1
|
Perveen S, Padula MP, Safdar N, Abbas S. Functional annotation of proteins in Catharanthus roseus shoot cultures under biogenic zinc nanotreatment. PLANT MOLECULAR BIOLOGY 2024; 114:26. [PMID: 38459275 DOI: 10.1007/s11103-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Nano-interactions are well known for their positive as well as negative impacts on the morphological and physiological systems of plants. Keeping in mind, the conformational changes in plant proteins as one of the key mechanisms for stress adaptation responses, the current project was designed to explore the effect of glutathione-capped and uncapped zinc nano-entities on Catharanthus roseus shoot cultures. Zinc nanotreatment (0.05 μg/mL) significantly induced ester production in C. roseus shoots as detected by Gas Chromatography-Mass spectrometry. These nanotreated shoots were further subjected to peptide-centric nano-LC-MS/MS analysis. Mass spectrometry followed by a Heat map revealed a significant effect of zinc nanoparticles on 59 distinct classes of proteins as compared to control. Proteins involved in regulating stress scavenging, transport, and secondary metabolite biosynthesis were robustly altered under capped zinc nanotreatment. UniProt database identified majority of the localization of the abundantly altered protein in cell membranes and chloroplasts. STRING and Cytoscape analysis assessed inter and intra coordination of triosephosphate isomerase with other identified proteins and highlighted its role in the regulation of protein abundance under applied stress. This study highlights the understanding of complex underlying mechanisms and regulatory networks involved in proteomic alterations and interactions within the plant system to cope with the nano-effect.
Collapse
Affiliation(s)
- Shaghufta Perveen
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Naila Safdar
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| | - Sidra Abbas
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Lan T, Wang J, Lei Y, Lei J, Sun X, Ma T. A new source of starchy flour: Physicochemical and nutritional properties of starchy kiwifruit flour. Food Chem 2024; 435:137627. [PMID: 37804722 DOI: 10.1016/j.foodchem.2023.137627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
The physicochemical and nutritional properties of three starchy kiwifruit flour (SKF) were systematically studied. The results revealed that the total starch content of SKF was 66.63-80.42%. SKF showed a B-type crystal structure with a grain size between 7.08 and 9.02 μm. In comparison to corn starch and potato starch, SKF possessed a lower pH (3.43-4.28), transparency (0.68-1.11%) and setback value (0.20-1.73 Pa·s) and a higher swelling power (9.42-15.02 g/g) and hot paste viscosity (1.73-2.10 Pa·s). Moreover, SFK was rich in protein and various mineral elements. It also contained high levels of total phenolics and exhibited a strong antioxidant capacity. The resistant starch content in SKF was as high as 67.19-73.22%, and the rapidly digestible starch content was remarkably lower than that of corn and potato starch. Overall, these unique physicochemical properties of SKF, coupled with its nutritional benefits, give it a good development potential in the food industry.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jiaqi Wang
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Yushan Lei
- Shaanxi Rural Science and Technology Development Center, Xi'an 710054, China
| | - Jing Lei
- Shaanxi Bairui Kiwifruit Research Co, Ltd., Xi'an 710054, China
| | - Xiangyu Sun
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Guo W, Luo H, Cao Y, Jiang Z, Liu H, Zou J, Sheng C, Xi Y. Multi-omics research on common allergens during the ripening of pollen and poplar flocs of Populus deltoides. FRONTIERS IN PLANT SCIENCE 2023; 14:1136613. [PMID: 37396639 PMCID: PMC10313134 DOI: 10.3389/fpls.2023.1136613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023]
Abstract
Background Populus deltoides is widely cultivated in China and produces a large number of pollen and poplar flocs from March to June per year. Previous studies have found that the pollen of P. deltoides contains allergens. However, studies on the ripening mechanism of pollen/poplar flocs and their common allergens are very limited. Methods Proteomics and metabolomics were used to study the changes of proteins and metabolites in pollen and poplar flocs of P. deltoides at different developmental stages. Allergenonline database was used to identify common allergens in pollen and poplar flocs at different developmental stages. Western blot (WB) was used to detect the biological activity of common allergens between mature pollen and poplar flocs. Results In total, 1400 differently expressed proteins (DEPs) and 459 different metabolites (DMs) were identified from pollen and poplar flocs at different developmental stages. KEGG enrichment analysis showed that DEPs in pollen and poplar flocs were significantly enriched in ribosome and oxidative phosphorylation signaling pathways. The DMs in pollen are mainly involved in aminoacyl-tRNA biosynthesis and arginine biosynthesis, while the DMs in poplar flocs are mainly involved in glyoxylate and dicarboxylate metabolism. Additionally, 72 common allergens were identified in pollen and poplar flocs at different developmental stages. WB showed that there were distinct binding bands between 70 and 17KD at the two groups of allergens. Conclusions A multitude of proteins and metabolites are closely related to the ripening of pollen and poplar flocs of Populus deltoides, and they contain common allergens between mature pollen and poplar flocs.
