1
|
Xiang Y, Chen F, Shi R, Yang T, Zhang W, Zhou X, Wang C, Sun C, Fu S, Wang X, Zhang J, Shen Y. Integrating QTL mapping and GWAS to decipher the genetic mechanisms behind the calcium contents of Brassica napus shoots. FRONTIERS IN PLANT SCIENCE 2025; 16:1565329. [PMID: 40276715 PMCID: PMC12018428 DOI: 10.3389/fpls.2025.1565329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Brassica napus is an important oil crop worldwide, and its shoots are rich in vitamin C, calcium, and selenium. Functional oilseed-vegetable-dual-purpose varieties can increase the subsidiary value of B. napus. Consumption of high-calcium B. napus shoots can effectively help provide essential elements to the human body. To investigate the genetic mechanisms underlying the calcium concentrations of B. napus shoots, quantitative trait loci (QTL) mapping, using a population of 189 recombinant inbred lines, and a genome-wide association study, using an association panel of 202 diverse accessions, were performed. A total of 12 QTLs controlling calcium content were identified using the recombinant inbred line population in five environments. Among them, qCaC.22GY-A05-1 was considered the major QTL, with a phenotypic variation of 10.10%. In addition, 228 single nucleotide polymorphisms significantly related to calcium content were identified using the genome-wide association study in six environments, and they were distributed on all of the chromosomes, except A10. Finally, 10 candidate genes involved in regulating calcium absorption and transport in B. napus shoots were identified. However, no overlapping intervals were found through a comprehensive analysis of the two datasets. These results provide valuable information for understanding the genetic control of calcium concentration in B. napus shoots.
Collapse
Affiliation(s)
- Yanan Xiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Feng Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Rui Shi
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Tinghai Yang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xiaoying Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Chunyun Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Chengming Sun
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Sanxiong Fu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xiaodong Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiefu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Yue Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
2
|
Quan Y, Liu H, Li K, Xu L, Zhao Z, Xiao L, Yao Y, Du D. Genome-wide association study reveals genetic loci for seed density per silique in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:80. [PMID: 40113624 DOI: 10.1007/s00122-025-04857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/15/2025] [Indexed: 03/22/2025]
Abstract
KEY MESSAGE Two stable QTLs controlling seed density per silique were detected on chromosomes A09 and C05 in rapeseed via GWAS, and ARF18 was the only causal gene of QTL qSDPS-A09. Seed density per silique (SDPS) is a key agronomic trait that directly or indirectly affects seed yield in rapeseed (Brassica napus L.). Exploring the genetic control of SDPS is beneficial for increasing rapeseed production. In this study, we evaluated the SDPS phenotypes of 413 rapeseed cultivars (lines) across five natural environments and genotyped them by resequencing. A GWAS analysis was performed using 5,277,554 high-quality variants with the MLM_PCA + K and FarmCPU models. A total of 51 loci were identified to be significantly (p < - log10(1.88 × 10-6)) associated with SDPS, of which 5 were detected in all environments (except for SNP-2095656) by both GWAS models. Among the five loci, three were located on chromosome A09, whereas the other two loci were located on chromosome C05. The three loci on chromosome A09 and the two loci on chromosome C05 were physically close to each other. Therefore, only the two common candidate QTLs were integrated and named QTL qSDPS-A09 (320 kb) and qSDPS-C05 (331.48 kb), respectively. Sixty-seven and forty-eight candidate genes were initially identified on A09 and C05 and then narrowed down to 17 and 13 candidate genes, respectively, via LD block analyses. Gene-based association studies, haplotype analyses and expression analyses confirmed that three homologs of Arabidopsis auxin-response factor 18 (BnaA09G0559300ZS) was the most likely candidate genes underlying the QTL qSDPS-A09. ARF18Hap4 was identified as a favorable haplotype for high SDPS. These findings will aid in elucidating the genetic and molecular mechanisms of SDPS and promoting genetic modifications in rapeseed breeding.
