1
|
Whitley BS, Li Z, Jones L, de Vere N. Mega-Barcoding Projects: Delivering National DNA Barcoding Initiatives for Plants. Methods Mol Biol 2024; 2744:445-473. [PMID: 38683335 DOI: 10.1007/978-1-0716-3581-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Plant DNA barcoding has a multitude of applications ranging from species detection and biomonitoring to investigating ecological networks and checking food quality. The ability to accurately identify species, using DNA barcoding, depends on the quality and comprehensiveness of the reference library that is used. This chapter describes how to create plant reference libraries using the rbcL, matK, and ITS2 DNA barcode regions. It covers the creation of species lists, the collection of specimens from the field and herbarium, DNA extraction, PCR amplification, and DNA sequencing. This methodology gives special attention to using samples from herbaria, as they represent important collections of easily accessible, taxonomically verified plant material.
Collapse
Affiliation(s)
- Brandon S Whitley
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Zhao Li
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Laura Jones
- National Botanic Garden of Wales, Llanarthne, UK
| | - Natasha de Vere
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Mohanty S, Mishra BK, Dasgupta M, Acharya GC, Singh S, Naresh P, Bhue S, Dixit A, Sarkar A, Sahoo MR. Deciphering phenotyping, DNA barcoding, and RNA secondary structure predictions in eggplant wild relatives provide insights for their future breeding strategies. Sci Rep 2023; 13:13829. [PMID: 37620406 PMCID: PMC10449851 DOI: 10.1038/s41598-023-40797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Eggplant or aubergine (Solanum melongena L.) and its wild cousins, comprising 13 clades with 1500 species, have an unprecedented demand across the globe. Cultivated eggplant has a narrow molecular diversity that hinders eggplant breeding advancements. Wild eggplants need resurgent attention to broaden eggplant breeding resources. In this study, we emphasized phenotypic and genotypic discriminations among 13 eggplant species deploying chloroplast-plastid (Kim matK) and nuclear (ITS2) short gene sequences (400-800 bp) at DNA barcode region followed by ITS2 secondary structure predictions. The identification efficiency at the Kim matK region was higher (99-100%) than in the ITS2 region (80-90%). The eggplant species showed 13 unique secondary structures with a central ring with various helical orientations. Principal component analysis (PCoA) provides the descriptor-wise phenotypic clustering, which is essential for trait-specific breeding. Groups I and IV are categorized under scarlet complexes S. aethiopicum, S. trilobatum, and S. melongena (wild and cultivated). Group II represented the gboma clade (S. macrocarpon, S. wrightii, S. sisymbriifolium, and S. aculeatissimum), and group III includes S. mammosum, and S. torvum with unique fruit shape and size. The present study would be helpful in genetic discrimination, biodiversity conservation, and the safe utilization of wild eggplants.
Collapse
Affiliation(s)
- Sansuta Mohanty
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India
- Department of Molecular Biology and Biotechnology, Institute of Agricultural Sciences (IAS), Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Bandana Kumari Mishra
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, 751024, India
| | - Madhumita Dasgupta
- ICAR Research Complex for Northeastern Hill Region, Manipur Centre, Imphal, Manipur, 795004, India
- Department of Molecular Biology and Biotechnology, Institute of Agricultural Sciences (IAS), Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Gobinda Chandra Acharya
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India
| | - Satyapriya Singh
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India
| | - Ponnam Naresh
- ICAR-Indian Institute of Horticultural Research, Bengaluru, 560089, Karnataka, India
| | - Shyamlal Bhue
- Institute of Life Sciences, Bhubaneswar, Odisha, 751024, India
| | - Anshuman Dixit
- Institute of Life Sciences, Bhubaneswar, Odisha, 751024, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, 751024, India
| | - Manas Ranjan Sahoo
- Central Horticultural Experiment Station, ICAR-Indian Institute of Horticultural Research, Bhubaneswar, Odisha, 751019, India.