Collapse
Affiliation(s)
- Wei Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Luo
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Yi Cao
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Ziyun Jiang
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Liu
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Jie Zou
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Changle Sheng
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| |
Collapse
|
4
|
De Pascale S, Troise AD, Petriccione M, Nunziata A, Cice D, Magri A, Salzano AM, Scaloni A. Investigating phenotypic relationships in persimmon accessions through integrated proteomic and metabolomic analysis of corresponding fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1093074. [PMID: 36794209 PMCID: PMC9923171 DOI: 10.3389/fpls.2023.1093074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Together with phenological and genomic approaches, gel-based and label-free proteomic as well metabolomic procedures were separately applied to plants to highlight differences between ecotypes, to estimate genetic variability within/between organism populations, or to characterize specific mutants/genetically modified lines at metabolic level. To investigate the possible use of tandem mass tag (TMT)-based quantitative proteomics in the above-mentioned contexts and based on the absence of combined proteo-metabolomic studies on Diospyros kaki cultivars, we here applied integrated proteomic and metabolomic approaches to fruits from Italian persimmon ecotypes with the aim to characterize plant phenotypic diversity at molecular level. We identified 2255 proteins in fruits, assigning 102 differentially represented components between cultivars, including some related to pomological, nutritional and allergenic characteristics. Thirty-three polyphenols were also identified and quantified, which belong to hydroxybenzoic acid, flavanol, hydroxycinnamic acid, flavonol, flavanone and dihydrochalcone sub-classes. Heat-map representation of quantitative proteomic and metabolomic results highlighted compound representation differences in various accessions, whose elaboration through Euclidean distance functions and other linkage methods defined dendrograms establishing phenotypic relationships between cultivars. Principal component analysis of proteomic and metabolomic data provided clear information on phenotypic differences/similarities between persimmon accessions. Coherent cultivar association results were observed between proteomic and metabolomic data, emphasizing the utility of integrating combined omic approaches to identify and validate phenotypic relationships between ecotypes, and to estimate corresponding variability and distance. Accordingly, this study describes an original, combined approach to outline phenotypic signatures in persimmon cultivars, which may be used for a further characterization of other ecotypes of the same species and an improved description of nutritional characteristics of corresponding fruits.
