1
|
Galán-Cubero R, Fereres A, Moreno A. Aphis gossypii (Hemiptera: Aphididae) feeding responses to double virus infections in melon. JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:18. [PMID: 39980275 PMCID: PMC11842303 DOI: 10.1093/jisesa/ieaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
Virus infections cause economic losses in crops worldwide and their management and control present major challenges. In the field, double infections of two or more viruses are the rule, not the exception. The presence of several viruses in a plant makes it difficult to interpret virus-insect vector-plant interactions. Mixed infections can alter plant symptoms compared with single infections and may also impact their vectors. We describe plant-mediated indirect effects of virus double-infection on feeding behavior of an aphid vector (Aphis gossypii Glover) and virus transmission in melon (Cucumis melo L.). The viruses we used were a circulative cucurbit aphid-borne yellows virus (CABYV, Solemoviridae:Polerovirus) and a non-circulative cucumber mosaic virus (CMV, Bromoviridae:Cucumovirus). When melon plants were CMV-infected, indirect plant-mediated effects on A. gossypii feeding were like those reported on other plant species; specifically, intracellular punctures (pd) were more frequent and longer than on mock-inoculated plants, which enhanced CMV transmission. Similarly, when plants were CABYV-infected, we observed a statistically non-significant trend for increases in extended salivation (E1) and ingestion (E2) activities in phloem compared with mock-inoculated plants, which also enhanced CABYV transmission. When aphids fed on CMV-CABYV double-infected plants feeding behavior activities related to the transmission of both viruses were enhanced even more than when feeding on single-infected plants. Nevertheless, the virus transmission rate was the same on single-infected or double-infected plants. Thus, our results suggest that double infections do not modify viral dispersion compared with single infections since the indirect effect of CMV and CABYV in single infections is already optimized to favor virus transmission.
Collapse
Affiliation(s)
- Rocio Galán-Cubero
- Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | | | | |
Collapse
|
2
|
Mhlanga NM, Pate AE, Arinaitwe W, Carr JP, Murphy AM. Reduction in vertical transmission rate of bean common mosaic virus in bee-pollinated common bean plants. Virol J 2024; 21:147. [PMID: 38943139 PMCID: PMC11214251 DOI: 10.1186/s12985-024-02407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
Vertical transmission, the transfer of pathogens across generations, is a critical mechanism for the persistence of plant viruses. The transmission mechanisms are diverse, involving direct invasion through the suspensor and virus entry into developing gametes before achieving symplastic isolation. Despite the progress in understanding vertical virus transmission, the environmental factors influencing this process remain largely unexplored. We investigated the complex interplay between vertical transmission of plant viruses and pollination dynamics, focusing on common bean (Phaseolus vulgaris). The intricate relationship between plants and pollinators, especially bees, is essential for global ecosystems and crop productivity. We explored the impact of virus infection on seed transmission rates, with a particular emphasis on bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV). Under controlled growth conditions, BCMNV exhibited the highest seed transmission rate, followed by BCMV and CMV. Notably, in the field, bee-pollinated BCMV-infected plants showed a reduced transmission rate compared to self-pollinated plants. This highlights the influence of pollinators on virus transmission dynamics. The findings demonstrate the virus-specific nature of seed transmission and underscore the importance of considering environmental factors, such as pollination, in understanding and managing plant virus spread.