| |
Collapse
|
3
|
Jin DP, Sim S, Park JW, Choi JE, Yoon J, Lim CE, Kim MH. Identification of the Plant Family Caryophyllaceae in Korea Using DNA Barcoding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2060. [PMID: 37653977 PMCID: PMC10222892 DOI: 10.3390/plants12102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Caryophyllaceae is a large angiosperm family, with many species being utilized as ornamental or medicinal plants in Korea, in addition to several endangered species that are managed by the government. In this study, we used DNA barcoding for the accurate identification of Korean Caryophyllaceae. A total of 78 taxa (n = 215) were sequenced based on three chloroplast regions (rbcL, matK, and psbA-trnH) and nuclear ribosomal internal transcribed spacers (ITS). In the neighbor-joining tree, a higher accuracy of identification was generally observed when using ITS (>73%) rather than chloroplast regions (<62%). The highest resolution was found for rbcL + ITS (77.6%), although resolution varied according to the genus. Among the genera that included two and more species, five genera (Eremogone, Minuartia, Pseudostellaria, Sagina, and Stellaria) were successfully identified. However, the species of five other genera (Cerastium, Gypsophila, Dianthus, Silene, and Spergularia) showed relatively low resolutions (0-61.1%). In the cases of Cerastium, Dianthus, and Silene, ambiguous taxonomic relationships among unidentified species may have been a factor contributing to such low resolutions. However, in contrast to these results, Gypsophila and Spergularia have been identified well in previous studies. Our findings indicate the need of taxonomic reconsideration in Korea.
Collapse
Affiliation(s)
- Dong-Pil Jin
- Urban Biodiversity Research Division, Sejong National Arboretum, Korean Arboretum and Gardens Institute, Sejong 30106, Republic of Korea
| | - Sunhee Sim
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Jong-Won Park
- Department of Biology Education, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji-Eun Choi
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Jiwon Yoon
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Chae Eun Lim
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Min-Ha Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| |
Collapse
|
4
|
Habibi N, Al Salameen F, Vyas N, Rahman M, Kumar V, Shajan A, Zakir F, Razzack NA, Al Doaij B. Genome survey and genetic characterization of Acacia pachyceras O. Schwartz. FRONTIERS IN PLANT SCIENCE 2023; 14:1062401. [PMID: 36875582 PMCID: PMC9979705 DOI: 10.3389/fpls.2023.1062401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Acacia pachyceras O. Schwartz (Leguminoseae), a woody tree growing in Kuwait is critically endangered. High throughput genomic research is immediately needed to formulate effective conservation strategies for its rehabilitation. We therefore, performed a genome survey analysis of the species. Whole genome sequencing generated ~97 Gb of raw reads (92x coverage) with a per base quality score above Q30. The k-mer analysis (17 mer) revealed its genome to be 720Mb in size with an average guanine-cytosine (GC) ratio of 35%. The assembled genome was analyzed for repeat regions (45.4%-interspersed repeats; 9%-retroelements; 2%-DNA transposons). BUSCO assessment of completeness of genome identified 93% of assembly to be complete. Gene alignments in BRAKER2 yielded 34,374 transcripts corresponding to 33,650 genes. Average length of coding sequences and protein sequences were recorded as 1,027nts and 342aa, respectively. GMATA software filtered a total of 901,755 simple sequence repeats (SSRs) regions against which 11,181 unique primers were designed. A subset of 110 SSR primers were PCR validated and demonstrated for its application in genetic diversity analysis of Acacia. The SSR primers successfully amplified A. gerrardii seedlings DNA depicting cross transferability among species. The principal coordinate analysis and the split decomposition tree (bootstrapping runs of 1000 replicates) distributed the Acacia genotypes into two clusters. The flow cytometry analysis revealed the A. pachyceras genome to be polyploid (6x). The DNA content was predicted as 2.46 pg, 1.23 pg, and 0.41 pg corresponding to 2C DNA, 1C DNA and 1Cx DNA, respectively. The results provide a base for further high throughput genomic studies and molecular breeding for its conservation.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Fadila Al Salameen