Collapse
Affiliation(s)
- Sabrina De Pascale
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Angelina Nunziata
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Danilo Cice
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Anna Magri
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Anna Maria Salzano
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| |
Collapse
|
5
|
Bhadu S, Ghoshal G, Goyal M. Effect of Aloevera gel /tamarind starch/whey protein based edible coating on shelf life and postharvest quality of ber fruit (
Ziziphusmauritiana
) stored at 4 ± 1°C and at 25 ± 2°C. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shweta Bhadu
- Energy Research Centre Panjab University Chandigarh 160014 India
| | - Gargi Ghoshal
- Dr. S.S. Bhatnagar University institute of Chemical Engineering & Technology Panjab University Chandigarh 160014 India
| | - Meenakshi Goyal
- Dr. S.S. Bhatnagar University institute of Chemical Engineering & Technology Panjab University Chandigarh 160014 India
| |
Collapse
|
6
|
Sobolev AP, Ingallina C, Spano M, Di Matteo G, Mannina L. NMR-Based Approaches in the Study of Foods. Molecules 2022; 27:7906. [PMID: 36432006 PMCID: PMC9697393 DOI: 10.3390/molecules27227906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, the three different NMR-based approaches usually used to study foodstuffs are described, reporting specific examples. The first approach starts with the food of interest that can be investigated using different complementary NMR methodologies to obtain a comprehensive picture of food composition and structure; another approach starts with the specific problem related to a given food (frauds, safety, traceability, geographical and botanical origin, farming methods, food processing, maturation and ageing, etc.) that can be addressed by choosing the most suitable NMR methodology; finally, it is possible to start from a single NMR methodology, developing a broad range of applications to tackle common food-related challenges and different aspects related to foods.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Segre-Capitani”, Institute for Biological Systems, CNR, Via Salaria, Km 29.300, 00015 Monterotondo, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
An Easy and Cheap Kiwi-Based Preparation as Vegetable Milk Coagulant: Preliminary Study at the Laboratory Scale. Foods 2022; 11:foods11152255. [PMID: 35954022 PMCID: PMC9368638 DOI: 10.3390/foods11152255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
In the present study, a kiwifruit aqueous extract was developed and used as a coagulant enzyme in cheesemaking. In detail, polyacrylamide gel electrophoresis (SDS-PAGE) was used to investigate the presence of actinidin, the kiwifruit enzyme involved in κ-casein hydrolysis, in different tissues (pulp, peel, and whole fruit) of ripe and unripe kiwifruits. Data revealed the presence of the enzyme both in the peel and in the pulp of the fruit. Although the aqueous extract obtained from the kiwifruit peel was able to hydrolyze semi-skimmed milk, it did not break down κ-casein. The aqueous extract obtained from the pulp showed a hydrolytic activity toward both κ-casein and semi-skimmed milk. The values for milk-clotting and proteolytic activity of the kiwifruit pulp extract were evaluated at different temperatures and pH parameters in order to obtain a high value of the MCA/PA ratio; we found that a temperature of 40 °C in combination with a pH value of 5.5 allowed us to obtain the best performance. In addition, the data revealed a higher hydrolytic activity of the enzymatic preparation from ripe kiwifruits than that from unripe ones, suggesting the use of the extract from pulp of ripe kiwifruits in the laboratory-scale cheesemaking. The data showed that 3% (v/v) of the ripe kiwifruit pulp extract determined a curd yield of 20.27%, comparable to chymosin yield. In conclusion, the extraction procedure for kiwifruit aqueous extract proposed in the present study was shown to be a fast, cheap, chemical-free, and ecofriendly technology as a plant coagulant for cheese manufacturing.
Collapse
|
8
|
|
9
|
Choi HG, Park DY, Kang NJ. The Fruit Proteome Response to the Ripening Stages in Three Tomato Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040553. [PMID: 35214885 PMCID: PMC8877657 DOI: 10.3390/plants11040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 05/21/2023]
Abstract
The tomato is a horticultural crop that appears in various colors as it ripens. Differences in the proteome expression abundance of a tomato depend on its genotype and ripening stage. Thus, this study aimed to confirm the differences in changes in the proteome according to four ripening stages (green, breaker, turning, and mature) of three tomato genotypes, i.e., yellow, black, and red tomatoes, using a gel-based proteomic technique. The number of protein spots shown as two-dimensional electrophoresis (2-DE) gels differed according to tomato genotype and ripening stage. A total of 286 variant proteins were determined using matrix-assisted laser desorption-time of flight (MALDI-TOF) mass spectrometry (MS) analysis, confirming 233 identified protein functions. In three tomato genotypes in each ripening stage, grouping according to the Munich Information Center for Protein Sequences (MIPS) functional categories confirmed the variant proteins involved in the following: energy processes (21%); metabolism (20%); protein fate (15%); protein synthesis (10%); a protein with a binding function or cofactor requirement (8%); cell rescue, defense, and virulence (8%); cellular transport, transport facilitation, and transport routes (6%); the biogenesis of cellular components (5%); cell cycle and DNA processing (2%); others (5%). Among the identified protein spots in the function category, two proteins related to metabolism, four related to energy, four related to protein synthesis, and two related to interaction with the cellular environment showed significantly different changes according to the fruit color by the ripening stage. This study reveals the physiological changes in different types of tomatoes according to their ripening stage and provides information on the proteome for further improvement.