Collapse
Affiliation(s)
- Netsai M Mhlanga
- National Institute of Agricultural Botany, New Rd, East Malling, West Malling, ME19 6BJ, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- International Centre for Tropical Agriculture (CIAT), Dong Dok, Ban Nongviengkham, Vientiane, Lao People's Democratic Republic
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
3
|
Chiang KS, Chang YM, Liu HI, Lee JY, Jarroudi ME, Bock CH. Survival Analysis as a Basis for Testing Hypotheses when Using Quantitative Ordinal Scale Disease Severity Data. PHYTOPATHOLOGY 2024; 114:378-392. [PMID: 37606348 DOI: 10.1094/phyto-02-23-0055-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Disease severity in plant pathology is often measured by the amount of a plant or plant part that exhibits disease symptoms. This is typically assessed using a numerical scale, which allows a standardized, convenient, and quick method of rating. These scales, known as quantitative ordinal scales (QOS), divide the percentage scale into a predetermined number of intervals. There are various ways to analyze these ordinal data, with traditional methods involving the use of midpoint conversion to represent the interval. However, this may not be precise enough, as it is only an estimate of the true value. In this case, the data may be considered interval-censored, meaning that we have some knowledge of the value but not an exact measurement. This type of uncertainty is known as censoring, and techniques that address censoring, such as survival analysis (SA), use all available information and account for this uncertainty. To investigate the pros and cons of using SA with QOS measurements, we conducted a simulation based on three pathosystems. The results showed that SA almost always outperformed midpoint conversion with data analyzed using a t test, particularly when data were not normally distributed. Midpoint conversion is currently a standard procedure. In certain cases, the midpoint approach required a 400% increase in sample size to achieve the same power as the SA method. However, as the mean severity increases, fewer additional samples are needed (approximately an additional 100%), regardless of the assessment method used. Based on these findings, we conclude that SA is a valuable method for enhancing the power of hypothesis testing when analyzing QOS severity data. Future research should investigate the wider use of survival analysis techniques in plant pathology and their potential applications in the discipline.
Collapse
Affiliation(s)
- K S Chiang
- Division of Biometrics, Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Y M Chang
- Department of Statistics, Tunghai University, Taichung 407, Taiwan
| | - H I Liu
- Bachelor Program in Industrial Artificial Intelligence, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - J Y Lee
- Department of Statistics, Feng Chia University, Taichung 407, Taiwan
| | - M El Jarroudi
- University of Liège, Department of Environmental Sciences and Management, SPHERES Research Unit, Arlon, Belgium
| | - C H Bock
- U.S. Department of Agriculture-Agricultural Research Service-SEFTNRL, Byron, GA 31008, U.S.A
| |
Collapse
|
4
|
An X, Gu Q, Wang J, Chang T, Zhang W, Wang JJ, Niu J. Insect-specific RNA virus affects the stylet penetration activity of brown citrus aphid (Aphis citricidus) to facilitate its transmission. INSECT SCIENCE 2024; 31:255-270. [PMID: 37358052 DOI: 10.1111/1744-7917.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023]
Abstract
Sap-sucking insects often transmit plant viruses but also carry insect viruses, which infect insects but not plants. The impact of such insect viruses on insect host biology and ecology is largely unknown. Here, we identified a novel insect-specific virus carried by brown citrus aphid (Aphis citricidus), which we tentatively named Aphis citricidus picornavirus (AcPV). Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses, suggesting that these viruses represent a new family in order Picornavirales. Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference, resulting in asymptomatic tolerance. Importantly, we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants. AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration, thus promoting its transmission among aphids with plants as an intermediate site. The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling. Together, our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors, thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.
Collapse
Affiliation(s)
- Xin An
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Qiaoying Gu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jing Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Tengyu Chang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Science, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Brine TJ, Crawshaw S, Murphy AM, Pate AE, Carr JP, Wamonje FO. Identification and characterization of Phaseolus vulgaris endornavirus 1, 2 and 3 in common bean cultivars of East Africa. Virus Genes 2023; 59:741-751. [PMID: 37563541 PMCID: PMC10500008 DOI: 10.1007/s11262-023-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Persistent viruses include members of the family Endornavirus that cause no apparent disease and are transmitted exclusively via seed or pollen. It is speculated that these RNA viruses may be mutualists that enhance plant resilience to biotic and abiotic stresses. Using reverse transcription coupled polymerase chain reactions, we investigated if common bean (Phaseolus vulgaris L.) varieties popular in east Africa were hosts for Phaseolus vulgaris endornavirus (PvEV) 1, 2 or 3. Out of 26 bean varieties examined, four were infected with PvEV1, three were infected with both PvEV1 and PvEV2 and three had infections of all three (PvEV) 1, 2 and 3. Notably, this was the first identification of PvEV3 in common bean from Africa. Using high-throughput sequencing of two east African bean varieties (KK022 and KK072), we confirmed the presence of these viruses and generated their genomes. Intra- and inter-species sequence comparisons of these genomes with comparator sequences from GenBank revealed clear species demarcation. In addition, phylogenetic analyses based on sequences generated from the helicase domains showed that geographical distribution does not correlate to genetic relatedness or the occurrence of endornaviruses. These findings are an important first step towards future investigations to determine if these viruses engender positive effects in common bean, a vital crop in east Africa.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK.