Collapse
Affiliation(s)
- Youjuan Quan
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Haidong Liu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| | - Kaixiang Li
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Liang Xu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Zhigang Zhao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Lu Xiao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Yanmei Yao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
3
|
Qadir M, Lin X, Nabi F, Ashok KK, Zhou XR, Sun Q, Shi P, Wang X, Shi J, Wang H. Dissection of the genetic basis and molecular mechanism of ovule number per ovary in oilseed rape ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2025; 15:1489490. [PMID: 39935687 PMCID: PMC11811079 DOI: 10.3389/fpls.2024.1489490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025]
Abstract
Ovule number per ovary (ONPO) determines the maximum potential of seed number per fruit that is a direct component of seed yield in crops. This study aimed to dissect the genetic basis and molecular mechanism of ONPO using a newly developed doubled haploid (DH) population in oilseed rape. In all the four investigated environments, the ONPO of 201 DH lines exhibited normal distribution with a wide variation from 22.6 to 41.8, suggesting quantitative inheritance appropriate for mapping QTL. A skeleton genetic map of 2111 markers within 19 linkage groups was developed, with a total of 1715.71 cM in length and an average of 0.82 cM between markers. Linkage mapping identified ten QTLs that were distributed on eight chromosomes and explained 7.0-15.9% of the phenotypic variance. Among these, four were identical to the reported and two were repeatedly detected with relatively large effects, highlighting their potential for marker-assisted selection. Phytohormone quantification of ovaries (at the ovule initiation stage) from two pools of high and low ONPO lines showed significant differences in the levels of nine sub-types of phytohormones, suggesting their important roles in regulating ovule number. Transcriptomic analysis identified 7689 differentially expressed genes (DEGs) between the two pools, of which nearly half were enriched into functional categories of reported genes regulating ONPO, including protein, RNA, signalling, miscellaneous, development, hormone metabolism, and tetrapyrrole synthesis. Integration of linkage QTL mapping, transcriptome sequencing and BLAST analysis identified 15 homologues of reported ovule number genes and 327 DEGs in the QTL regions, which were considered as direct and potential candidate genes. These findings propose further insights into the genetic basis and molecular mechanisms of ONPO, which will facilitate future gene cloning and genetic improvement for enhancing seed yield in oilseed rape.
Collapse
Affiliation(s)
- Muslim Qadir
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Abu Dhabi, United Arab Emirates
| | - Xinyi Lin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Farhan Nabi
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Kishore Kumar Ashok
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Abu Dhabi, United Arab Emirates
| | - Xue-Rong Zhou
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Food, Canberra, ACT, Australia
| | - Qingbin Sun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Peiman Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| |
Collapse
|
4
|
Luo Z, Zhang Y, Tian C, Wang L, Zhao X, Liu Z, Wang L, Wang L, Zhao J, Wang J, Liu M. Genome-wide screening of the RNase T2 gene family and functional analyses in jujube (Ziziphus jujuba Mill.). BMC Genomics 2023; 24:80. [PMID: 36803656 PMCID: PMC9940439 DOI: 10.1186/s12864-023-09165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Ribonuclease (RNase T2) plays crucial roles in plant evolution and breeding. However, there have been few studies on the RNase T2 gene family in Ziziphus jujuba Mill., one of important dried fruit tree species. Recently, the released sequences of the reference genome of jujube provide a good chance to perform genome-wide identification and characterization of ZjRNase gene family in the jujube. RESULTS In this study, we identified four members of RNase T2 in jujube distributed on three chromosomes and unassembled chromosomes. They all contained two conserved sites (CASI and CASII). Analysis of the phylogenetic relationships revealed that the RNase T2 genes in jujube could be divided into two groups: ZjRNase1 and ZjRNase2 belonged to class I, while ZjRNase3 and ZjRNase4 belonged to class II. Only ZjRNase1 and ZjRNase2 expression were shown by the jujube fruit transcriptome analysis. So ZjRNase1 and ZjRNase2 were selected functional verification by overexpression transformation of Arabidopsis. The overexpression of these two genes led to an approximately 50% reduction in seed number, which deserve further attention. Moreover, the leaves of the ZjRNase1 overexpression transgenic lines were curled and twisted. Overexpression of ZjRNase2 resulted in shortened and crisp siliques and the production of trichomes, and no seeds were produced. CONCLUSION In summary, these findings will provide new insights into the molecular mechanisms of low number of hybrid seeds in jujube and a reference for the future molecular breeding of jujube.