Collapse
Affiliation(s)
- Hyo-Gil Choi
- Department of Horticulture, Kongju National University, Yesan 32439, Korea;
| | - Dong-Young Park
- Department of Horticulture, Gyeongsang National University, Jinju 52828, Korea;
| | - Nam-Jun Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence:
| |
Collapse
|
10
|
Polysaccharide-Based Active Coatings Incorporated with Bioactive Compounds for Reducing Postharvest Losses of Fresh Fruits. COATINGS 2021. [DOI: 10.3390/coatings12010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review reports recently published research related to the application of polysaccharide-based biodegradable and edible coatings (BECs) fortified with bioactive compounds obtained from plant essential oils (EOs) and phenolic compounds of plant extracts. Combinations of polysaccharides such as starches, pectin, alginate, cellulose derivatives, and chitosan with active compounds obtained from clove, lemon, cinnamon, lavender, oregano, and peppermint have been documented as potential candidates for biologically active coating materials for retardation of quality changes in fresh fruits. Additionally, polysaccharide-based active coatings supplemented with plant extracts such as cashew leaves, pomegranate peel, red roselle, apple fiber, and green tea extracts rich in phenolic compounds and their derivatives have been reported to be excellent substituents to replace chemically formulated wax coatings. Moreover, EOs and plant polyphenolics including alcohols, aldehydes, ketones phenols, organic acids, terpenes, and esters contain hydroxyl functional groups that contribute bioactivity to BECs against oxidation and reduction of microbial load in fresh fruits. Therefore, BECs enriched with active compounds from EOs and plant extracts minimize physiological and microbial deterioration by reducing moisture loss, softening of flesh, ripening, and decay caused by pathogenic bacterial strains, mold, or yeast rots, respectively. As a result, shelf life of fresh fruits can be extended by employing active polysaccharide coatings supplemented with EOs and plant extracts prior to postharvest storage.
Collapse
|
11
|
Rowan D, Boldingh H, Cordiner S, Cooney J, Hedderley D, Hewitt K, Jensen D, Pereira T, Trower T, McGhie T. Kiwifruit Metabolomics-An Investigation of within Orchard Metabolite Variability of Two Cultivars of Actinidia chinensis. Metabolites 2021; 11:metabo11090603. [PMID: 34564419 PMCID: PMC8468816 DOI: 10.3390/metabo11090603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 01/31/2023] Open
Abstract
Plant metabolomics within field-based food production systems is challenging owing to environmental variability and the complex architecture and metabolic growth cycles of plants. Kiwifruit cultivars of Actinidia chinensis are vigorous perennial vines grown as clones in highly structured orchard environments, intensively managed to maximize fruit yield and quality. To understand the metabolic responses of vines to orchard management practices, we needed to better understand the various sources of metabolic variability encountered in the orchard. Triplicate composite leaf, internode and fruit (mature and immature) samples were collected from each of six Actinidia chinensis var. deliciosa 'Hayward' and A. chinensis var. chinensis 'Zesy002' kiwifruit vines at three times during the growing season and measured by LC-MS. In general, there was more variation in metabolite concentrations within vines than between vines, with 'Hayward' showing a greater percentage of within-vine variability than 'Zesy002' (c. 90 vs. 70% respectively). In specific tissues, the sampler, infection by Pseudomonas syringae var. actinidiae and the rootstock also influenced metabolite variability. A similar pattern of metabolic variability was observed from quantitative analysis of specific carbohydrates and phytohormones. High within-vine metabolic variability indicates that it is more important to obtain sufficient replicate samples than to sample from multiple vines. These data provide an objective basis for optimizing metabolite sampling strategies within kiwifruit orchards.
Collapse
Affiliation(s)
- Daryl Rowan
- Fitzherbert Science Centre, The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Palmerston North 4410, New Zealand; (S.C.); (D.H.); (T.M.)
