruan
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- College of Agronomy and Life Sciences, Kunming Universities, Kunming, Yunnan, China
| | - Caihong Nong
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- College of Agronomy and Life Sciences, Kunming Universities, Kunming, Yunnan, China
| | | | - Huacai Fan
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Libo Fu
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Zhi-Yuan Wang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
41
|
Yiallouris A, Pana ZD, Marangos G, Tzyrka I, Karanasios S, Georgiou I, Kontopyrgia K, Triantafyllou E, Seidel D, Cornely OA, Johnson EO, Panagiotou S, Filippou C. Fungal diversity in the soil Mycobiome: Implications for ONE health. One Health 2024; 18:100720. [PMID: 38699438 PMCID: PMC11064618 DOI: 10.1016/j.onehlt.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Today, over 300 million individuals worldwide are afflicted by severe fungal infections, many of whom will perish. Fungi, as a result of their plastic genomes have the ability to adapt to new environments and extreme conditions as a consequence of globalization, including urbanization, agricultural intensification, and, notably, climate change. Soils and the impact of these anthropogenic environmental factors can be the source of pathogenic and non-pathogenic fungi and subsequent fungal threats to public health. This underscores the growing understanding that not only is fungal diversity in the soil mycobiome a critical component of a functioning ecosystem, but also that soil microbial communities can significantly contribute to plant, animal, and human health, as underscored by the One Health concept. Collectively, this stresses the importance of investigating the soil microbiome in order to gain a deeper understanding of soil fungal ecology and its interplay with the rhizosphere microbiome, which carries significant implications for human health, animal health and environmental health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Zoi D. Pana
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | | | | | | | | | | | | | - Danila Seidel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Elizabeth O. Johnson
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| | - Stavros Panagiotou
- School of Medicine, European University, Cyprus
- Division of Medical Education, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| | - Charalampos Filippou
- School of Medicine, European University, Cyprus
- Medical innovation center (MEDIC), School of Medicine, European University, Cyprus
| |
Collapse
|
42
|
Du Y, Wang T, Lv C, Yan B, Wan X, Wang S, Kang C, Guo L, Huang L. Whole Genome Sequencing Reveals Novel Insights about the Biocontrol Potential of Burkholderia ambifaria CF3 on Atractylodes lancea. Microorganisms 2024; 12:1043. [PMID: 38930425 PMCID: PMC11205678 DOI: 10.3390/microorganisms12061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Root rot caused by Fusarium spp. is the most destructive disease on Atractylodes lancea, one of the large bulks and most common traditional herbal plants in China. In this study, we isolated a bacterial strain, CF3, from the rhizosphere soil of A. lancea and determined its inhibitory effects on F. oxysporum in both in vitro and in vivo conditions. To deeply explore the biocontrol potential of CF3, we sequenced the whole genome and investigated the key pathways for the biosynthesis of many antibiotic compounds. The results revealed that CF3 is a member of Burkholderia ambifaria, harboring two chromosomes and one plasmid as other strains in this species. Five antibiotic compounds were found that could be synthesized due to the existence of the bio-synthesis pathways in the genome. Furthermore, the synthesis of antibiotic compounds should be confirmed by in vitro experiments and novel compounds should be purified and characterized in further studies.