Collapse
Affiliation(s)
- Zhi Luo
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Yu Zhang
- grid.274504.00000 0001 2291 4530College of Forestry, Hebei Agricultural University, Baoding, 071001 China
| | - Chunjiao Tian
- grid.274504.00000 0001 2291 4530College of Forestry, Hebei Agricultural University, Baoding, 071001 China
| | - Lihu Wang
- grid.412028.d0000 0004 1757 5708School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038 China
| | - Xuan Zhao
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Zhiguo Liu
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Lili Wang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Lixin Wang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China. .,Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
5
|
Ahmad A, Li W, Zhang H, Wang H, Wang P, Jiao Y, Zhao C, Yang G, Hong D. Linkage and association mapping of ovule number per ovary (ON) in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:11. [PMID: 37313129 PMCID: PMC10248604 DOI: 10.1007/s11032-023-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
Ovule number (ON) produced during flower development determines the maximum number of seeds per silique and thereby affects crop productivity; however, the genetic basis of ON remains poorly understood in oilseed rape (Brassica napus). In this study, we genetically dissected the ON variations in a double haploid (DH) population and in natural population (NP) by linkage mapping and genome-wide association analysis. Phenotypic analysis showed that ON displayed normal distribution in both populations with the broad-sense heritability of 0.861 (DH population) and 0.930 (natural population). Linkage mapping identified 5 QTLs related to ON, including qON-A03, qON-A07, qON-A07-2, qON-A10, and qON-C06. Genome-wide association studies (GWAS) revealed 214, 48, and 40 significant single-nucleotide polymorphisms (SNPs) by individually using the single-locus model GLM and the multiple-locus model MrMLM and FASTMrMLM. The phenotypic variation explained (PVE) by these QTLs and SNPs ranged from 2.00-17.40% to 5.03-7.33%, respectively. Integration of the results from both strategies identified four consensus genomic regions associated with ON from the chromosomes A03, A07, and A10. Our results preliminarily resolved the genetic basis of ON and provides useful molecular markers for plant yield improvement in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01355-7.
Collapse
Affiliation(s)
- Ali Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Wenhui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chenqi Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
6
|
Liu J, Wu Y, Cui X, Zhang X, Xie M, Liu L, Liu Y, Huang J, Cheng X, Liu S. Genome-wide characterization of ovate family protein gene family associated with number of seeds per silique in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:962592. [PMID: 36186010 PMCID: PMC9515500 DOI: 10.3389/fpls.2022.962592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Ovate family proteins (OFPs) were firstly identified in tomato as proteins controlling the pear shape of the fruit. Subsequent studies have successively proved that OFPs are a class of negative regulators of plant development, and are involved in the regulation of complex traits in different plants. However, there has been no report about the functions of OFPs in rapeseed growth to date. Here, we identified the OFPs in rapeseed at the genomic level. As a result, a total of 67 members were obtained. We then analyzed the evolution from Arabidopsis thaliana to Brassica napus, illustrated their phylogenetic and syntenic relationships, and compared the gene structure and conserved domains between different copies. We also analyzed their expression patterns in rapeseed, and found significant differences in the expression of different members and in different tissues. Additionally, we performed a GWAS for the number of seeds per silique (NSPS) in a rapeseed population consisting of 204 natural accessions, and identified a new gene BnOFP13_2 significantly associated with NSPS, which was identified as a novel function of OFPs. Haplotype analysis revealed that the accessions with haplotype 3 had a higher NSPS than other accessions, suggesting that BnOFP13_2 is associated with NSPS. Transcript profiling during the five stages of silique development demonstrated that BnOFP13_2 negatively regulates NSPS. These findings provide evidence for functional diversity of OFP gene family and important implications for oilseed rape breeding.