- Correspondence:
| | - Helen Boldingh
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand; (H.B.); (J.C.); (K.H.); (D.J.); (T.P.); (T.T.)
| | - Sarah Cordiner
- Fitzherbert Science Centre, The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Palmerston North 4410, New Zealand; (S.C.); (D.H.); (T.M.)
| | - Janine Cooney
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand; (H.B.); (J.C.); (K.H.); (D.J.); (T.P.); (T.T.)
| | - Duncan Hedderley
- Fitzherbert Science Centre, The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Palmerston North 4410, New Zealand; (S.C.); (D.H.); (T.M.)
| | - Katrin Hewitt
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand; (H.B.); (J.C.); (K.H.); (D.J.); (T.P.); (T.T.)
| | - Dwayne Jensen
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand; (H.B.); (J.C.); (K.H.); (D.J.); (T.P.); (T.T.)
| | - Trisha Pereira
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand; (H.B.); (J.C.); (K.H.); (D.J.); (T.P.); (T.T.)
| | - Tania Trower
- Ruakura Research Centre, The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand; (H.B.); (J.C.); (K.H.); (D.J.); (T.P.); (T.T.)
| | - Tony McGhie
- Fitzherbert Science Centre, The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Palmerston North 4410, New Zealand; (S.C.); (D.H.); (T.M.)
| |
Collapse
|
12
|
Ye SQ, Zou Y, Zheng QW, Liu YL, Li RR, Lin JF, Guo LQ. TMT-MS/MS proteomic analysis of the carbohydrate-active enzymes in the fruiting body of Pleurotus tuoliensis during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1879-1891. [PMID: 32894778 DOI: 10.1002/jsfa.10803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The fruiting body of Pleurotus tuoliensis deteriorates rapidly after harvest, causing a decline in its commercial value and a great reduction in its shelf life. According to the present research, carbohydrate-active enzymes (CAZymes) may cause the softening, liquefaction and autolysis of mature mushrooms after harvest. To further understand the in vivo molecular mechanism of CAZymes affecting the postharvest quality of P. tuoliensis fruiting bodies, a tandem mass tags labelling combined liquid chromatography-tandem mass spectrometry (TMT-MS/MS) proteomic analysis was performed on P. tuoliensis fruiting bodies during storage at 25 °C. RESULTS A total of 4737 proteins were identified, which had at least one unique peptide and had a confidence level above 95%. Consequently, 1307 differentially expressed proteins (DEPs) were recruited using the criteria of abundance fold change (FC) >1.5 or < 0.67 and P < 0.05. The identified proteins were annotated by dbCAN2, a meta server for automated CAZymes annotation. Subsequently, 222 CAZymes were obtained. Several CAZymes participating in the cell wall degradation process, including β-glucosidase, glucan 1,3-β-glucosidase, endo-1,3(4)-β-glucanase and chitinases, were significantly upregulated during storage. The protein expression level of CAZymes, such as xylanase, amylase and glucoamylase, were upregulated significantly, which may participate in the P. tuoliensis polysaccharide degradation. CONCLUSIONS The identified CAZymes degraded the polysaccharides and lignin, destroying the cell wall structure, preventing cell wall remodeling, causing a loss of nutrients and the browning phenomenon, accelerating the deterioration of P. tuoliensis fruiting body. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Si-Qiang Ye
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Yuan Zou
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Qian-Wang Zheng
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Ying-Li Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Rui-Rong Li
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Jun-Fang Lin
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Li-Qiong Guo
- College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| |
Collapse
|
13
|
Samperna S, Boari A, Vurro M, Salzano AM, Reveglia P, Evidente A, Gismondi A, Canini A, Scaloni A, Marra M. Arabidopsis Defense against the Pathogenic Fungus Drechslera gigantea Is Dependent on the Integrity of the Unfolded Protein Response. Biomolecules 2021; 11:biom11020240. [PMID: 33567651 PMCID: PMC7915340 DOI: 10.3390/biom11020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
Drechslera gigantea Heald & Wolf is a worldwide-spread necrotrophic fungus closely related to the Bipolaris genus, well-known because many member species provoke severe diseases in cereal crops and studied because they produce sesterpenoid phytoxins named ophiobolins which possess interesting biological properties. The unfolded protein response (UPR) is a conserved mechanism protecting eukaryotic cells from the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER). In plants, consolidated evidence supports the role of UPR in the tolerance to abiotic stress, whereas much less information is available concerning the induction of ER stress by pathogen infection and consequent UPR elicitation as part of the defense response. In this study, the infection process of D. gigantea in Arabidopsis thaliana wild type and UPR-defective bzip28 bzip60 double mutant plants was comparatively investigated, with the aim to address the role of UPR in the expression of resistance to the fungal pathogen. The results of confocal microscopy, as well as of qRT-PCR transcript level analysis of UPR genes, proteomics, microRNAs expression profile and HPLC-based hormone analyses demonstrated that ophiobolin produced by the fungus during infection compromised ER integrity and that impairment of the IRE1/bZIP60 pathway of UPR hampered the full expression of resistance, thereby enhancing plant susceptibility to the pathogen.