Collapse
Affiliation(s)
- Yongxi Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Chaogeng Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Binbin Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Chuanzhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Luqi Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| |
Collapse
|
43
|
Correa-Delgado R, Brito-López P, Jaizme Vega MC, Laich F. Biodiversity of Trichoderma species of healthy and Fusarium wilt-infected banana rhizosphere soils in Tenerife (Canary Islands, Spain). Front Microbiol 2024; 15:1376602. [PMID: 38800760 PMCID: PMC11122028 DOI: 10.3389/fmicb.2024.1376602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Banana (Musa acuminata) is the most important crop in the Canary Islands (38.9% of the total cultivated area). The main pathogen affecting this crop is the soil fungal Fusarium oxysporum f. sp. cubense subtropical race 4 (Foc-STR4), for which there is no effective control method under field conditions. Therefore, the use of native biological control agents may be an effective and sustainable alternative. This study aims to: (i) investigate the diversity and distribution of Trichoderma species in the rhizosphere of different banana agroecosystems affected by Foc-STR4 in Tenerife (the island with the greatest bioclimatic diversity and cultivated area), (ii) develop and preserve a culture collection of native Trichoderma species, and (iii) evaluate the influence of soil chemical properties on the Trichoderma community. A total of 131 Trichoderma isolates were obtained from 84 soil samples collected from 14 farms located in different agroecosystems on the northern (cooler and wetter) and southern (warmer and drier) slopes of Tenerife. Ten Trichoderma species, including T. afroharzianum, T. asperellum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hamatum, T. harzianum, T. hirsutum, T. longibrachiatum, and T. virens, and two putative novel species, named T. aff. harzianum and T. aff. hortense, were identified based on the tef1-α sequences. Trichoderma virens (35.89% relative abundance) and T. aff. harzianum (27.48%) were the most abundant and dominant species on both slopes, while other species were observed only on one slope (north or south). Biodiversity indices (Margalef, Shannon, Simpson, and Pielou) showed that species diversity and evenness were highest in the healthy soils of the northern slope. The Spearman analysis showed significant correlations between Trichoderma species and soil chemistry parameters (mainly with phosphorus and soil pH). To the best of our knowledge, six species are reported for the first time in the Canary Islands (T. afroharzianum, T. asperellum, T. atrobrunneum, T. guizhouense, T. hamatum, T. hirsutum) and in the rhizosphere of banana soils (T. afroharzianum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hirsutum, T. virens). This study provides essential information on the diversity/distribution of native Trichoderma species for the benefit of future applications in the control of Foc-STR4.
Collapse
Affiliation(s)
| | | | | | - Federico Laich
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, Valle de Guerra, Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
44
|
Sousa ABP, Rocha ADJ, Oliveira WDDS, Rocha LDS, Amorim EP. Phytoparasitic Nematodes of Musa spp. with Emphasis on Sources of Genetic Resistance: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1299. [PMID: 38794370 PMCID: PMC11124862 DOI: 10.3390/plants13101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Bananas are a staple food that considerably contributes to both food security and income generation, especially in countries of Africa, Asia, and Central and South America. The banana plant (Musa spp.) is affected by various pathogens, of main concern being the plant-parasitic nematodes associated with the rhizosphere, the most important of which are Radopholus similis (burrowing nematode), Helicotylenchus sp. (spiral nematode), Pratylenchus sp. (root lesion nematode), and Meloidogyne sp. (gall nematode). Infected plants reduce their ability to absorb water and nutrients, which can lead to delayed flowering, fewer bunches, and lower fruit mass. Obtaining nematode-resistant banana cultivars through genetic improvement is an effective and sustainable option compared with chemical control with nematicides. Here, we provide the first systematic review of existing banana sources of resistance to nematodes to aid the management and control of nematodes in banana and plantain crops. Articles selected from different databases were evaluated, and searches were conducted using pre-established inclusion and exclusion criteria. We found 69 studies dealing with genetic improvement for nematode resistance in banana cultivation. Our findings revealed that sources of resistance are currently under investigation to combat the diseases caused by different nematode species in banana plants.
Collapse
Affiliation(s)
- Amanda Bahiano Passos Sousa
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (A.B.P.S.); (W.D.d.S.O.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (A.d.J.R.); (L.d.S.R.)
| | | | - Leandro de Souza Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (A.d.J.R.); (L.d.S.R.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (A.d.J.R.); (L.d.S.R.)
| |
Collapse
|
45
|
Xie L, Bi Y, He C, Situ J, Wang M, Kong G, Xi P, Jiang Z, Li M. Unveiling microRNA-like small RNAs implicated in the initial infection of Fusarium oxysporum f. sp. cubense through small RNA sequencing. Mycology 2024; 16:293-308. [PMID: 40083400 PMCID: PMC11899247 DOI: 10.1080/21501203.2024.2345917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 03/16/2025] Open
Abstract
Banana Fusarium wilt (BFW), caused by Fusarium oxysporum f. sp. cubense (Foc), poses a major challenge to the worldwide banana industry. Fungal microRNA-like small RNAs (milRNAs) play crucial roles in regulating fungal growth, conidiation, development, and pathogenicity. However, the milRNAs and their functions in the pathogenesis of Foc remain poorly understood. In this study, we employed high-throughput sequencing and bioinformatics to profile Foc sRNAs during both pure culture and early infection stages. Our analysis identified six milRNAs exhibiting significantly upregulated expression at the initial Foc infection. Of these, milR106's biogenesis was found to be Dicer-dependent, whereas milR87, milR133, milR138, and milR148 were associated with Dicer and Argonaute proteins. Genetic manipulation and phenotype analysis confirmed that milR106 is crucial for Foc virulence by regulating conidiation, hydrogen peroxide sensitivity, and infective growth. Gene Ontology analysis of milRNA targets in the banana genome revealed enrichment in defence response to fungus and cellular response to hypoxia, implying the importance of these target genes in response to pathogen infection. In conclusion, our sRNA profiling of Foc identified several infection-induced milRNAs. The corresponding results provide valuable molecular targets for the development of an efficient strategy to control BFW.