Collapse
|
7
|
Qadir M, Qin L, Ye J, Ahmad N, Wang X, Shi J, Wang H. Genetic dissection of the natural variation of ovule number per ovary in oilseed rape germplasm ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:999790. [PMID: 36176675 PMCID: PMC9513589 DOI: 10.3389/fpls.2022.999790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Oilseed rape is one of the world's largest oil and industrial crops, providing humans with various products, such as vegetable oil and biofuel. Ovules are the direct precursors of seeds, and ovule number per ovary (ONPO) largely determines seed number per fruit that affects both yield and fitness of seed crops. The ONPO shows wide variation in oilseed rape, whereas the underlying genes and mechanisms are poorly known. The present study performed the genetic, physiological and transcriptomic analyses of ovule number per ovary using an association panel and the extreme lines. The ONPO of 327 accessions planted in four environments showed a large variation from 19.2 to 43.8, indicating a great potential for the further genetic improvement of ovule number. The genome-wide association study (GWAS) identified a total of 43 significant SNP markers. Further, these SNPs were integrated into 18 association loci, which were distributed on chromosomes A01, A03, A06, A07, A09, C01, C03, C06, C07, and C09, explaining 4.3-11.5% of the phenotypic variance. The ONPO decreased as their appearance order on the inflorescence and was associated with the level of several types of endogenous phytohormones but not related to leaf area and photosynthetic rate. Comparative transcriptomic analysis identified a total of 4,449 DEGs enriched in 30 classes, including DNA, RNA, protein, signaling, transport, development, cell wall, lipid metabolism, and secondary metabolism. Nearly half of DEGs were involved in the known pathways in regulating ovule number, of which 12 were homologous to know ovule number regulating genes, indicating a strong link between the identified DEGs and ovule number. A total of 73 DEGs were located within the genomic regions of association loci, of which six were identified as candidates based on functional annotation. These results provide useful information for the further genetic improvement of ovule and seed number in oilseed rape.
Collapse
Affiliation(s)
- Muslim Qadir
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Lei Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jiang Ye
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
8
|
A Preliminary Study for Identifying Quantitative Trait Loci Associated with Seed Production in Radish Using Genotyping-by-Sequencing. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The high yield of seeds can reduce the cost of seed production for parental lines, as well as F1 cultivars in radish. The number of seeds per silique and silique length are two important traits among traits determining seed yield, but no study has been conducted on their quantitative trait loci (QTLs) in radish. A high-density linkage map was constructed, based on genotyping-by-sequencing (GBS) of the F2 population, derived from two parental lines, significantly differed by the two traits, which were grown in a controlled environment to minimize the environmental effects. Using the map with 848 SNPs, three significant QTLs were identified, two and one of which were associated with the number of seeds per silique and silique length, respectively. Ortholog analysis was conducted with Arabidopsis thaliana genes, related to the number of seeds per silique, and revealed five radish putative candidate genes. These putative candidate genes appear to be related to ovule, embryo sac, embryo, pollen and seed development, as well as a double fertilization process. The method to pollinate the F2 population, as well as preliminary QTLs and SNPs therein, can be helpful for future QTL studies to improve seed production in radish breeding programs.
Collapse
|
9
|
Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. Construction of a Quantitative Genomic Map, Identification and Expression Analysis of Candidate Genes for Agronomic and Disease-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:862363. [PMID: 35360294 PMCID: PMC8963808 DOI: 10.3389/fpls.2022.862363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhao X, Yu K, Pang C, Wu X, Shi R, Sun C, Zhang W, Chen F, Zhang J, Wang X. QTL Analysis of Five Silique-Related Traits in Brassica napus L. Across Multiple Environments. FRONTIERS IN PLANT SCIENCE 2021; 12:766271. [PMID: 34887891 PMCID: PMC8650614 DOI: 10.3389/fpls.2021.766271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 06/12/2023]
Abstract
As an important physiological and reproductive organ, the silique is a determining factor of seed yield and a breeding target trait in rapeseed (Brassica napus L.). Genetic studies of silique-related traits are helpful for rapeseed marker-assisted high-yield breeding. In this study, a recombinant inbred population containing 189 lines was used to perform a quantitative trait loci (QTLs) analysis for five silique-related traits in seven different environments. As a result, 120 consensus QTLs related to five silique-related traits were identified, including 23 for silique length, 25 for silique breadth, 29 for silique thickness, 22 for seed number per silique and 21 for silique volume, which covered all the chromosomes, except C5. Among them, 13 consensus QTLs, one, five, two, four and one for silique length, silique breadth, silique thickness, seed number per silique and silique volume, respectively, were repeatedly detected in multiple environments and explained 4.38-13.0% of the phenotypic variation. On the basis of the functional annotations of Arabidopsis homologous genes and previously reported silique-related genes, 12 potential candidate genes underlying these 13 QTLs were screened and found to be stable in multiple environments by analyzing the re-sequencing results of the two parental lines. These findings provide new insights into the gene networks affecting silique-related traits at the QTL level in rapeseed.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kunjiang Yu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Chengke Pang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xu Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Rui Shi
