1
|
Ye Y, Yang D, Huang H, Li Y, Ji J, Wang JS, Sun X. Effect of Fumonisin B1 and Hydrolyzed FB1 Exposure on Intestinal and Hepatic Toxicity in BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10603-10614. [PMID: 40238996 DOI: 10.1021/acs.jafc.5c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fumonisins, a class of mycotoxins, pose significant health risks due to widespread contamination. The presence of masked mycotoxins complicates risk assessments because of insufficient regulation and potential toxicity as well as in vivo transformation. This study aims to compare the toxic effects of continuous exposure to fumonisin B1 (FB1) and hydrolyzed FB1 (HFB1) on the gut-liver axis in mice. After 21 d of exposure to FB1 and HFB1, the distributions of FB1 and its metabolites in mice were analyzed, and their effects on intestinal morphology, gut microbial diversity, short-chain fatty acids (SCFAs), inflammatory factors, and hippocampal metabolites were assessed. The results revealed that the highest concentrations of FB1 (61.87%) and HFB1 (53.56%) were detected in the cecum, followed by the colon. Exposure to FB1 and HFB1 resulted in compromised intestinal integrity, villi atrophy, elevated levels of inflammatory factors, and decreased total SCFAs. Both FB1 and HFB1 led to a significant reduction in the Firmicutes to Bacteroides ratio. Blood biochemical analysis and liver metabolomics indicated that FB1 and HFB1 also induced disturbances in the liver homeostasis. The complex correlations observed between the metabolomic and microbiota results underscore the involvement of the gut-liver axis in the disruption induced by these two mycotoxins. These findings highlight the systemic effects of FB1 and HFB1 on liver and gut health, providing valuable insights for further research into their mechanisms and health implications.
Collapse
Affiliation(s)
- Yongli Ye
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing 100176, China
| | - Diaodiao Yang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Heyang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing 100176, China
| | - Yufeng Li
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, Jiangsu, China
| | - Jian Ji
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing 100176, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens 30602, Georgia, United States
| | - Xiulan Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing 100176, China
| |
Collapse
|
2
|
Gounder SK, Chuturgoon AA, Ghazi T. Exploring the cardiotoxic potential of fumonisin B1 through inflammatory pathways and epigenetic modifications: A mini review. Toxicon 2025; 261:108374. [PMID: 40286825 DOI: 10.1016/j.toxicon.2025.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
This review is centered around the cardiotoxic effects of fumonisin B1 (FB1), particularly its impact on sphingolipid metabolism, inflammation, and epigenetics. FB1 is a mycotoxin produced by Fusarium fungi, which mainly contaminates cereal grains and poses an adverse health risk to both humans and animals; however, its disease-causing capabilities remain to be uncovered, specifically its ability to exacerbate and cause cardiovascular disease. It disrupts sphingolipid metabolism by inhibiting ceramide synthase, leading to cellular dysfunction and contributes to conditions such as hypertension and eventual heart failure. FB1 is responsible for an altered inflammatory response, whereby it increases pro-inflammatory cytokines such as IL-6 and IL-1β, which contribute to cardiovascular diseases. Moreover, FB1 induces significant epigenetic changes, including DNA hypermethylation, histone modifications such as increased H3K9me2 and H3K9me3, inhibition of histone acetyltransferase activity, and changes in microRNA expression profiles. These epigenetic alterations can silence or activate inflammatory genes, exacerbating disease progression. This review thus highlights the need for further research to elucidate the connections between FB1, inflammation, epigenetic modifications, and cardiotoxicity, which could lead to better strategies for managing FB1-related adverse health risks.