Collapse
Affiliation(s)
- Simone Samperna
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (S.S.); (A.G.); (A.C.)
| | - Angela Boari
- Institute of Sciences of Food Production, National Research Institute, 70126 Bari, Italy; (A.B.); (M.V.)
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Institute, 70126 Bari, Italy; (A.B.); (M.V.)
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy; (A.M.S.); (A.S.)
| | - Pierluigi Reveglia
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (P.R.); (A.E.)
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (P.R.); (A.E.)
| | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (S.S.); (A.G.); (A.C.)
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (S.S.); (A.G.); (A.C.)
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy; (A.M.S.); (A.S.)
| | - Mauro Marra
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (S.S.); (A.G.); (A.C.)
- Correspondence:
| |
Collapse
|
14
|
Tan XY, Misran A, Daim LDJ, Lau BYC. Optimization of protein extraction for proteomic analyses of fresh and frozen "Musang King" durian pulps. Food Chem 2020; 343:128471. [PMID: 33143964 DOI: 10.1016/j.foodchem.2020.128471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Four different methods were evaluated to extract proteins from "Musang King" durian pulps and subsequently proteins with different abundance between fresh and long term frozen storage were identified using two-dimensional polyacrylamide gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analyses. The acetone-phenol method was found to produce good protein yields and gave the highest gel resolution and reproducibility. Differential protein analyses of the durian pulp revealed that 15 proteins were down-regulated and three other proteins were up-regulated after a year of frozen storage. Isoflavone reductase-like protein, S-adenosyl methionine synthase, and cysteine synthase isoform were up-regulated during frozen storage. The down-regulation of proteins in frozen durian pulps indicated that frozen storage has affected proteins in many ways, especially in their functions related to carbohydrate and energy metabolisms, cellular components, and transport processes. This study will enable future detailed investigations of proteins associated with quality attributes of durians to be studied.
Collapse
Affiliation(s)
- Xue Yi Tan
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Azizah Misran
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Leona Daniela Jeffery Daim
- Agronomic Selection, Sime Darby Plantation Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Universiti Putra Malaysia, Lebuh Silikon, 43400 UPM Serdang, Selangor, Malaysia
| | - Benjamin Yii Chung Lau
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
15
|
Lombardi N, Salzano AM, Troise AD, Scaloni A, Vitaglione P, Vinale F, Marra R, Caira S, Lorito M, d’Errico G, Lanzuise S, Woo SL. Effect of Trichoderma Bioactive Metabolite Treatments on the Production, Quality, and Protein Profile of Strawberry Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7246-7258. [PMID: 32426974 PMCID: PMC8154561 DOI: 10.1021/acs.jafc.0c01438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 05/30/2023]
Abstract
Fungi of the genus Trichoderma produce secondary metabolites having several biological activities that affect plant metabolism. We examined the effect of three Trichoderma bioactive metabolites (BAMs), namely, 6-pentyl-α-pyrone (6PP), harzianic acid (HA), and hydrophobin 1 (HYTLO1), on yield, fruit quality, and protein representation of strawberry plants. In particular, 6PP and HA increased the plant yield and number of fruits, when compared to control, while HYTLO1 promoted the growth of the roots and increased the total soluble solids content up to 19% and the accumulation of ascorbic acid and cyanidin 3-O-glucoside in red ripened fruits. Proteomic analysis showed that BAMs influenced the representation of proteins associated with the protein metabolism, response to stress/external stimuli, vesicle trafficking, carbon/energy, and secondary metabolism. Results suggest that the application of Trichoderma BAMs affects strawberry plant productivity and fruit quality and integrate previous observations on deregulated molecular processes in roots and leaves of Trichoderma-treated plants with original data on fruits.