| |
Collapse
|
6
|
Brine TJ, Viswanathan SB, Murphy AM, Pate AE, Wamonje FO, Carr JP. Investigating the interactions of endornaviruses with each other and with other viruses in common bean, Phaseolus vulgaris. Virol J 2023; 20:216. [PMID: 37737192 PMCID: PMC10515030 DOI: 10.1186/s12985-023-02184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Plant viruses of the genus Alphaendornavirus are transmitted solely via seed and pollen and generally cause no apparent disease. It has been conjectured that certain plant endornaviruses may confer advantages on their hosts through improved performance (e.g., seed yield) or resilience to abiotic or biotic insult. We recently characterised nine common bean (Phaseolus vulgaris L.) varieties that harboured either Phaseolus vulgaris endornavirus (PvEV1) alone, or PvEV1 in combination with PvEV2 or PvEV1 in combination with PvEV2 and PvEV3. Here, we investigated the interactions of these endornaviruses with each other, and with three infectious pathogenic viruses: cucumber mosaic virus (CMV), bean common mosaic virus (BCMV), and bean common mosaic necrosis virus (BCMNV). RESULTS In lines harbouring PvEV1, PvEV1 and PvEV2, or PvEV1, PvEV2 plus PvEV3, the levels of PvEV1 and PvEV3 RNA were very similar between lines, although there were variations in PvEV2 RNA accumulation. In plants inoculated with infectious viruses, CMV, BCMV and BCMNV levels varied between lines, but this was most likely due to host genotype differences rather than to the presence or absence of endornaviruses. We tested the effects of endornaviruses on seed production and seedborne transmission of infectious pathogenic viruses but found no consistent relationship between the presence of endornaviruses and seed yield or protection from seedborne transmission of infectious pathogenic viruses. CONCLUSIONS It was concluded that endornaviruses do not interfere with each other's accumulation. There appears to be no direct synergy or competition between infectious pathogenic viruses and endornaviruses, however, the effects of host genotype may obscure interactions between endornaviruses and infectious viruses. There is no consistent effect of endornaviruses on seed yield or susceptibility to seedborne transmission of other viruses.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
7
|
Krieger C, Halter D, Baltenweck R, Cognat V, Boissinot S, Maia-Grondard A, Erdinger M, Bogaert F, Pichon E, Hugueney P, Brault V, Ziegler-Graff V. An Aphid-Transmitted Virus Reduces the Host Plant Response to Its Vector to Promote Its Transmission. PHYTOPATHOLOGY 2023; 113:1745-1760. [PMID: 37885045 DOI: 10.1094/phyto-12-22-0454-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The success of virus transmission by vectors relies on intricate trophic interactions between three partners, the host plant, the virus, and the vector. Despite numerous studies that showed the capacity of plant viruses to manipulate their host plant to their benefit, and potentially of their transmission, the molecular mechanisms sustaining this phenomenon has not yet been extensively analyzed at the molecular level. In this study, we focused on the deregulations induced in Arabidopsis thaliana by an aphid vector that were alleviated when the plants were infected with turnip yellows virus (TuYV), a polerovirus strictly transmitted by aphids in a circulative and nonpropagative mode. By setting up an experimental design mimicking the natural conditions of virus transmission, we analyzed the deregulations in plants infected with TuYV and infested with aphids by a dual transcriptomic and metabolomic approach. We observed that the virus infection alleviated most of the gene deregulations induced by the aphids in a noninfected plant at both time points analyzed (6 and 72 h) with a more pronounced effect at the later time point of infestation. The metabolic composition of the infected and infested plants was altered in a way that could be beneficial for the vector and the virus transmission. Importantly, these substantial modifications observed in infected and infested plants correlated with a higher TuYV transmission efficiency. This study revealed the capacity of TuYV to alter the plant nutritive content and the defense reaction against the aphid vector to promote the viral transmission.