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Nishant Vyas
- Department of Immunology, Logical Life Sciences, Pune, India
| | - Muhammad Rahman
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Vinod Kumar
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Bashayer Al Doaij
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| |
Collapse
|
5
|
Kerry RG, Montalbo FJP, Das R, Patra S, Mahapatra GP, Maurya GK, Nayak V, Jena AB, Ukhurebor KE, Jena RC, Gouda S, Majhi S, Rout JR. An overview of remote monitoring methods in biodiversity conservation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80179-80221. [PMID: 36197618 PMCID: PMC9534007 DOI: 10.1007/s11356-022-23242-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Conservation of biodiversity is critical for the coexistence of humans and the sustenance of other living organisms within the ecosystem. Identification and prioritization of specific regions to be conserved are impossible without proper information about the sites. Advanced monitoring agencies like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) had accredited that the sum total of species that are now threatened with extinction is higher than ever before in the past and are progressing toward extinct at an alarming rate. Besides this, the conceptualized global responses to these crises are still inadequate and entail drastic changes. Therefore, more sophisticated monitoring and conservation techniques are required which can simultaneously cover a larger surface area within a stipulated time frame and gather a large pool of data. Hence, this study is an overview of remote monitoring methods in biodiversity conservation via a survey of evidence-based reviews and related studies, wherein the description of the application of some technology for biodiversity conservation and monitoring is highlighted. Finally, the paper also describes various transformative smart technologies like artificial intelligence (AI) and/or machine learning algorithms for enhanced working efficiency of currently available techniques that will aid remote monitoring methods in biodiversity conservation.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | | | - Rajeswari Das
- Department of Soil Science and Agricultural Chemistry, School of Agriculture, GIET University, Gunupur, Rayagada, Odisha 765022 India
| | - Sushmita Patra
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005 India
| | - Vinayak Nayak
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | - Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Ram Chandra Jena
- Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Sushanto Gouda
- Department of Zoology, Mizoram University, Aizawl, 796009 India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Jyoti Ranjan Rout
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha 752101 India
| |
Collapse
|
6
|
Molecular Characterization of Wild and Cultivated Strawberry (Fragaria × ananassa) through DNA Barcode Markers. Genet Res (Camb) 2022; 2022:9249561. [PMID: 36299683 PMCID: PMC9578897 DOI: 10.1155/2022/9249561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background DNA barcoding is a useful technique for the identification, conservation, and diversity estimation at the species level in plants. The current research work was carried out to characterize selected Fragaria species from northern Pakistan using DNA barcode markers. Methodology. Initially, the efficacy of eight DNA barcode markers was analyzed based on the amplification and sequencing of the genome of selected Fragaria species. The resultant sequences were analyzed using BLAST, MEGA 7.0, and Bio Edit software. The phylogenetic tree was constructed by using Fragaria current species sequences and reference sequences through the neighbor-joining method or maximum likelihood method. Results Among eight DNA barcode markers, only two (ITS2 and rbclC) were amplified, and sequences were obtained. ITS2 sequence was BLAST in NCBI for related reference species which ranged from 89.79% to 90.05% along with Fragaria vesca (AF163517.1) which have 99.05% identity. Similarly, the rbclC sequence of Fragaria species was ranged from 96% to 99.58% along with Fragaria × ananassa (KY358226.1) which had 99.58% identity. Conclusion It is recommended that DNA barcode markers are a useful tool to identify the genetic diversity of a species. Moreover, this study could be helpful for the identification of the Fragaria species cultivated in other regions of the world.