Collapse
Affiliation(s)
- Lifei Xie
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yuntian Bi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Chengcheng He
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Meng Wang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Fu H, Fu J, Zhou B, Wu H, Liao D, Liu Z. Biochemical mechanisms preventing wilting under grafting: a case study on pumpkin rootstock grafting to wax gourd. FRONTIERS IN PLANT SCIENCE 2024; 15:1331698. [PMID: 38756963 PMCID: PMC11096461 DOI: 10.3389/fpls.2024.1331698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Wax gourd wilt is a devastating fungal disease caused by a specialized form of Fusarium oxysporum Schl. f. sp. benincasae (FOB), which severely restricts the development of the wax gourd industry. Resistant rootstock pumpkin grafting is often used to prevent and control wax gourd wilt. The "Haizhan 1" pumpkin has the characteristic of high resistance to wilt, but the mechanism through which grafted pumpkin rootstock plants acquire resistance to wax gourd wilt is still poorly understood. In this study, grafted wax gourd (GW) and self-grafted wax gourd (SW) were cultured at three concentrations [2.8 × 106 Colony Forming Units (CFU)·g-1, 8.0 × 105 CFU·g-1, and 4.0 × 105 CFU·g-1, expressed by H, M, and L]. Three culture times (6 dpi, 10 dpi, and 13 dpi) were used to observe the incidence of wilt disease in the wax gourd and the number of F. oxysporum spores in different parts of the soil and plants. Moreover, the physiological indices of the roots of plants at 5 dpi, 9 dpi, and 12 dpi in soil supplemented with M (8.0 × 105 CFU·g-1) were determined. No wilt symptoms in GW. Wilt symptoms in SW were exacerbated by the amount of FOB in the inoculated soil and culture time. At any culture time, the amount of FOB in the GW soil under the three treatments was greater than that in the roots. However, for the SW treatments, at 10 dpi and 13 dpi, the amount of FOB in the soil was lower than that in the roots. The total phenol (TP) and lignin (LIG) contents and polyphenol oxidase (PPO) and chitinase (CHI) activities were significantly increased in the GWM roots. The activities of phenylalanine ammonia lyase (PAL) and peroxidase (POD) initially decreased but then increased in the GWM roots. When the TP content decreased significantly, the LIG content and PAL and CHI activities increased initially but then decreased, whereas the PPO and POD activities did not change significantly in the SWM roots. The results indicated that the roots of the "Haizhan 1" pumpkin stock plants initiated a self-defense response after being infected with FOB, and the activities of PPO, POD, PAL, and CHI increased, and additional LIG and TP accumulated, which could effectively prevent FOB infection.