Collapse
Affiliation(s)
- Nadia Lombardi
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Anna Maria Salzano
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Antonio Dario Troise
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Andrea Scaloni
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Paola Vitaglione
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Francesco Vinale
- Department
of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Naples, Italy
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
| | - Roberta Marra
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Simonetta Caira
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Matteo Lorito
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
- Task
Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Giada d’Errico
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Stefania Lanzuise
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Sheridan Lois Woo
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
- Task
Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
- Department
of Pharmacy, University of Naples Federico
II, 80131 Naples, Italy
| |
Collapse
|
16
|
Lombardi N, Caira S, Troise AD, Scaloni A, Vitaglione P, Vinale F, Marra R, Salzano AM, Lorito M, Woo SL. Trichoderma Applications on Strawberry Plants Modulate the Physiological Processes Positively Affecting Fruit Production and Quality. Front Microbiol 2020; 11:1364. [PMID: 32719661 PMCID: PMC7350708 DOI: 10.3389/fmicb.2020.01364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Many Trichoderma spp. are successful plant beneficial microbial inoculants due to their ability to act as biocontrol agents with direct antagonistic activities to phytopathogens, and as biostimulants capable of promoting plant growth. This work investigated the effects of treatments with three selected Trichoderma strains (T22, TH1, and GV41) to strawberry plants on the productivity, metabolites and proteome of the formed fruits. Trichoderma applications stimulated plant growth, increased strawberry fruit yield, and favored selective accumulation of anthocyanins and other antioxidants in red ripened fruits. Proteomic analysis of fruits harvested from the plants previously treated with Trichoderma demonstrated that the microbial inoculants highly affected the representation of proteins associated with responses to stress/external stimuli, nutrient uptake, protein metabolism, carbon/energy metabolism and secondary metabolism, also providing a possible explanation to the presence of specific metabolites in fruits. Bioinformatic analysis of these differential proteins revealed a central network of interacting molecular species, providing a rationale to the concomitant modulation of different plant physiological processes following the microbial inoculation. These findings indicated that the application of Trichoderma-based products exerts a positive impact on strawberry, integrating well with previous observations on the molecular mechanisms activated in roots and leaves of other tested plant species, demonstrating that the efficacy of using a biological approach with beneficial microbes on the maturing plant is also able to transfer advantages to the developing fruits.
Collapse
Affiliation(s)
- Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Simonetta Caira
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Pott DM, Vallarino JG, Osorio S. Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites 2020; 10:metabo10050187. [PMID: 32397309 PMCID: PMC7281412 DOI: 10.3390/metabo10050187] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound generation. As a consequence, measures to reduce economic losses have to be taken by the fruit industry and have mostly consisted of storage at cold temperatures and the use of controlled atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense, metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a powerful tool for further understanding the biochemical basis of postharvest physiology and have the potential to play a critical role in the identification of the pathways affected by fruit senescence. Here, we provide an overview of the metabolic changes during postharvest storage, with special attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions is highlighted.
Collapse
Affiliation(s)
| | - José G. Vallarino
- Correspondence: (J.G.V.); (S.O.); Tel.: +34-952134271 (J.G.V. & S.O.)
| | - Sonia Osorio
- Correspondence: (J.G.V.); (S.O.); Tel.: +34-952134271 (J.G.V. & S.O.)