Collapse
|
7
|
Habibi N, Salameen FA, Rahman M, Shajan A, Zakir F, Abdulrazzack N. Comparison and Optimization of DNA Isolation Protocols for High Throughput Genomic Studies of Acacia pachyceras Schwartz. MethodsX 2022; 9:101799. [PMID: 35990814 PMCID: PMC9386096 DOI: 10.1016/j.mex.2022.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
We describe the optimization and validation of six DNA isolation protocols from fresh leaves of the rare tree Acacia pachyceras. The first four protocols employed three commercial kits (Sigma, Nucleospin1, Nucleospin 2, Promega) whereas the remaining two were based on the traditional sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide CTAB methods. Each protocol provided significantly different results concerning DNA concentration (p < 0.032), yield (p < 0.000), contaminant carry over, protocol duration, cost per sample, and comprehensive cost. We demonstrated the applicability of all the tested protocols in DNA barcoding. The protocol yielded maximum amounts (92.85 µg) of DNA in a rapid turnaround time (8 h). The quantity and purity surpassed all the other tested methods. DNA extracted by the CTAB method was the best for NGS (Phred score >Q30). These protocols will be useful tools for molecular research of Acacia pachyceras and other closely related tree species.
Collapse
|
8
|
DNA Barcodes for Accurate Identification of Selected Medicinal Plants (Caryophyllales): Toward Barcoding Flowering Plants of the United Arab Emirates. DIVERSITY 2022. [DOI: 10.3390/d14040262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The need for herbal medicinal plants is steadily increasing. Hence, the accurate identification of plant material has become vital for safe usage, avoiding adulteration, and medicinal plant trading. DNA barcoding has shown to be a valuable molecular identification tool for medicinal plants, ensuring the safety and efficacy of plant materials of therapeutic significance. Using morphological characters in genera with closely related species, species delimitation is often difficult. Here, we evaluated the capability of the nuclear barcode ITS2 and plastid DNA barcodes rbcL and matK to identify 20 medicinally important plant species of Caryophyllales. In our analysis, we applied an integrative approach for species discrimination using pairwise distance-based unsupervised operational taxonomic unit “OTU picking” methods, viz., ABGD (Automated Barcode Gap Analysis) and ASAP (Assemble Species by Automatic Partitioning). Along with the unsupervised OTU picking methods, Supervised Machine Learning methods (SML) were also implemented to recognize divergent taxa. Our results indicated that ITS2 was more successful in distinguishing between examined species, implying that it could be used to detect the contamination and adulteration of these medicinally important plants. Moreover, this study suggests that the combination of more than one method could assist in the resolution of morphologically similar or closely related taxa.
Collapse
|
9
|
Jamdade R, Upadhyay M, Al Shaer K, Al Harthi E, Al Sallani M, Al Jasmi M, Al Ketbi A. Evaluation of Arabian Vascular Plant Barcodes (rbcL and matK): Precision of Unsupervised and Supervised Learning Methods towards Accurate Identification. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122741. [PMID: 34961211 PMCID: PMC8708657 DOI: 10.3390/plants10122741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Arabia is the largest peninsula in the world, with >3000 species of vascular plants. Not much effort has been made to generate a multi-locus marker barcode library to identify and discriminate the recorded plant species. This study aimed to determine the reliability of the available Arabian plant barcodes (>1500; rbcL and matK) at the public repository (NCBI GenBank) using the unsupervised and supervised methods. Comparative analysis was carried out with the standard dataset (FINBOL) to assess the methods and markers' reliability. Our analysis suggests that from the unsupervised method, TaxonDNA's All Species Barcode criterion (ASB) exhibits the highest accuracy for rbcL barcodes, followed by the matK barcodes using the aligned dataset (FINBOL). However, for the Arabian plant barcode dataset (GBMA), the supervised method performed better than the unsupervised method, where the Random Forest and K-Nearest Neighbor (gappy kernel) classifiers were robust enough. These classifiers successfully recognized true species from both barcode markers belonging to the aligned and alignment-free datasets, respectively. The multi-class classifier showed high species resolution following the two classifiers, though its performance declined when employed to recognize true species. Similar results were observed for the FINBOL dataset through the supervised learning approach; overall, matK marker showed higher accuracy than rbcL. However, the lower rate of species identification in matK in GBMA data could be due to the higher evolutionary rate or gaps and missing data, as observed for the ASB criterion in the FINBOL dataset. Further, a lower number of sequences and singletons could also affect the rate of species resolution, as observed in the GBMA dataset. The GBMA dataset lacks sufficient species membership. We would encourage the taxonomists from the Arabian Peninsula to join our campaign on the Arabian Barcode of Life at the Barcode of Life Data (BOLD) systems. Our efforts together could help improve the rate of species identification for the Arabian Vascular plants.