Collapse
Affiliation(s)
- Célia Krieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - David Halter
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Valérie Cognat
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | - Monique Erdinger
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Florent Bogaert
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Elodie Pichon
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Véronique Brault
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
8
|
Gutiérrez-Sánchez Á, Cobos A, López-Herranz M, Canto T, Pagán I. Environmental Conditions Modulate Plant Virus Vertical Transmission and Survival of Infected Seeds. PHYTOPATHOLOGY 2023; 113:1773-1787. [PMID: 36880795 DOI: 10.1094/phyto-11-22-0448-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Seed transmission is a major mode for plant virus persistence and dispersal, as it allows for virus survival within the seed in unfavorable conditions and facilitates spread when they become more favorable. To access these benefits, viruses require infected seeds to remain viable and germinate in altered environmental conditions, which may also be advantageous for the plant. However, how environmental conditions and virus infection affect seed viability, and whether these effects modulate seed transmission rate and plant fitness, is unknown. To address these questions, we utilized turnip mosaic virus, cucumber mosaic virus, and Arabidopsis thaliana as model systems. Using seeds from plants infected by these viruses, we analyzed seed germination rates, as a proxy of seed viability, and virus seed transmission rate under standard and altered temperature, CO2, and light intensity. With these data, we developed and parameterized a mathematical epidemiological model to explore the consequences of the observed alterations on virus prevalence and persistence. Altered conditions generally reduced overall seed viability and increased virus transmission rate compared with standard conditions, which indicated that under environmental stress, infected seeds are more viable. Hence, virus presence may be beneficial for the host. Subsequent simulations predicted that enhanced viability of infected seeds and higher virus transmission rate may increase virus prevalence and persistence in the host population under altered conditions. This work provides novel information on the influence of the environment in plant virus epidemics. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Sánchez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Marisa López-Herranz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| |
Collapse
|
9
|
Pagán I, García-Arenal F. Cucumber Mosaic Virus-Induced Systemic Necrosis in Arabidopsis thaliana: Determinants and Role in Plant Defense. Viruses 2022; 14:v14122790. [PMID: 36560793 PMCID: PMC9783004 DOI: 10.3390/v14122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Effector-triggered immunity (ETI) is one of the most studied mechanisms of plant resistance to viruses. During ETI, viral proteins are recognized by specific plant R proteins, which most often trigger a hypersensitive response (HR) involving programmed cell death (PCD) and a restriction of infection in the initially infected sites. However, in some plant-virus interactions, ETI leads to a response in which PCD and virus multiplication are not restricted to the entry sites and spread throughout the plant, leading to systemic necrosis. The host and virus genetic determinants, and the consequences of this response in plant-virus coevolution, are still poorly understood. Here, we identified an allelic version of RCY1-an R protein-as the host genetic determinant of broad-spectrum systemic necrosis induced by cucumber mosaic virus (CMV) infection in the Arabidopsis thaliana Co-1 ecotype. Systemic necrosis reduced virus fitness by shortening the infectious period and limiting virus multiplication; thus, this phenotype could be adaptive for the plant population as a defense against CMV. However, the low frequency (less than 1%) of this phenotype in A. thaliana wild populations argues against this hypothesis. These results expand current knowledge on the resistance mechanisms to virus infections associated with ETI in plants.