Collapse
Affiliation(s)
- Houlong Fu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Junyu Fu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Bin Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haolong Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Daolong Liao
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Zifan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
47
|
Etherton BA, Choudhury RA, Alcalá Briseño RI, Mouafo-Tchinda RA, Plex Sulá AI, Choudhury M, Adhikari A, Lei SL, Kraisitudomsook N, Buritica JR, Cerbaro VA, Ogero K, Cox CM, Walsh SP, Andrade-Piedra JL, Omondi BA, Navarrete I, McEwan MA, Garrett KA. Disaster Plant Pathology: Smart Solutions for Threats to Global Plant Health from Natural and Human-Driven Disasters. PHYTOPATHOLOGY 2024; 114:855-868. [PMID: 38593748 DOI: 10.1094/phyto-03-24-0079-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Disaster plant pathology addresses how natural and human-driven disasters impact plant diseases and the requirements for smart management solutions. Local to global drivers of plant disease change in response to disasters, often creating environments more conducive to plant disease. Most disasters have indirect effects on plant health through factors such as disrupted supply chains and damaged infrastructure. There is also the potential for direct effects from disasters, such as pathogen or vector dispersal due to floods, hurricanes, and human migration driven by war. Pulse stressors such as hurricanes and war require rapid responses, whereas press stressors such as climate change leave more time for management adaptation but may ultimately cause broader challenges. Smart solutions for the effects of disasters can be deployed through digital agriculture and decision support systems supporting disaster preparedness and optimized humanitarian aid across scales. Here, we use the disaster plant pathology framework to synthesize the effects of disasters in plant pathology and outline solutions to maintain food security and plant health in catastrophic scenarios. We recommend actions for improving food security before and following disasters, including (i) strengthening regional and global cooperation, (ii) capacity building for rapid implementation of new technologies, (iii) effective clean seed systems that can act quickly to replace seed lost in disasters, (iv) resilient biosecurity infrastructure and risk assessment ready for rapid implementation, and (v) decision support systems that can adapt rapidly to unexpected scenarios. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Berea A Etherton
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Robin A Choudhury
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX, U.S.A
| | - Ricardo I Alcalá Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Romaric A Mouafo-Tchinda
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Aaron I Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Manoj Choudhury
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Ashish Adhikari
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Si Lin Lei
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Nattapol Kraisitudomsook
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
- Department of Biology, Faculty of Science and Technology, Muban Chombueng Rajabhat University, Chom Bueng, Ratchaburi, Thailand
| | - Jacobo Robledo Buritica
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Vinicius A Cerbaro
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, U.S.A
| | - Kwame Ogero
- International Potato Center (CIP), Mwanza, Tanzania
| | - Cindy M Cox
- USAID Bureau for Humanitarian Assistance, Washington, DC, U.S.A
| | - Stephen P Walsh
- USAID Bureau for Humanitarian Assistance, Washington, DC, U.S.A
| | | | | | | | - Margaret A McEwan
- International Potato Center (CIP) Africa Regional Office, Nairobi, Kenya
- Wageningen University and Research, Wageningen, the Netherlands
| | - Karen A Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Global Food Systems Institute, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
48
|
Rathore AS, Gupta KK, Chandrasekaran J, Chandran SA. In silico identification of a promising inhibitor of Fusarium oxysporum f. sp. Lycopersici, Secreted in Xylem 1 protein. Mol Divers 2024; 28:711-725. [PMID: 36735168 DOI: 10.1007/s11030-023-10613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Fusarium oxysporum f. sp. Lycopersici (FOL) is a soilborne pathogen that infects tomato plants and inflicts severe damage, resulting in heavy yield losses worldwide, causing Fusarium wilt disease. FOL encodes several pathogenicity factors necessary for colonizing and invading the host plants. Secreted in Xylem (SIX), a pathogenicity factor, is a small cysteine-rich fungal protein found in the xylem sap of FOL-infected tomato plants, which plays a major role in determining host specificity and in contributing to pathogenicity/virulence. However, the structure of SIX1 has not been modeled yet. Therefore, this study aimed to elucidate the structure of SIX1 by comparative modeling using Robetta server. The best possible structures obtained were then refined, validated, and utilized for subsequent analysis. An antifungal library comprising 16,824 compounds was screened to determine small molecules that can interact with SIX1. Five antifungal compounds were identified from the library. Further analyses revealed that, of the five ligands, 4-[(2-(3-methoxyphenoxy)acetyl)amino] benzamide exhibited the capacity to stably interact with SIX1. This shows that 4-[[2-(3-methoxyphenoxy)acetyl]amino] benzamide can be used as a potential candidate in the prevention of FOL infection. In summary, small-molecule inhibitors such as 4-[[2-(3-methoxyphenoxy)acetyl]amino] benzamide could be highly effective in combating FOL infection, along with biocontrol methods and strategies that use transgenic plants overexpressing resistance genes.