Collapse
Affiliation(s)
- Selwyn Kyle Gounder
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
3
|
Cahoon EB, Kim P, Xie T, González Solis A, Han G, Gong X, Dunn TM. Sphingolipid homeostasis: How do cells know when enough is enough? Implications for plant pathogen responses. PLANT PHYSIOLOGY 2024; 197:kiae460. [PMID: 39222369 DOI: 10.1093/plphys/kiae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Sphingolipid homeostatic regulation is important for balancing plant life and death. Plant cells finely tune sphingolipid biosynthesis to ensure sufficient levels to support growth through their basal functions as major components of endomembranes and the plasma membrane. Conversely, accumulation of sphingolipid biosynthetic intermediates, long-chain bases (LCBs) and ceramides, is associated with programmed cell death. Limiting these apoptotic intermediates is important for cell viability, while overriding homeostatic regulation permits cells to generate elevated LCBs and ceramides to respond to pathogens to elicit the hypersensitive response in plant immunity. Key to sphingolipid homeostasis is serine palmitoyltransferase (SPT), an endoplasmic reticulum-associated, multi-subunit enzyme catalyzing the first step in the biosynthesis of LCBs, the defining feature of sphingolipids. Across eukaryotes, SPT interaction with its negative regulator Orosomucoid-like (ORM) is critical for sphingolipid biosynthetic homeostasis. The recent cryo-electron microscopy structure of the Arabidopsis SPT complex indicates that ceramides bind ORMs to competitively inhibit SPT activity. This system provides a sensor for intracellular ceramide concentrations for sphingolipid homeostatic regulation. Combining the newly elucidated Arabidopsis SPT structure and mutant characterization, we present a model for the role of the 2 functionally divergent Arabidopsis ceramide synthase classes to produce ceramides that form repressive (trihydroxy LCB-ceramides) or nonrepressive (dihydroxy LCB-ceramides) ORM interactions to influence SPT activity. We describe how sphingolipid biosynthesis is regulated by the interplay of ceramide synthases with ORM-SPT when "enough is enough" and override homeostatic suppression when "enough is not enough" to respond to environmental stimuli such as microbial pathogen attack.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Panya Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ariadna González Solis
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Tang Z, Shi S, Niu R, Zhou Y, Wang Z, Fu R, Mou R, Chen S, Ding P, Xu G. Alleviating protein-condensation-associated damage at the endoplasmic reticulum enhances plant disease tolerance. Cell Host Microbe 2024; 32:1552-1565.e8. [PMID: 39111320 DOI: 10.1016/j.chom.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
Disease tolerance is an essential defense strategy against pathogens, alleviating tissue damage regardless of pathogen multiplication. However, its genetic and molecular basis remains largely unknown. Here, we discovered that protein condensation at the endoplasmic reticulum (ER) regulates disease tolerance in Arabidopsis against Pseudomonas syringae. During infection, Hematopoietic protein-1 (HEM1) and Bax-inhibitor 1 (BI-1) coalesce into ER-associated condensates facilitated by their phase-separation behaviors. While BI-1 aids in clearing these condensates via autophagy, it also sequesters lipid-metabolic enzymes within condensates, likely disturbing lipid homeostasis. Consequently, mutations in hem1, which hinder condensate formation, or in bi-1, which prevent enzyme entrapment, enhance tissue-damage resilience, and preserve overall plant health during infection. These findings suggest that the ER is a crucial hub for maintaining cellular homeostasis and establishing disease tolerance. They also highlight the potential of engineering disease tolerance as a defense strategy to complement established resistance mechanisms in combating plant diseases.
Collapse
Affiliation(s)
- Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shaosong Shi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rongrong Fu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
5
|
Zhang Z, Fang Q, Xie T, Gong X. Mechanism of ceramide synthase inhibition by fumonisin B 1. Structure 2024; 32:1419-1428.e4. [PMID: 38964337 DOI: 10.1016/j.str.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Ceramide synthases (CerSs) play crucial roles in sphingolipid metabolism and have emerged as promising drug targets for metabolic diseases, cancers, and antifungal therapy. However, the therapeutic targeting of CerSs has been hindered by a limited understanding of their inhibition mechanisms by small molecules. Fumonisin B1 (FB1) has been extensively studied as a potent inhibitor of eukaryotic CerSs. In this study, we characterize the inhibition mechanism of FB1 on yeast CerS (yCerS) and determine the structures of both FB1-bound and N-acyl-FB1-bound yCerS. Through our structural analysis and the observation of N-acylation of FB1 by yCerS, we propose a potential ping-pong catalytic mechanism for FB1 N-acylation by yCerS. Lastly, we demonstrate that FB1 exhibits lower binding affinity for yCerS compared to the C26- coenzyme A (CoA) substrate, suggesting that the potent inhibitory effect of FB1 on yCerS may primarily result from the N-acyl-FB1 catalyzed by yCerS, rather than through direct binding of FB1.
Collapse
Affiliation(s)
- Zike Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qi Fang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xin Gong
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
6
|
Xu F, Li G, He S, Zeng Z, Wang Q, Zhang H, Yan X, Hu Y, Tian H, Luo M. Sphingolipid inhibitor response gene GhMYB86 controls fiber elongation by regulating microtubule arrangement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1898-1914. [PMID: 38995105 DOI: 10.1111/jipb.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Although the cell membrane and cytoskeleton play essential roles in cellular morphogenesis, the interaction between the membrane and cytoskeleton is poorly understood. Cotton fibers are extremely elongated single cells, which makes them an ideal model for studying cell development. Here, we used the sphingolipid biosynthesis inhibitor, fumonisin B1 (FB1), and found that it effectively suppressed the myeloblastosis (MYB) transcription factor GhMYB86, thereby negatively affecting fiber elongation. A direct target of GhMYB86 is GhTUB7, which encodes the tubulin protein, the major component of the microtubule cytoskeleton. Interestingly, both the overexpression of GhMYB86 and GhTUB7 caused an ectopic microtubule arrangement at the fiber tips, and then leading to shortened fibers. Moreover, we found that GhMBE2 interacted with GhMYB86 and that FB1 and reactive oxygen species induced its transport into the nucleus, thereby enhancing the promotion of GhTUB7 by GhMYB86. Overall, we established a GhMBE2-GhMYB86-GhTUB7 regulation module for fiber elongation and revealed that membrane sphingolipids affect fiber elongation by altering microtubule arrangement.