Collapse
Affiliation(s)
- Rahul Jamdade
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University, 80539 Munich, Germany;
| | - Khawla Al Shaer
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Eman Al Harthi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Mariam Al Sallani
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Mariam Al Jasmi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| | - Asma Al Ketbi
- Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority, Sharjah P.O. Box 2926, United Arab Emirates; (K.A.S.); (E.A.H.); (M.A.S.); (M.A.J.); (A.A.K.)
| |
Collapse
|
10
|
Gong L, Zhang D, Ding X, Huang J, Guan W, Qiu X, Huang Z. DNA barcode reference library construction and genetic diversity and structure analysis of Amomum villosum Lour. (Zingiberaceae) populations in Guangdong Province. PeerJ 2021; 9:e12325. [PMID: 34721994 PMCID: PMC8541303 DOI: 10.7717/peerj.12325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Amomum villosum Lour. is the plant that produces the famous traditional Chinese medicine Amomi Fructus. Frequent habitat destruction seriously threatens A. villosum germplasm resources. Genetic diversity is very important to the optimization of germplasm resources and population protection, but the range of inherited traits within A. villosum is unclear. In this study, we analyzed the genetic diversity and genetic structures of A. villosum populations in Guangdong and constructed a local reference DNA barcode library as a resource for conservation efforts. Methods DNA barcoding and Inter-Simple Sequence Repeat (ISSR) markers were used to investigate the population genetics of A. villosum. Five universal DNA barcodes were amplified and used in the construction of a DNA barcode reference library. Parameters including percentage of polymorphic sites (PPB), number of alleles (Na), effective number of alleles (Ne), Nei’s gene diversity index (H), and Shannon’s polymorphism information index (I) were calculated for the assessment of genetic diversity. Genetic structure was revealed by measuring Nei’s gene differentiation coefficient (Gst), total population genetic diversity (Ht), intra-group genetic diversity (Hs), and gene flow (Nm). Analysis of molecular variance (AMOVA), Mantel tests, unweighted pair-group method with arithmetic mean (UPGMA) dendrogram, and principal co-ordinates (PCoA) analysis were used to elucidate the genetic differentiation and relationship among populations. Results A total of 531 sequences were obtained from the five DNA barcodes with no variable sites from any of the barcode sequences. A total of 66 ISSR bands were generated from A. villosum populations using the selected six ISSR primers; 56 bands, 84.85% for all the seven A. villosum populations were polymorphic. The A. villosum populations showed high genetic diversity (H = 0.3281, I = 0.4895), whereas the gene flow was weak (Nm = 0.6143). Gst (0.4487) and AMOVA analysis indicated that there is obvious genetic differentiation amongA. villosum populations and more genetic variations existed within each population. The genetic relationship of each population was relatively close as the genetic distances were between 0.0844 and 0.3347.