Collapse
|
10
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Arinaitwe W, Guyon A, Tungadi TD, Cunniffe NJ, Rhee SJ, Khalaf A, Mhlanga NM, Pate AE, Murphy AM, Carr JP. The Effects of Cucumber Mosaic Virus and Its 2a and 2b Proteins on Interactions of Tomato Plants with the Aphid Vectors Myzus persicae and Macrosiphum euphorbiae. Viruses 2022; 14:v14081703. [PMID: 36016326 PMCID: PMC9416248 DOI: 10.3390/v14081703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Cucumber mosaic virus (CMV), a major tomato pathogen, is aphid-vectored in the non-persistent manner. We investigated if CMV-induced volatile organic compounds (VOCs) or other virus-induced cues alter aphid-tomato interactions. Y-tube olfactometry showed that VOCs emitted by plants infected with CMV (strain Fny) attracted generalist (Myzus persicae) and Solanaceae specialist (Macrosiphum euphorbiae) aphids. Myzus persicae preferred settling on infected plants (3 days post-inoculation: dpi) at 1h post-release, but at 9 and 21 dpi, aphids preferentially settled on mock-inoculated plants. Macrosiphum euphorbiae showed no strong preference for mock-inoculated versus infected plants at 3 dpi but settled preferentially on mock-inoculated plants at 9 and 21 dpi. In darkness aphids showed no settling or migration bias towards either mock-inoculated or infected plants. However, tomato VOC blends differed in light and darkness, suggesting aphids respond to a complex mix of olfactory, visual, and other cues influenced by infection. The LS-CMV strain induced no changes in aphid-plant interactions. Experiments using inter-strain recombinant and pseudorecombinant viruses showed that the Fny-CMV 2a and 2b proteins modified tomato interactions with Macrosiphum euphorbiae and Myzus persicae, respectively. The defence signal salicylic acid prevents excessive CMV-induced damage to tomato plants but is not involved in CMV-induced changes in aphid-plant interactions.
Collapse
Affiliation(s)
- Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT), Dong Dok, Ban Nongviengkham, Vientiane CB10 1RQ, Laos
| | - Alex Guyon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Sainsbury Laboratory, Cambridge University, Bateman St, Cambridge CB2 1LR, UK
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- School of Life Sciences, Keele University, Newcastle ST5 5BG, UK
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Amjad Khalaf
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1RQ, UK
| | - Netsai M. Mhlanga
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- National Institute for Agricultural Botany-East Malling (NIAB-EMR), West Malling ME19 6BJ, UK
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (W.A.); (A.G.); (T.D.T.); (N.J.C.); (S.-J.R.); (A.K.); (N.M.M.); (A.E.P.); (A.M.M.)
- Correspondence:
| |
Collapse
|
12
|
Plant-Rich Field Margins Influence Natural Predators of Aphids More Than Intercropping in Common Bean. INSECTS 2022; 13:insects13070569. [PMID: 35886745 PMCID: PMC9322975 DOI: 10.3390/insects13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Field margin plants are important in providing resources for natural enemies (NEs) and improving biological control of crop pests. However, the use of field margin plants for biological control particularly of important common bean pests is understudied in smallholder farming systems of sub-Saharan Africa (SSA). We evaluated the potential of field margin plants with respect to intercropping systems in common bean fields to enhance the population of NEs of common bean pests. We observed a high assemblage of important NEs of common bean pests for some insect taxa with minimal impact of intercropping on NEs. Field margin plants could be managed to provide a wide range of resources to NEs and therefore biological control of common bean pests. Abstract Field margins support important ecosystem services including natural pest regulation. We investigated the influence of field margins on the spatial and temporal distribution of natural enemies (NEs) of bean pests in smallholder farming systems. We sampled NEs from high and low plant diversity bean fields using sweep netting and coloured sticky traps, comparing monocropped and intercropped farms. NEs collected from within crops included predatory bugs, lacewings, predatory flies, parasitic flies, parasitic wasps, lady beetles, and a range of other predatory beetles; with the most dominant group being parasitic wasps. Overall, high plant diversity fields had a higher number of NEs than low-diversity fields, regardless of sampling methods. The field margin had a significantly higher number of lacewings, parasitic wasps, predatory bugs, syrphid flies, and other predatory beetles relative to the crop, but beneficial insects were collected throughout the fields. However, we observed marginally higher populations of NEs in intercropping than in monocropping although the effect was not significant in both low and high plant diversity fields. We recommend smallholder farmers protect the field margins for the added benefit of natural pest regulation in their fields.