Collapse
Affiliation(s)
- Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Guiming Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Shengyang He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Dianjiang No.1 Middle School of Chongqing, Chongqing, 408300, China
| | - Zhifeng Zeng
- Yushan No.1 Senior High School, Shangrao, 334700, China
| | - Qiaoling Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongju Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xingying Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yulin Hu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Huidan Tian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ming Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
7
|
Zhao B, Liu J, Zhao Y, Geng S, Zhao R, Li J, Cao Z, Liu Y, Dong J. FvOshC Is a Key Global Regulatory Target in Fusarium verticillioides for Fumonisin Biosynthesis and Disease Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15463-15473. [PMID: 38805181 DOI: 10.1021/acs.jafc.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fusarium verticillioides has a substantial impact on maize production, commonly leading to maize ear rot and the production of fumonisin, a mycotoxin that poses health risks to both humans and animals. Currently, there is a lack of molecular targets for preventing the disease and controlling the toxin. The biological functions of oxysterol-binding proteins (OSBP) in filamentous fungi remain unclear. In this research, 7 oxysterol-binding protein-related proteins were identified in F. verticillioides, and these proteins were obtained through prokaryotic expression and purification. FvOshC was identified as the specific protein that binds to ergosterol through fluorescence titration. Gene knockout complementation techniques confirmed that FvOSHC plays a positive role, establishing it as a novel global regulatory protein involved in the pathogenicity and FB1 biosynthesis in F. verticillioides. Additionally, the interaction between FvOshC and FvSec14 was identified using yeast two-hybrid techniques. Moreover, computer-aided drug design technology was utilized to identify the receptor molecule Xanthatin based on FvOshC. The inhibitory effect of Xanthatin on the growth of F. verticillioides and the synthesis of FB1 was significantly demonstrated. These findings provide valuable insights that can aid in the management of mycotoxin pollution.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yuwei Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shan Geng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ruixue Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jiaqi Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yingchao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
8
|
Liu HZ, Li YK, Chen YL, Zhou Y, Sahu SK, Liu N, Wu H, Shui G, Chen Q, Yao N. Exploring the plant lipidome: techniques, challenges, and prospects. ADVANCED BIOTECHNOLOGY 2024; 2:11. [PMID: 39883225 PMCID: PMC11740875 DOI: 10.1007/s44307-024-00017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 01/31/2025]
Abstract
Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions. We explore major lipid classes, i.e. fatty acids, glyceroglycolipids, glycerophospholipids, sphingolipids, and phytosterols, and discuss their subcellular distributions. Furthermore, we emphasize the significance of lipidomics research techniques, particularly chromatography-mass spectrometry, for accurate lipid analysis. Special attention is given to lipids as crucial signal receptors and signaling molecules that influence plant growth and responses to environmental challenges. We address research challenges in lipidomics, such as in identifying and quantifying lipids, separating isomers, and avoiding batch effects and ion suppression. Finally, we delve into the practical applications of lipidomics, including its integration with other omics methodologies, lipid visualization, and innovative analytical approaches. This review thus provides valuable insights into the field of plant lipidomics and its potential contributions to plant biology.
Collapse
Affiliation(s)
- Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Ningjing Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Perochon A, Doohan FM. Trichothecenes and Fumonisins: Key Players in Fusarium-Cereal Ecosystem Interactions. Toxins (Basel) 2024; 16:90. [PMID: 38393168 PMCID: PMC10893083 DOI: 10.3390/toxins16020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal-plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops.