Collapse
Affiliation(s)
- Lu Gong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China
| | - Xiaoxia Ding
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juan Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Wan Guan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Abdel-Hamid AME, Elenazy HH, Abdel-Hameed UK. DNA barcoding of some taxa of genus Acacia and their phylogenetic relationship. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1938702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Amal M. E. Abdel-Hamid
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
- Department of Biology, College of Sciences and Arts, Taibah University, Al Ula, Kingdom of Saudi Arabia
| | - Hanaa H. Elenazy
- Department of Biology, College of Science, Taibah University, Al Madinah, Kingdom of Saudi Arabia
| | - Usama K. Abdel-Hameed
- Department of Biology, College of Science, Taibah University, Al Madinah, Kingdom of Saudi Arabia
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Arenas-Viveros D, Sánchez-Vendizú P, Giraldo A, Salazar-Bravo J. A new species of Cynomops (Chiroptera: Molossidae) from the northwestern slope of the Andes. MAMMALIA 2021. [DOI: 10.1515/mammalia-2020-0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
The systematics and taxonomy of the broadly distributed bats of the genus Cynomops has changed considerably in the last few years. Among the major changes, Cynomops abrasus was split into two species of large-bodied forms (Cynomops mastivus and C. abrasus) distributed east of the Andes. However, large Colombian specimens identified as C. abrasus from the western side of the Andes had yet to be included in any revisionary work. Phylogenetic analysis performed in this study, using mtDNA sequences (Cytochrome-b), revealed that these Colombian individuals are more closely related to Cynomops greenhalli. Morphological and molecular data allowed us to recognize populations from western Colombia, western Ecuador and northwestern Peru, as members of a new species of Cynomops. Characters that allow for its differentiation from C. greenhalli include a larger forearm, paler but more uniform ventral pelage, more globular braincase, and well-developed zygomatic processes of the maxilla (almost reaching the postorbital constriction). This study serves as another example of the importance of including multiple lines of evidence in the recognition of a new species. Given its rarity and the advanced transformation of its habitat, this new species is particularly important from a conservation perspective.
Collapse
Affiliation(s)
- Daniela Arenas-Viveros
- Department of Biological Sciences , Texas Tech University , 2901 Main St , Lubbock , TX 79401 , USA
| | - Pamela Sánchez-Vendizú
- Departamento de Mastozoología , Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos , Lima , Peru
| | - Alan Giraldo
- Departamento de Biología , Universidad del Valle , Cali , Colombia
| | - Jorge Salazar-Bravo
- Department of Biological Sciences , Texas Tech University , 2901 Main St , Lubbock , TX 79401 , USA
- Instituto Nacional de Biodiversidad , Quito , Ecuador
| |
Collapse
|
13
|
Shanmughanandhan J, Shanmughanandhan D, Ragupathy S, Henry TA, Newmaster SG. Quantification of Actaea racemosa L. (black cohosh) from some of its potential adulterants using qPCR and dPCR methods. Sci Rep 2021; 11:4331. [PMID: 33619286 PMCID: PMC7900226 DOI: 10.1038/s41598-020-80465-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
The demand for popular natural health products (NHPs) such as Black Cohosh is increasing considerably, which in turn challenges quality assurance (QA) throughout the supply chain. To detect and quantify the target species present in a given NHP, DNA-based molecular techniques such as Real-time quantitative PCR (qPCR) and digital PCR (dPCR) are standard tools in the food and pathogen testing industries. There is a gap in the literature concerning validated quantitative PCR methods for botanicals that can be utilized for QA and good manufacturing practices. The objective of this study is to develop an efficient quantification method using qPCR and dPCR techniques for the detection and quantification of Actaea racemosa (Black cohosh) NHPs from its potential adulterants. These developed methods are validated for applicability on commercial NHPs. Species-specific hydrolysis probe assays were designed to analyze the black cohosh NHPs using qPCR and dPCR techniques. The results confirmed that the developed qPCR and dPCR methods are highly precise for identifying and quantifying black cohosh NHPs, indicating their potential applicability in future routine industrial and laboratory testing. This enables a single qPCR test to determine not only the presence of a specific botanical, but also the amount when mixed with an adulterant.