Collapse
|
13
|
Jayasinghe WH, Akhter MS, Nakahara K, Maruthi MN. Effect of aphid biology and morphology on plant virus transmission. PEST MANAGEMENT SCIENCE 2022; 78:416-427. [PMID: 34478603 DOI: 10.1002/ps.6629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Aphids severely affect crop production by transmitting many plant viruses. Viruses are obligate intracellular pathogens that mostly depend on vectors for their transmission and survival. A majority of economically important plant viruses are transmitted by aphids. They transmit viruses either persistently (circulative or non-circulative) or non-persistently. Plant virus transmission by insects is a process that has evolved over time and is strongly influenced by insect morphological features and biology. Over the past century, a large body of research has provided detailed knowledge of the molecular processes underlying virus-vector interactions. In this review, we discuss how aphid biology and morphology can affect plant virus transmission. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wikum H Jayasinghe
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Md Shamim Akhter
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Plant Pathology Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Bangladesh
| | - Kenji Nakahara
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
14
|
Mhlanga NM, Murphy AM, Wamonje FO, Cunniffe NJ, Caulfield JC, Glover BJ, Carr JP. An Innate Preference of Bumblebees for Volatile Organic Compounds Emitted by Phaseolus vulgaris Plants Infected With Three Different Viruses. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum L.) plants emit volatile organic compounds (VOCs) attractive to bumblebees (Bombus terrestris L.), which are important tomato pollinators, but which do not transmit CMV. We investigated if this effect was unique to the tomato-CMV pathosystem. In two bean (Phaseolus vulgaris L.) cultivars, infection with the potyviruses bean common mosaic virus (BCMV) or bean common mosaic necrosis virus (BCMNV), or with the cucumovirus CMV induced quantitative changes in VOC emission detectable by coupled gas chromatography–mass spectrometry. In free-choice olfactometry assays bumblebees showed an innate preference for VOC blends emitted by virus-infected non-flowering bean plants and flowering CMV-infected bean plants, over VOCs emitted by non-infected plants. Bumblebees also preferred VOCs of flowering BCMV-infected plants of the Wairimu cultivar over non-infected plants, but the preference was not significant for BCMV-infected plants of the Dubbele witte cultivar. Bumblebees did not show a significant preference for VOCs from BCMNV-infected flowering bean plants but differential conditioning olfactometric assays showed that bumblebees do perceive differences between VOC blends emitted by flowering BCMNV-infected plants over non-infected plants. These results are consistent with the concept that increased pollinator attraction may be a virus-to-host payback, and show that virus-induced changes in bee-attracting VOC emission is not unique to one virus-host combination.
Collapse
|
15
|
Tungadi T, Watt LG, Groen SC, Murphy AM, Du Z, Pate AE, Westwood JH, Fennell TG, Powell G, Carr JP. Infection of Arabidopsis by cucumber mosaic virus triggers jasmonate-dependent resistance to aphids that relies partly on the pattern-triggered immunity factor BAK1. MOLECULAR PLANT PATHOLOGY 2021; 22:1082-1091. [PMID: 34156752 PMCID: PMC8358999 DOI: 10.1111/mpp.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.
Collapse
Affiliation(s)
- Trisna Tungadi
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- NIAB EMREast MallingUK
| | - Lewis G. Watt
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Simon C. Groen
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Department of BiologyNew York UniversityNew YorkNew YorkUSA
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Zhiyou Du
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Institute of BioengineeringZhejiang Sci‐Tech UniversityHangzhouChina
| | | | - Jack H. Westwood
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Walder FoundationSkokieIllinoisUSA
| | - Thea G. Fennell
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
16
|
Stec K, Kordan B, Gabryś B. Effect of Soy Leaf Flavonoids on Pea Aphid Probing Behavior. INSECTS 2021; 12:756. [PMID: 34442322 PMCID: PMC8396875 DOI: 10.3390/insects12080756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Flavonoids detected in soybean Glycine max (L.) Merr. (Fabaceae) cause various alterations in the metabolism, behavior, and development of insect herbivores. The pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) poses potential threat to soybeans, but the effect of individual flavonoids on its feeding-associated behavior is relatively unknown. We monitored probing behavior (stylet penetration activities) of A. pisum on its preferred host plant, Pisum sativum L. untreated (control) and treated with 0.1% ethanolic solutions of flavonoids apigenin, daidzein, genistein, and kaempferol. We applied the electrical penetration graph (electropenetrography, EPG) technique, which visualizes the movements of aphid stylets within plant tissues. None of the applied flavonoids affected the propensity to probe the plants by A. pisum. However, apigenin enhanced the duration of probes in non-phloem tissues, which caused an increase in the frequency and duration of stylet mechanics derailment and xylem sap ingestion but limited the ingestion of phloem sap. Daidzein caused a delay in reaching phloem vessels and limited sap ingestion. Kaempferol caused a reduction in the frequency and duration of the phloem phase. Genistein did not affect aphid probing behavior. Our findings provide information for selective breeding programs of resistant plant cultivars to A. pisum.