Collapse
Affiliation(s)
- Anuranjan Singh Rathore
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | - Krishna Kant Gupta
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India
| | | | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
49
|
Arango-Palacio L, Pinzón-Núñez AM, Hoyos-Carvajal L, Ospina-Galeano DF, Feria-Gómez DF, Izquierdo-García LF, Betancourt-Vásquez M, Zapata-Henao S. Behavior and Use of Quaternary Ammonium-Based Disinfectants in Biosafety Protocols Against Fusarium oxysporum f. sp. cubense Race 1 and Tropical Race 4. PLANT DISEASE 2024; 108:971-978. [PMID: 37877994 DOI: 10.1094/pdis-06-23-1138-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The banana is one of Colombia's main export products. However, production is seriously affected by Fusarium wilt of banana, which is the most destructive disease caused by the fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Currently, management strategies focus on containment and biosecurity protocols to prevent its spread to territories that are free of this disease. This study aimed to evaluate nine quaternary ammonium-based disinfectants (i.e., quaternary ammonium compounds [QACs]) in vitro in Colombia on reproductive (microconidia and macroconidia) and resistance structures (chlamydospores) of Foc race 1 (R1) and tropical race 4 (TR4), with and without soil, to determine the influence of organic matter and soil texture on the action of QACs. A method for inhibiting the action of QACs was standardized and evaluated at 1,200 ppm with a contact time of ≤30 s while evaluating the soil-inoculum and soil-disinfectant interactions. In the soil-inoculum interaction, the efficacy of QACs was 100% in the reproductive and resistance structures of Foc R1 and TR4 without soil. However, in the soil-disinfectant interaction, only QAC4 controlled the pathogen at 100%. The presence of organic matter influenced the biocidal action of the QACs, and fine textures had a greater reducing effect on the concentration. The soil decreased the efficacy of the QACs and, therefore, must be removed from contaminated boots before treatments are applied.
Collapse
Affiliation(s)
- Laura Arango-Palacio
- Politécnico Colombiano Jaime Isaza Cadavid, Medellín-Antioquia 050022, Colombia
- Banana Research Center CENIBANANO-AUGURA, Carepa-Antioquia 057850, Colombia
| | | | | | | | | | - Luisa F Izquierdo-García
- Colombian Corporation for Agricultural Research, AGROSAVIA. C.I Tibaitatá, Cundinamarca 250047, Colombia
| | - Mónica Betancourt-Vásquez
- Colombian Corporation for Agricultural Research, AGROSAVIA. C.I Tibaitatá, Cundinamarca 250047, Colombia
| | - Sebastián Zapata-Henao
- Banana Research Center CENIBANANO-AUGURA, Carepa-Antioquia 057850, Colombia
- Universidad Nacional de Colombia, Campus Medellín, Medellin 050022, Colombia
| |
Collapse
|
50
|
Stewart AB, Srilopan S, Wayo K, Hassa P, Dudash MR, Bumrungsri S. Bat pollinators: a decade of monitoring reveals declining visitation rates for some species in Thailand. ZOOLOGICAL LETTERS 2024; 10:5. [PMID: 38431697 PMCID: PMC10908063 DOI: 10.1186/s40851-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
Bats are important pollinators, but they are difficult to study since they are volant and nocturnal. Thus, long-term studies of nectarivorous bats are scarce, despite their potential to help assess trends in bat populations and their pollination services. We used capture rates of nectarivorous bats at chiropterophilous flowers in order to examine temporal trends in bat visitation in an area that is undergoing extensive land use change. We mist-netted at five bat-pollinated plant taxa (Durio zibethinus, Musa acuminata, Oroxylum indicum, Parkia speciosa, and Sonneratia spp.) in southern Thailand over six years between 2011 and 2021. We found that the most common bat species, Eonycteris spelaea, was the main visitor at all five plant taxa and had consistent visitation rates across all study years. In contrast, two other important pollinators, Macroglossus minimus and M. sobrinus, showed 80% declines in the number of individuals netted at mangrove apple (Sonneratia spp.) and banana (Musa acuminata) flowers, respectively. These findings suggest that E. spelaea (a large, cave-roosting species with a broad diet) is more tolerant of anthropogenic change than are Macroglossus bats (small, foliage-roosting species with specialized diets), which may in turn affect the reproductive success of plants pollinated by these species. Our study demonstrates how decade-long monitoring can reveal species-specific temporal patterns in pollinator visitation, emphasizing the need for tailored conservation plans. While the conservation status of most nectarivorous bats in the area is Least Concern, our results indicate that population studies in Southeast Asia are urgently needed for updated bat species conservation assessments.
Collapse
Affiliation(s)
- Alyssa B Stewart
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Supawan Srilopan
- Department of Biology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kanuengnit Wayo
- Department of Biology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Piriya Hassa
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Michele R Dudash
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Sara Bumrungsri
- Department of Biology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|