Collapse
Affiliation(s)
- Jeevitha Shanmughanandhan
- NHP Research Alliance, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Dhivya Shanmughanandhan
- NHP Research Alliance, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Subramanyam Ragupathy
- NHP Research Alliance, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Thomas A Henry
- NHP Research Alliance, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Steven G Newmaster
- NHP Research Alliance, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
14
|
Imran Y, Wijekoon N, Gonawala L, Chiang YC, De Silva KRD. Biopiracy: Abolish Corporate Hijacking of Indigenous Medicinal Entities. ScientificWorldJournal 2021; 2021:8898842. [PMID: 33679261 PMCID: PMC7910072 DOI: 10.1155/2021/8898842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Biopiracy as "a silent disease" is hardly detectable because it does not leave traces frequently. The corporate hijacking of food is the most important health hazard in this era; giant commercial enterprises are using intellectual property rights to patent indigenous medicinal plants, seeds, genetic resources, and traditional medicines. The new era of biotechnology relies on the genes of living organisms as raw materials. The "Gene Rush" has thus become similar to that of the old "Gold Rush." Sri Lanka has been spotted in the top 34 biodiversity hotspots globally. Moreover, localized in the tropics, human generations in Sri Lanka have utilized the array of plant species for herbal treatments and treatment of diseases. Sri Lanka after its 30-year civil war is moving towards a solid growth and conservation of the environment which is a major component in a sustainable development where the conservation of biodiversity plays a significant role. In this paper, we present an overview of typical cases of global biopiracy, bioprospecting via introduction of cost-effective deoxyribonucleic acid (DNA) fingerprinting and international protocol with Private-Public-People Partnership concept as excellent forms of utilization of natural resources. We propose certain perspectives as scientists towards abolishing biopiracy and also to foster the fair utilization of natural resources; since the economy of most developing countries is agriculture based, the gross domestic product of the developing countries could be increased by enhanced bioprospecting via introduction of cost-effective DNA fingerprinting technologies and thus not being a pray of corporate hijacking."Biopiracy is biological theft; illegal collection of indigenous plants by corporations who patent them for their own use" (Vandana Shiva).
Collapse
Affiliation(s)
- Yoonus Imran
- Interdisciplinary Centre for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Nalaka Wijekoon
- Interdisciplinary Centre for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Lakmal Gonawala
- Interdisciplinary Centre for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - K. Ranil D. De Silva
- Interdisciplinary Centre for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Institute for Combinatorial Advanced Research & Education (KDU-CARE), General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| |
Collapse
|
15
|
Nehal N, Choudhary B, Nagpure A, Gupta RK. DNA barcoding: a modern age tool for detection of adulteration in food. Crit Rev Biotechnol 2021; 41:767-791. [PMID: 33530758 DOI: 10.1080/07388551.2021.1874279] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Globalization of the food trade requires precise and exact information about the origin, methods of production, transformation technologies, authentication, and the traceability of foodstuffs. New challenges in food supply chains such as deliberate fraudulent substitution, tampering or mislabeling of food and its ingredients or food packaging incapacitates the market and eventually the national economy. Currently, no proper standards have been established for the authentication of most of the food materials. However, in order to control food fraud, various robust and cost-effective technologies have been employed, like a spectrophotometer, GC-MS, HPLC, and DNA barcoding. Among these techniques, DNA barcoding is a biotechnology advantage with the principle of using 400-800 bp long standardized unique DNA sequences of mitochondrial (e.g. COI) or plastidial (e.g. rbcL) of nuclear origin (e.g. ITS) to analyze and classify the food commodities. This review covers several traded food commodities like legumes, seafood, oils, herbal products, spices, fruits, cereals, meat, and their unique barcodes which are critically analyzed to detect adulteration or fraud. DNA barcoding is a global initiative and it is being accepted as a global standard/marker for species identification or authentication. The research laboratories and industries should collaborate to realize its potential in setting standards for quality assurance, quality control, and food safety for different food products.