Collapse
Affiliation(s)
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
10
|
Wang L, Zhang X, Li L, Bao J, Lin F, Zhu X. A key sphingolipid pathway gene, MoDES1, regulates conidiation, virulence and plasma membrane tension in Magnaporthe oryzae. Microbiol Res 2024; 279:127554. [PMID: 38056173 DOI: 10.1016/j.micres.2023.127554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Rice blast, caused by the plant pathogenic fungus Magnaporthe oryzae, is a destructive disaster all over the earth that causes enormous losses in crop production. Sphingolipid, an important biological cell membrane lipid, is an essential structural component in the plasma membrane (PM) and has several biological functions, including cell mitosis, apoptosis, stress resistance, and signal transduction. Previous studies have suggested that sphingolipid and its derivatives play essential roles in the virulence of plant pathogenic fungi. However, the functions of sphingolipid biosynthesis-related proteins are not fully understood. In this article, we identified a key sphingolipid synthesis enzyme, MoDes1, and found that it is engaged in cell development and pathogenicity in M. oryzae. Deletion of MoDES1 gave rise to pleiotropic defects in vegetative growth, conidiation, plant penetration, and pathogenicity. MoDes1 is also required for lipid homeostasis and participates in the cell wall integrity (CWI) and Osm1-MAPK pathways. Notably, our results showed that there is negative feedback in the TORC2 signaling pathway to compensate for the decreased sphingolipid level due to the knockout of MoDES1 by regulating the phosphorylated Ypk1 level and PM tension. Furthermore, protein structure building has shown that MoDes1 is a potential drug target. These findings further refine the function of Des1 and deepen our understanding of the sphingolipid biosynthesis pathway in M. oryzae, laying a foundation for developing novel and specific drugs for rice blast control.
Collapse
Affiliation(s)
- Lei Wang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Xiaozhi Zhang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fucheng Lin
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou, 311231, China.
| | - Xueming Zhu
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
11
|
Nicolle C, Gayrard D, Noël A, Hortala M, Amiel A, Grat S, Le Ru A, Marti G, Pernodet JL, Lautru S, Dumas B, Rey T. Root-associated Streptomyces produce galbonolides to modulate plant immunity and promote rhizosphere colonization. THE ISME JOURNAL 2024; 18:wrae112. [PMID: 38896026 PMCID: PMC11463028 DOI: 10.1093/ismejo/wrae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
The rhizosphere, which serves as the primary interface between plant roots and the soil, constitutes an ecological niche for a huge diversity of microbial communities. Currently, there is little knowledge on the nature and the function of the different metabolites released by rhizospheric microbes to facilitate colonization of this highly competitive environment. Here, we demonstrate how the production of galbonolides, a group of polyene macrolides that inhibit plant and fungal inositol phosphorylceramide synthase (IPCS), empowers the rhizospheric Streptomyces strain AgN23, to thrive in the rhizosphere by triggering the plant's defence mechanisms. Metabolomic analysis of AgN23-inoculated Arabidopsis roots revealed a strong induction in the production of an indole alkaloid, camalexin, which is a major phytoalexin in Arabidopsis. By using a plant mutant compromised in camalexin synthesis, we show that camalexin production is necessary for the successful colonization of the rhizosphere by AgN23. Conversely, hindering galbonolides biosynthesis in AgN23 knock-out mutant resulted in loss of inhibition of IPCS, a deficiency in plant defence activation, notably the production of camalexin, and a strongly reduced development of the mutant bacteria in the rhizosphere. Together, our results identified galbonolides as important metabolites mediating rhizosphere colonization by Streptomyces.
Collapse
Affiliation(s)
- Clément Nicolle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Damien Gayrard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| | - Alba Noël
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marion Hortala
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Aurélien Amiel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| | - Sabine Grat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Aurélie Le Ru
- Plateforme d’Imagerie FRAIB-TRI, Université de Toulouse, CNRS, Auzeville-Tolosane 31320, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| |
Collapse
|
12
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
13
|
Krska T, Twaruschek K, Valente N, Mitterbauer R, Moll D, Wiesenberger G, Berthiller F, Adam G. Development of a fumonisin-sensitive Saccharomyces cerevisiae indicator strain and utilization for activity testing of candidate detoxification genes. Appl Environ Microbiol 2023; 89:e0121123. [PMID: 38054733 PMCID: PMC10746191 DOI: 10.1128/aem.01211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.