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Chengming Sun
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Feng Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
11
|
Siles L, Hassall KL, Sanchis Gritsch C, Eastmond PJ, Kurup S. Uncovering Trait Associations Resulting in Maximal Seed Yield in Winter and Spring Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2021; 12:697576. [PMID: 34552604 PMCID: PMC8450599 DOI: 10.3389/fpls.2021.697576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Seed yield is a complex trait for many crop species including oilseed rape (OSR) (Brassica napus), the second most important oilseed crop worldwide. Studies have focused on the contribution of distinct factors in seed yield such as environmental cues, agronomical practices, growth conditions, or specific phenotypic traits at the whole plant level, such as number of pods in a plant. However, how female reproductive traits contribute to whole plant level traits, and hence to seed yield, has been largely ignored. Here, we describe the combined contribution of 33 phenotypic traits within a B. napus diversity set population and their trade-offs at the whole plant and organ level, along with their interaction with plant level traits. Our results revealed that both Winter OSR (WOSR) and Spring OSR (SOSR); the two more economically important OSR groups in terms of oil production; share a common dominant reproductive strategy for seed yield. In this strategy, the main inflorescence is the principal source of seed yield, producing a good number of ovules, a large number of long pods with a concomitantly high number of seeds per pod. Moreover, we observed that WOSR opted for additional reproductive strategies than SOSR, presenting more plasticity to maximise seed yield. Overall, we conclude that OSR adopts a key strategy to ensure maximal seed yield and propose an ideal ideotype highlighting crucial phenotypic traits that could be potential targets for breeding.
Collapse
Affiliation(s)
- Laura Siles
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Kirsty L. Hassall
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | | | - Peter J. Eastmond
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Smita Kurup
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
12
|
Pal L, Sandhu SK, Bhatia D, Sethi S. Genome-wide association study for candidate genes controlling seed yield and its components in rapeseed ( Brassica napus subsp. napus). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1933-1951. [PMID: 34629771 PMCID: PMC8484396 DOI: 10.1007/s12298-021-01060-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Genetic improvement of seed yield per plant (SY) is one of the major objectives in Brassica napus breeding programme. SY, being a complex quantitative trait is directly and indirectly influenced by yield-component traits such as siliqua length (SL), number of seeds per siliqua (NSS), and thousand seed weight (TSW). Therefore, concurrent improvement in SL, NSS and TSW can lead to higher SY in B. napus. This study was conducted to identify significant SNPs and putative candidate genes governing SY and its component traits (SL, NSS, TSW). All these traits were evaluated in a diverse set of 200 genotypes representing diversity from wide geographical locations. Of these, a set of 125 genotypes were chosen based on pedigree diversity and multi-location trait variation for genotyping by sequencing (GBS). Best linear unbiased predictors (BLUPs) of all the traits were used for genome-wide association study (GWAS) with 85,126 SNPs obtained from GBS. A total of 16, 18, 27 and 18 SNPs were found to be significantly associated for SL, NSS, TSW and SY respectively. Based on linkage disequilibrium decay analysis, 150 kb genomic region flanking the SNP was used for the identification of underlying candidate genes for each test trait. Important candidate genes involved in phytohormone signaling (WAT1, OSR1, ARR8, CKX1, REM7, REM9, BG1) and seed storage proteins (Cruciferin) were found to have significant influence on seed weight and yield. Genes involved in sexual reproduction and fertilization (PERK7, PERK13, PRK3, GATA15, NFD6) were found to determine the number of seeds per siliqua. Several genes found in this study namely ATS3A, CKX1, SPL2, SPL6, SPL9, WAT1 showed pleiotropic effect with yield component traits. Significant SNPs and putative candidate genes identified for SL, NSS, TSW and SY could be used in marker-assisted breeding for improvement of crop yield in B. napus. Genotypes identified with high SL, NSS, TSW and SY could serve as donors in crop improvement programs in B. napus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01060-9.