| |
Collapse
|
18
|
Michailidis M, Karagiannis E, Tanou G, Samiotaki M, Sarrou E, Karamanoli K, Lazaridou A, Martens S, Molassiotis A. Proteomic and metabolic analysis reveals novel sweet cherry fruit development regulatory points influenced by girdling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:233-244. [PMID: 32086160 DOI: 10.1016/j.plaphy.2020.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Despite the application of girdling technique for several centuries, its impact on the metabolic shifts that underly fruit biology remains fragmentary. To characterize the influence of girdling on sweet cherry (Prunus avium L.) fruit development and ripening, second-year-old shoots of the cultivars 'Lapins' and 'Skeena' were girdled before full blossom. Fruit characteristics were evaluated across six developmental stages (S), from green-small fruit (stage S1) to full ripe stage (stage S6). In both cultivars, girdling significantly altered the fruit ripening physiognomy. Time course fruit metabolomic along with proteomic approaches unraveled common and cultivar-specific responses to girdling. Notably, several primary and secondary metabolites, such as soluble sugars (glucose, trehalose), alcohol (mannitol), phenolic compounds (rutin, naringenin-7-O-glucoside), including anthocyanins (cyanidin-3-O-rutinoside, cyanidin-3-O-galactoside, cyanidin-3.5-O-diglucoside) were accumulated by girdling, while various amino acids (glycine, threonine, asparagine) were decreased in both cultivars. Proteins predominantly associated with ribosome, DNA repair and recombination, chromosome, membrane trafficking, RNA transport, oxidative phosphorylation, and redox homeostasis were depressed in fruits of both girdled cultivars. This study provides the first system-wide datasets concerning metabolomic and proteomic changes in girdled fruits, which reveal that shoot girdling may induce long-term changes in sweet cherry metabolism.
Collapse
Affiliation(s)
- Michail Michailidis
- Laboratory of Pomology, School of Agriculture, Aristotle University of Thessaloniki, 57001, Thermi, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, School of Agriculture, Aristotle University of Thessaloniki, 57001, Thermi, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, 57001, Greece
| | - Martina Samiotaki
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, Thessaloniki, 57001, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athina Lazaridou
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010, San Michele all'Adige, Trento, Italy
| | - Athanassios Molassiotis
- Laboratory of Pomology, School of Agriculture, Aristotle University of Thessaloniki, 57001, Thermi, Greece.
| |
Collapse
|
19
|
Brizzolara S, Manganaris GA, Fotopoulos V, Watkins CB, Tonutti P. Primary Metabolism in Fresh Fruits During Storage. FRONTIERS IN PLANT SCIENCE 2020; 11:80. [PMID: 32140162 PMCID: PMC7042374 DOI: 10.3389/fpls.2020.00080] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 05/07/2023]
Abstract
The extension of commercial life and the reduction of postharvest losses of perishable fruits is mainly based on storage at low temperatures alone or in combination with modified atmospheres (MAs) and controlled atmospheres (CAs), directed primarily at reducing their overall metabolism thus delaying ripening and senescence. Fruits react to postharvest conditions with desirable changes if appropriate protocols are applied, but otherwise can develop negative and unacceptable traits due to the onset of physiological disorders. Extended cold storage periods and/or inappropriate temperatures can result in development of chilling injuries (CIs). The etiology, incidence, and severity of such symptoms vary even within cultivars of the same species, indicating the genotype significance. Carbohydrates and amino acids have protective/regulating roles in CI development. MA/CA storage protocols involve storage under hypoxic conditions and high carbon dioxide concentrations that can maximize quality over extended storage periods but are also affected by the cultivar, exposure time, and storage temperatures. Pyruvate metabolism is highly reactive to changes in oxygen concentration and is greatly affected by the shift from aerobic to anaerobic metabolism. Ethylene-induced changes in fruits can also have deleterious effects under cold storage and MA/CA conditions, affecting susceptibility to chilling and carbon dioxide injuries. The availability of the inhibitor of ethylene perception 1-methylcyclopropene (1-MCP) has not only resulted in development of a new technology but has also been used to increase understanding of the role of ethylene in ripening of both non-climacteric and climacteric fruits. Temperature, MA/CA, and 1-MCP alter fruit physiology and biochemistry, resulting in compositional changes in carbon- and nitrogen-related metabolisms and compounds. Successful application of these storage technologies to fruits must consider their effects on the metabolism of carbohydrates, organic acids, amino acids and lipids.
Collapse
Affiliation(s)
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Christopher B. Watkins
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Pietro Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- *Correspondence: Pietro Tonutti,
| |
Collapse
|