Collapse
Affiliation(s)
- Tamara Krska
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Tulln, Austria
| | - Krisztian Twaruschek
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Tulln, Austria
| | - Nina Valente
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Mitterbauer
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Dieter Moll
- dsm-firmenich ANH Research Center Tulln, Tulln, Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Franz Berthiller
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
14
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
15
|
Wang LY, Li J, Gong B, Wang RH, Chen YL, Yin J, Yang C, Lin JT, Liu HZ, Yang Y, Li J, Li C, Yao N. Orosomucoid proteins limit endoplasmic reticulum stress in plants. THE NEW PHYTOLOGIST 2023; 240:1134-1148. [PMID: 37606093 DOI: 10.1111/nph.19200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
Collapse
Affiliation(s)
- Ling-Yan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Benqiang Gong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui-Hua Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chang Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jia-Ting Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yubing Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianfeng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chunyu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
16
|
Zhu XM, Li L, Bao JD, Wang JY, Daskalov A, Liu XH, Del Poeta M, Lin FC. The biological functions of sphingolipids in plant pathogenic fungi. PLoS Pathog 2023; 19:e1011733. [PMID: 37943805 PMCID: PMC10635517 DOI: 10.1371/journal.ppat.1011733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Barghahn S, Saridis G, Mantz M, Meyer U, Mellüh JC, Misas Villamil JC, Huesgen PF, Doehlemann G. Combination of transcriptomic, proteomic, and degradomic profiling reveals common and distinct patterns of pathogen-induced cell death in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:574-596. [PMID: 37339931 DOI: 10.1111/tpj.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Regulated cell death (RCD) is crucial for plant development, as well as in decision-making in plant-microbe interactions. Previous studies revealed components of the molecular network controlling RCD, including different proteases. However, the identity, the proteolytic network as well as molecular components involved in the initiation and execution of distinct plant RCD processes, still remain largely elusive. In this study, we analyzed the transcriptome, proteome, and N-terminome of Zea mays leaves treated with the Xanthomonas effector avrRxo1, the mycotoxin Fumonisin B1 (FB1), or the phytohormone salicylic acid (SA) to dissect plant cellular processes related to cell death and plant immunity. We found highly distinct and time-dependent biological processes being activated on transcriptional and proteome levels in response to avrRxo1, FB1, and SA. Correlation analysis of the transcriptome and proteome identified general, as well as trigger-specific markers for cell death in Zea mays. We found that proteases, particularly papain-like cysteine proteases, are specifically regulated during RCD. Collectively, this study characterizes distinct RCD responses in Z. mays and provides a framework for the mechanistic exploration of components involved in the initiation and execution of cell death.
Collapse
Affiliation(s)
- Sina Barghahn
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Georgios Saridis
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Ute Meyer
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | | | - Johana C Misas Villamil
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Waidmann S, Béziat C, Ferreira Da Silva Santos J, Feraru E, Feraru MI, Sun L, Noura S, Boutté Y, Kleine-Vehn J. Endoplasmic reticulum stress controls PIN-LIKES abundance and thereby growth adaptation. Proc Natl Acad Sci U S A 2023; 120:e2218865120. [PMID: 37487064 PMCID: PMC10400986 DOI: 10.1073/pnas.2218865120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Extreme environmental conditions eventually limit plant growth [J. R. Dinneny, Annu. Rev. Cell Dev. Biol. 35, 1-19 (2019), N. Gigli-Bisceglia, C. Testerink, Curr. Opin. Plant Biol. 64, 102120 (2021)]. Here, we reveal a mechanism that enables multiple external cues to get integrated into auxin-dependent growth programs in Arabidopsis thaliana. Our forward genetics approach on dark-grown hypocotyls uncovered that an imbalance in membrane lipids enhances the protein abundance of PIN-LIKES (PILS) [E. Barbez et al., Nature 485, 119 (2012)] auxin transport facilitators at the endoplasmic reticulum (ER), which thereby limits nuclear auxin signaling and growth rates. We show that this subcellular response relates to ER stress signaling, which directly impacts PILS protein turnover in a tissue-dependent manner. This mechanism allows PILS proteins to integrate environmental input with phytohormone auxin signaling, contributing to stress-induced growth adaptation in plants.
Collapse
Affiliation(s)
- Sascha Waidmann
- Institute of Biology II, Chair of Molecular Plant Physiology, University of Freiburg, 79104Freiburg, Germany
- Center for Integrative Biological Signalling Studies, University of Freiburg, 79104Freiburg, Germany
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences,1190Vienna, Austria
| | - Chloé Béziat
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences,1190Vienna, Austria
| | - Jonathan Ferreira Da Silva Santos
- Institute of Biology II, Chair of Molecular Plant Physiology, University of Freiburg, 79104Freiburg, Germany
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences,1190Vienna, Austria
| | - Elena Feraru
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences,1190Vienna, Austria
| | - Mugurel I. Feraru
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences,1190Vienna, Austria
| | - Lin Sun
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences,1190Vienna, Austria
| | - Seinab Noura
- Institute of Biology II, Chair of Molecular Plant Physiology, University of Freiburg, 79104Freiburg, Germany
- Center for Integrative Biological Signalling Studies, University of Freiburg, 79104Freiburg, Germany
| | - Yohann Boutté
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, National Research Institute for Agriculture, Food and the Environment Bordeaux Aquitaine, 33140 Bordeaux, France
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Chair of Molecular Plant Physiology, University of Freiburg, 79104Freiburg, Germany
- Center for Integrative Biological Signalling Studies, University of Freiburg, 79104Freiburg, Germany
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences,1190Vienna, Austria
| |
Collapse
|
19
|
Rodríguez-Saavedra C, García-Ortiz DA, Burgos-Palacios A, Morgado-Martínez LE, King-Díaz B, Guevara-García ÁA, Sánchez-Nieto S. Identification and Characterization of VDAC Family in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:2542. [PMID: 37447103 DOI: 10.3390/plants12132542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane (OMM) of all eukaryotes, having an important role in the communication between mitochondria and cytosol. The plant VDAC family consists of a wide variety of members that may participate in cell responses to several environmental stresses. However, there is no experimental information about the members comprising the maize VDAC (ZmVDAC) family. In this study, the ZmVDAC family was identified, and described, and its gene transcription profile was explored during the first six days of germination and under different biotic stress stimuli. Nine members were proposed as bona fide VDAC genes with a high potential to code functional VDAC proteins. Each member of the ZmVDAC family was characterized in silico, and nomenclature was proposed according to phylogenetic relationships. Transcript levels in coleoptiles showed a different pattern of expression for each ZmVDAC gene, suggesting specific roles for each one during seedling development. This expression profile changed under Fusarium verticillioides infection and salicylic acid, methyl jasmonate, and gibberellic acid treatments, suggesting no redundancy for the nine ZmVDAC genes and, thus, probably specific and diverse functions according to plant needs and environmental conditions. Nevertheless, ZmVDAC4b was significantly upregulated upon biotic stress signals, suggesting this gene's potential role during the biotic stress response.