Collapse
Affiliation(s)
- Lalit Pal
- Principal Scientist, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Surinder K. Sandhu
- Principal Scientist, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Dharminder Bhatia
- Principal Scientist, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Sorabh Sethi
- Principal Scientist, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
13
|
Rahman M, Guo Q, Baten A, Mauleon R, Khatun A, Liu L, Barkla BJ. Shotgun proteomics of Brassica rapa seed proteins identifies vicilin as a major seed storage protein in the mature seed. PLoS One 2021; 16:e0253384. [PMID: 34242257 PMCID: PMC8270179 DOI: 10.1371/journal.pone.0253384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins make up a large percentage of the Brassica seed and are second only to the oil in economic importance with uses for both animal and human nutrition. The most abundant proteins reported in the seeds of Brassica are the seed storage proteins cruciferin and napin, belonging to the 12S globulin and 2S albumin families of proteins, respectively. To gain insight into the Brassica rapa seed proteome and to confirm the presence and relative quantity of proteins encoded by candidate seed storage genes in the mature seed, shotgun proteomics was carried out on protein extracts from seeds of B. rapa inbred line R-o-18. Following liquid chromatography tandem mass spectrometry, a total of 34016 spectra were mapped to 323 proteins, where 233 proteins were identified in 3 out of 4 biological replicates by at least 2 unique peptides. 2S albumin like napin seed storage proteins (SSPs), 11/12S globulin like cruciferin SSPs and 7S globulin like vicilin SSPs were identified in the samples, along with other notable proteins including oil body proteins, namely ten oleosins and two oil body-associated proteins. The identification of vicilin like proteins in the mature B. rapa seed represents the first account of these proteins in the Brassicaceae and analysis indicates high conservation of sequence motifs to other 7S vicilin-like allergenic proteins as well as conservation of major allergenic epitopes in the proteins. This study enriches our existing knowledge on rapeseed seed proteins and provides a robust foundation and rational basis for plant bioengineering of seed storage proteins.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Qi Guo
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Abdul Baten
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
- Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Ramil Mauleon
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Amina Khatun
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Lei Liu
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
- * E-mail:
| |
Collapse
|
14
|
Xin S, Dong H, Yang L, Huang D, Zheng F, Cui Y, Wu S, Liao J, He Y, Wan H, Liu Z, Li X, Qian W. Both overlapping and independent loci underlie seed number per pod and seed weight in Brassica napus by comparative quantitative trait loci analysis. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:41. [PMID: 37309442 PMCID: PMC10236046 DOI: 10.1007/s11032-021-01232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/10/2021] [Indexed: 06/14/2023]
Abstract
Seed number per pod (SNPP) and seed weight (SW) are two components of seed yield in rapeseed (Brassica napus). Here, a natural population of rapeseed was employed for genome-wide association analysis for SNPP and SW across multi-years. A total of 101 and 77 SNPs significantly associated with SNPP and SW with the phenotypic variances (R2) ranging from 1.35 to 29.47% and from 0.78 to 34.58%, respectively. And 43 and 33 homologs of known genes from model plants were located in the 65 and 49 haplotype blocks (HBs) for SNPP and SW, respectively. Notably, we found 5 overlapping loci and 3 sets of loci with collinearity for both SNPP and SW, of which 4 overlapping loci harbored the haplotypes with the same direction of genetic effects on SNPP and SW, indicating high possibility to simultaneously improve SNPP and SW in rapeseed. Our findings revealed both overlapping and independent loci controlling seed number per pod and seed weight in rapeseed. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01232-1.
Collapse
Affiliation(s)
- Shuangshuang Xin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Hongli Dong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Lei Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Dengwen Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Fajing Zheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Shuang Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Jinghang Liao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Yajun He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Zhi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Xiaorong Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715 China
| |
Collapse
|