Collapse
Affiliation(s)
- Nazish Nehal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, India
| | - Bharti Choudhary
- School of Studies in Biotechnology, Pt. Ravi Shankar Shukla University, Raipur, India
| | - Anand Nagpure
- Biology Division, State Forensic Science Laboratory, Bhopal, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
16
|
Gouda S, Kerry RG, Das A, Chauhan NS. Wildlife forensics: A boon for species identification and conservation implications. Forensic Sci Int 2020; 317:110530. [PMID: 33096398 DOI: 10.1016/j.forsciint.2020.110530] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/03/2020] [Accepted: 09/26/2020] [Indexed: 01/05/2023]
Abstract
Wildlife trade and fraudulence in food, artefacts and cosmetic industries had raised serious concern in protection of the wild faunal diversity. Lack of proper tools and molecular based techniques for identification of wild species are some of the major constrains faced by the judiciary and law enforcement agencies while framing charges against poachers and illicit agitator. The emergence of wildlife forensics serves as a boon in solving long pending cases of wildlife crimes. Wildlife forensics have proven to be fast, accurate and reliable criminal investigation processes with comprehensive coverage and easy accessibility. It has also helped resolving taxonomic disputes, determining spatiotemporal genetic divergence, evolutionary history, origins and even endemism. Collaboration among inter-disciplinary fields has even led to engineered signature markers and phylogenetics for several species. Development in fields of genetics, molecular and evolutionary biology and other omics techniques have further contributed in accurate identification of species. Wildlife forensics, with the support of proper international mega database units for population reference, will be fundamental in wildlife investigations through its unlimited information sharing ability. The efficient conservation of species will, however, require a collaborative approach consisting of national policy makers, local stakeholders and implementation agencies in addition to experts from the scientific communities.
Collapse
Affiliation(s)
- Sushanto Gouda
- Amity Institute of Forestry and Wildlife, Amity University, Noida, Uttar Pradesh, India.
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Angshuman Das
- Department of Zoology, Mizoram University, Aizawl, 796 009, India
| | | |
Collapse
|
17
|
Jamdade RA, Mahmoud T, Gairola S. Prospects of genomic resources available at the global databases for the flora of United Arab Emirates. 3 Biotech 2019; 9:333. [PMID: 31475085 PMCID: PMC6702620 DOI: 10.1007/s13205-019-1855-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022] Open
Abstract
This article emphasizes available genomic resources at the global databases National Center for Biotechnology Information (NCBI) GenBank, Gramene and Phytozome for the selected 378 plant taxa of the United Arab Emirates (UAE). Germplasm of these species was collected and banked at the Sharjah Seed Bank and Herbarium (SSBH) along with their related information on habit, habitat and occurrence. The occurrence statistics exhibits almost 19.84% species under rare-to-very rare category, the GenBank search statistics for this category indicates 17.72% species as studied and 2.11% as not studied. Overall, from the global search statistics for 378 plant species, it seems that about 40 (10.58%) species remained unstudied. Most of the unstudied species were herbaceous plants belonging to the mountainous habitat. Moreover, full genomes were recorded for 7 species at NCBI GenBank, 2 species at Phytozome and 1 species at Gramene database. The local search statistics (for UAE) exhibits about 10.58% of the flora that still remained unstudied and only 11 (2.90%) of the recorded species were having genomic information at NCBI GenBank. It is necessary to prioritize studies on such species that could provide valuable insight on their genetic composition in order to understand their adaptation to the natural environment. At present, the SSBH is cataloguing UAE's flora using core barcode and assisted markers that could provide a robust DNA barcode library for native plants of UAE. Our study appeals researchers to recognize and prioritize the species that need attention to enrich their genomic resources at the global databases by supporting nucleotide libraries with their conspecifics. At present, genomic resources for UAE plant taxa are limited, but with the advent of low-cost sequencing technologies these resources would flourish in the near future. Nevertheless, the information generated through genomic studies could be utilized for conservation and management of threatened and endangered plant species, Crop Wild Relatives and medicinal plants. We hope this article will promote interest in conducting additional studies in genomics of desert plants by encouraging researchers to participate in this emerging field.
Collapse
Affiliation(s)
- Rahul A. Jamdade
- Plant Biotechnology Laboratory, Sharjah Research Academy, P. Box 60999, Sharjah, UAE
| | - Tamer Mahmoud
- Sharjah Seed Bank and Herbarium, Sharjah Research Academy, P. Box 60999, Sharjah, UAE
| | - Sanjay Gairola
- Sharjah Seed Bank and Herbarium, Sharjah Research Academy, P. Box 60999, Sharjah, UAE
| |
Collapse
|