Collapse
Affiliation(s)
- Carolina Rodríguez-Saavedra
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Donají Azucena García-Ortiz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Andrés Burgos-Palacios
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Luis Enrique Morgado-Martínez
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Beatriz King-Díaz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca C.P. 62209, Mexico
| | - Sobeida Sánchez-Nieto
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
20
|
Gong P, Khattab IM, Kaźmierczak A, Metzger C, Zhu X, Liu Q, Glenz R, Waller F, Nick P. Two ways to die: Species dependent PCD modes in grapevine cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111695. [PMID: 37030328 DOI: 10.1016/j.plantsci.2023.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Programmed cell death (PCD) is considered as a hallmark of strain-specific immunity. In contrast, generic basal immunity is thought to act without PCD. This classical bifurcation has been questioned during recent years. Likewise, the role of jasmonate signalling for these two modes of innate immunity has remained ambiguous. We have addressed both questions using two closely related grapevine cell lines (V. rupestris, V. vinifera cv. 'Pinot Noir') that contrast in their cell-death response to the bacterial elicitor harpin and the hormonal trigger methyl jasmonate (MeJA). We follow different cellular (loss of membrane integrity, mortality), molecular (induction of transcripts for phytoalexin synthesis and for metacaspases), as well as metabolic (sphingolipid profiles) responses to the two triggers in the two cell lines. The role of NADPH oxidases and induction of transcripts for the class-II metacaspases MC5 differ qualitatively between the two cell lines. We tested a possible role of sphingolipid metabolism but can rule this out. We propose a model, where V. rupestris, originating from co-evolution with several biotrophic pathogens, readily activates a hypersensitive cell death in response to harpin, while the context of MeJA-induced cell death in 'Pinot Noir' might not be related to immunity at all. We propose that the underlying signalling is modular, recruiting metacaspases differently depending on upstream signalling.
Collapse
Affiliation(s)
- Peijie Gong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany; Department of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Islam M Khattab
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany; Department of Horticulture, Faculty of Agriculture, Damanhour University, 22511 Damanhour, Egypt
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Christian Metzger
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Xin Zhu
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Qiong Liu
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - René Glenz
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Frank Waller
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| |
Collapse
|
21
|
Saucedo-García M, González-Solís A, Rodríguez-Mejía P, Lozano-Rosas G, Olivera-Flores TDJ, Carmona-Salazar L, Guevara-García AA, Cahoon EB, Gavilanes-Ruíz M. Sphingolipid Long-Chain Base Signaling in Compatible and Non-Compatible Plant-Pathogen Interactions in Arabidopsis. Int J Mol Sci 2023; 24:ijms24054384. [PMID: 36901815 PMCID: PMC10002605 DOI: 10.3390/ijms24054384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
The chemical diversity of sphingolipids in plants allows the assignment of specific roles to special molecular species. These roles include NaCl receptors for glycosylinositolphosphoceramides or second messengers for long-chain bases (LCBs), free or in their acylated forms. Such signaling function has been associated with plant immunity, with an apparent connection to mitogen-activated protein kinase 6 (MPK6) and reactive oxygen species (ROS). This work used in planta assays with mutants and fumonisin B1 (FB1) to generate varying levels of endogenous sphingolipids. This was complemented with in planta pathogenicity tests using virulent and avirulent Pseudomonas syringae strains. Our results indicate that the surge of specific free LCBs and ceramides induced by FB1 or an avirulent strain trigger a biphasic ROS production. The first transient phase is partially produced by NADPH oxidase, and the second is sustained and is related to programmed cell death. MPK6 acts downstream of LCB buildup and upstream of late ROS and is required to selectively inhibit the growth of the avirulent but not the virulent strain. Altogether, these results provide evidence that a LCB- MPK6- ROS signaling pathway contributes differentially to the two forms of immunity described in plants, upregulating the defense scheme of a non-compatible interaction.