Collapse
Affiliation(s)
- Katarzyna Stec
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| | - Bożena Kordan
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland;
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| |
Collapse
|
17
|
Natural Pest Regulation and Its Compatibility with Other Crop Protection Practices in Smallholder Bean Farming Systems. BIOLOGY 2021; 10:biology10080805. [PMID: 34440037 PMCID: PMC8389685 DOI: 10.3390/biology10080805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Bean production by smallholder farmers in sub-Saharan Africa is frequently constrained by insect pests, two of the most serious being Maruca vitrata and Aphis fabae. For many bean farmers, the options available to control these pests are limited. A few can access synthetic insecticides, but these have negative consequences for their health and the environment. Natural pest regulation (NPR) offers environmentally benign approaches for smallholders to manage bean pests. For example, here, we focus on biological control whereby beneficial organisms predate or parasitize the pests. Field studies show this is a feasible strategy for controlling M. vitrata and A. fabae. In particular, we highlight how compatible biological control is with other NPR options, such as the use of biopesticides (including plant extracts), resistant varieties, and cultural control. We recommend that smallholder farmers consider biological control alongside other NPR strategies for reducing the populations of A. fabae and M. vitrata in the common bean, increasing the yields and reducing the negative impacts of the synthetic pesticides. Abstract Common bean (Phaseolus vulgaris) production and storage are limited by numerous constraints. Insect pests are often the most destructive. However, resource-constrained smallholders in sub-Saharan Africa (SSA) often do little to manage pests. Where farmers do use a control strategy, it typically relies on chemical pesticides, which have adverse effects on the wildlife, crop pollinators, natural enemies, mammals, and the development of resistance by pests. Nature-based solutions —in particular, using biological control agents with sustainable approaches that include biopesticides, resistant varieties, and cultural tools—are alternatives to chemical control. However, significant barriers to their adoption in SSA include a lack of field data and knowledge on the natural enemies of pests, safety, efficacy, the spectrum of activities, the availability and costs of biopesticides, the lack of sources of resistance for different cultivars, and spatial and temporal inconsistencies for cultural methods. Here, we critically review the control options for bean pests, particularly the black bean aphid (Aphis fabae) and pod borers (Maruca vitrata). We identified natural pest regulation as the option with the greatest potential for this farming system. We recommend that farmers adapt to using biological control due to its compatibility with other sustainable approaches, such as cultural tools, resistant varieties, and biopesticides for effective management, especially in SSA.
Collapse
|
18
|
Budziszewska M, Frąckowiak P, Obrępalska-Stęplowska A. Analysis of the Role of Bradysia impatiens (Diptera: Sciaridae) as a Vector Transmitting Peanut Stunt Virus on the Model Plant Nicotiana benthamiana. Cells 2021; 10:1546. [PMID: 34207477 PMCID: PMC8233879 DOI: 10.3390/cells10061546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.
Collapse
Affiliation(s)
| | | | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland; (M.B.); (P.F.)
| |
Collapse
|
19
|
Combined Transcriptomic and Proteomic Analysis of Myzus persicae, the Green Peach Aphid, Infected with Cucumber Mosaic Virus. INSECTS 2021; 12:insects12050372. [PMID: 33919000 PMCID: PMC8142985 DOI: 10.3390/insects12050372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV (cucumber mosaic virus) by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control Myzus persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription. Abstract Aphids transmit CMV (cucumber mosaic virus) in a non-persistent manner. However, little is known about the mechanism of CMV transmission. In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control M. persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription.