Collapse
Affiliation(s)
- Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico
| | - Ariadna González-Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Priscila Rodríguez-Mejía
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Guadalupe Lozano-Rosas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | | | - Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - A. Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Edgar B. Cahoon
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico
- Correspondence:
| |
Collapse
|
22
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
23
|
Lanubile A, De Michele R, Loi M, Fakhari S, Marocco A, Paciolla C. Cell death induced by mycotoxin fumonisin B 1 is accompanied by oxidative stress and transcriptional modulation in Arabidopsis cell culture. PLANT CELL REPORTS 2022; 41:1733-1750. [PMID: 35751667 PMCID: PMC9304057 DOI: 10.1007/s00299-022-02888-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Fumonisin B1 induces rapid programmed cell death in Arabidopsis cells, oxidative and nitrosative bursts, and differentially modulates cell death responsive genes. Glutathione is the main antioxidant involved in the stress response. Fumonisin B1 (FB1) is a fungal toxin produced by Fusarium spp. able to exert pleiotropic toxicity in plants. FB1 is known to be a strong inducer of the programmed cell death (PCD); however, the exact mechanism underling the plant-toxin interactions and the molecular events that lead to PCD are still unclear. Therefore, in this work, we provided a comprehensive investigation of the response of the model organism Arabidopsis thaliana at the nuclear, transcriptional, and biochemical level after the treatment with FB1 at two different concentrations, namely 1 and 5 µM during a time-course of 96 h. FB1 induced oxidative and nitrosative bursts and a rapid cell death in Arabidopsis cell cultures, which resembled a HR-like PCD event. Different genes involved in the regulation of PCD, antioxidant metabolism, photosynthesis, pathogenesis, and sugar transport were upregulated, especially during the late treatment time and with higher FB1 concentration. Among the antioxidant enzymes and compounds studied, only glutathione appeared to be highly induced in both treatments, suggesting that it might be an important stress molecule induced during FB1 exposure. Collectively, these findings highlight the complexity of the signaling network of A. thaliana and provide information for the understanding of the physiological, molecular, and biochemical responses to counteract FB1-induced toxicity.
Collapse
Affiliation(s)
- Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy, corso Calatafimi 414, 90129, Palermo, Italy.
| | - Martina Loi
- Institute of Sciences of Food Production, National Research Council of Italy, via Amendola 122/0, 70126, Bari, Italy
| | - Safieh Fakhari
- Institute of Biosciences and Bioresources, National Research Council of Italy, corso Calatafimi 414, 90129, Palermo, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Costantino Paciolla
- Department of Biology, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
24
|
Noar RD, Thomas E, Daub ME. Genetic Characteristics and Metabolic Interactions between Pseudocercospora fijiensis and Banana: Progress toward Controlling Black Sigatoka. PLANTS (BASEL, SWITZERLAND) 2022; 11:948. [PMID: 35406928 PMCID: PMC9002641 DOI: 10.3390/plants11070948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 05/10/2023]
Abstract
The international importance of banana and severity of black Sigatoka disease have led to extensive investigations into the genetic characteristics and metabolic interactions between the Dothideomycete Pseudocercospora fijiensis and its banana host. P. fijiensis was shown to have a greatly expanded genome compared to other Dothideomycetes, due to the proliferation of retrotransposons. Genome analysis suggests the presence of dispensable chromosomes that may aid in fungal adaptation as well as pathogenicity. Genomic research has led to the characterization of genes and metabolic pathways involved in pathogenicity, including: secondary metabolism genes such as PKS10-2, genes for mitogen-activated protein kinases such as Fus3 and Slt2, and genes for cell wall proteins such as glucosyl phosphatidylinositol (GPI) and glycophospholipid surface (Gas) proteins. Studies conducted on resistance mechanisms in banana have documented the role of jasmonic acid and ethylene pathways. With the development of banana transformation protocols, strategies for engineering resistance include transgenes expressing antimicrobial peptides or hydrolytic enzymes as well as host-induced gene silencing (HIGS) targeting pathogenicity genes. Pseudocercospora fijiensis has been identified as having high evolutionary potential, given its large genome size, ability to reproduce both sexually and asexually, and long-distance spore dispersal. Thus, multiple control measures are needed for the sustainable control of black Sigatoka disease.