Collapse
|
20
|
Post-COVID-19 Action: Guarding Africa's Crops against Viral Epidemics Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions. Viruses 2020; 12:v12111276. [PMID: 33182262 PMCID: PMC7695315 DOI: 10.3390/v12111276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The COVID-19 pandemic has shown that understanding the genomics of a virus, diagnostics and breaking virus transmission is essential in managing viral pandemics. The same lessons can apply for plant viruses. There are plant viruses that have severely disrupted crop production in multiple countries, as recently seen with maize lethal necrosis disease in eastern and southern Africa. High-throughput sequencing (HTS) is needed to detect new viral threats. Equally important is building local capacity to develop the tools required for rapid diagnosis of plant viruses. Most plant viruses are insect-vectored, hence, biological insights on virus transmission are vital in modelling disease spread. Research in Africa in these three areas is in its infancy and disjointed. Despite intense interest, uptake of HTS by African researchers is hampered by infrastructural gaps. The use of whole-genome information to develop field-deployable diagnostics on the continent is virtually inexistent. There is fledgling research into plant-virus-vector interactions to inform modelling of viral transmission. The gains so far have been modest but encouraging, and therefore must be consolidated. For this, I propose the creation of a new Research Centre for Africa. This bold investment is needed to secure the future of Africa’s crops from insect-vectored viral diseases.
Collapse
|
21
|
Tenllado F, Canto T. Effects of a changing environment on the defenses of plants to viruses. Curr Opin Virol 2020; 42:40-46. [PMID: 32531746 DOI: 10.1016/j.coviro.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Since their appearance, plants have lived and evolved within changing environments that were determined by a host of abiotic and biotic factors. It is in this evolutionary context that both, the mechanisms of defense by plants against viruses and the viral reprogramming of plant routes were established, which combined define the outcomes of compatible infections. Current alterations in the chemistry of the atmosphere are causing changes in the global context in which plants and viruses interact that are unprecedented not in their nature but in their pace. We discuss here the potential reach of environment changes taking place now, and how the main abiotic parameters that are driving them can affect defense responses of plants to viruses in compatible infections.
Collapse
Affiliation(s)
- Francisco Tenllado
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Tomas Canto
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
22
|
Wamonje FO, Tungadi TD, Murphy AM, Pate AE, Woodcock C, Caulfield JC, Mutuku JM, Cunniffe NJ, Bruce TJA, Gilligan CA, Pickett JA, Carr JP. Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean ( Phaseolus vulgaris) Plants Through a Combination of Volatile and Surface Cues. FRONTIERS IN PLANT SCIENCE 2020; 11:613772. [PMID: 33381144 PMCID: PMC7767818 DOI: 10.3389/fpls.2020.613772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 05/14/2023]
Abstract
Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) are important pathogens of common bean (Phaseolus vulgaris), a crop vital for food security in sub-Saharan Africa. These viruses are vectored by aphids non-persistently, with virions bound loosely to stylet receptors. These viruses also manipulate aphid-mediated transmission by altering host properties. Virus-induced effects on host-aphid interactions were investigated using choice test (migration) assays, olfactometry, and analysis of insect-perceivable volatile organic compounds (VOCs) using gas chromatography (GC)-coupled mass spectrometry, and GC-coupled electroantennography. When allowed to choose freely between infected and uninfected plants, aphids of the legume specialist species Aphis fabae, and of the generalist species Myzus persicae, were repelled by plants infected with BCMV, BCMNV, or CMV. However, in olfactometer experiments with A. fabae, only the VOCs emitted by BCMNV-infected plants repelled aphids. Although BCMV, BCMNV, and CMV each induced distinctive changes in emission of aphid-perceivable volatiles, all three suppressed emission of an attractant sesquiterpene, α-copaene, suggesting these three different viruses promote migration of virus-bearing aphids in a similar fashion.
Collapse
Affiliation(s)
- Francis O. Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | - J. Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: John P. Carr, ;
| |
Collapse
|