Collapse
Affiliation(s)
- Roslyn D. Noar
- NSF Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, USA
| | - Elizabeth Thomas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| |
Collapse
|
25
|
Kortei NK, Tetteh RA, Wiafe‐Kwagyan M, Amon DNK, Odamtten GT. Mycobiota profile, phenology, and potential toxicogenic and pathogenic species associated with stored groundnuts ( Arachis hypogaea L.) from the Volta Region, Ghana. Food Sci Nutr 2022; 10:888-902. [PMID: 35311164 PMCID: PMC8907750 DOI: 10.1002/fsn3.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
This study updates the mycobiota resident in groundnut seeds, their phenology during storage with the view to ascertain their occurrence, potential toxigenic species, and pathologically important species in the stored samples. The moisture content of the seeds ranged from 5.7% to 6.5% within the stipulated safe moisture content of 8% for extension of shelf life. Culturing the seeds on mycological media (Sabouraud's Dextrose Agar SDA; Oxytetracycline Glucose Yeast Extract OGYE, Potato Dextrose Agar, PDA) caused a de novo growth of the quiescent spores at 28-30°C for 7-14 days. Fungal population counts on the three media ranged from 2.01 to 2.16 log10 CFU/g samples to a final 6-month count of 1.67-2.60 log10 CFU/g. Eighteen different fungal species belonging to ten genera were encountered on the media, namely Aspergillus, Cladosporium, Curvularia, Fusarium, Penicillium, Trichoderma, Rhizopus, Rhodotorula, Sporendonema, and Paecilomyces. Aspergillus spp. (A. niger, A. flavus, A. fumigatus, and A. terreus) were the most frequently isolated, followed by Fusarium species (F. oxysporum, F. solani, and F. verticillioides), Trichoderma (T. harzianum and T. viride), Rhizopus spp (R. oligosporus and R. stolonifer), and Penicillium verrucosum. The species which were seed borne (A. niger, A. flavus, A. terreus, A. fumigatus, F. solani, F. verticillioides, T. viride, C. herbarum, and Curvularia lunata) were isolated on both surface sterilized and non-surface sterilized seeds. The phenology of the encountered fungal species generally followed five patterns. The most frequently isolated Aspergillus niger, A. flavus, and A. fumigatus predominated throughout the 6 months sampling period, while A. ustus and A. terreus appeared sporadically and disappeared. The early colonizers (R. oligosporus, R. stolonifer, and Paecilomyces) could not be isolated after 2-3 months owing presumably to stronger antibiosis competition from the Aspergillus species. The most predominant Aspergillus species initially constituted 36%-48% of the total population but declined to 10%-36% in 6 months. Mycobiota encountered with mycotoxigenic potential and human health importance were A. niger, A. flavus, A. fumigatus, F. verticillioides, and Penicillium verrucosum. Other species of pathological importance to plants were Curvularia lunata and Fusarium oxysporum. The practical implications of these findings are discussed.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and DieteticsSchool of Allied Health SciencesUniversity of Health and Allied SciencesHoGhana
| | - Rachel Adinorkie Tetteh
- Department of Nutrition and DieteticsSchool of Allied Health SciencesUniversity of Health and Allied SciencesHoGhana
| | - Michael Wiafe‐Kwagyan
- Department of Plant and Environmental BiologyCollege of Basic and Applied SciencesUniversity of GhanaLegonGhana
| | - Denick Nii Kotey Amon
- Department of Plant and Environmental BiologyCollege of Basic and Applied SciencesUniversity of GhanaLegonGhana
| | - George Tawia Odamtten
- Department of Plant and Environmental BiologyCollege of Basic and Applied SciencesUniversity of GhanaLegonGhana
| |
Collapse
|
26
|
Zeng HY, Bao HN, Chen YL, Chen DK, Zhang K, Liu SK, Yang L, Li YK, Yao N. The Two Classes of Ceramide Synthases Play Different Roles in Plant Immunity and Cell Death. FRONTIERS IN PLANT SCIENCE 2022; 13:824585. [PMID: 35463421 PMCID: PMC9021646 DOI: 10.3389/fpls.2022.824585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 05/12/2023]
Abstract
Ceramide synthases (CSs) produce ceramides from long-chain bases (LCBs). However, how CSs regulate immunity and cell death in Arabidopsis thaliana remains unclear. Here, we decipher the roles of two classes of CS, CSI (LAG1 HOMOLOG 2, LOH2) and CSII (LOH1/3), in these processes. The loh1-2 and loh1-1 loh3-1 mutants were resistant to the bacterial pathogen Pseudomonas syringae pv maculicola (Psm) DG3 and exhibited programmed cell death (PCD), along with increased LCBs and ceramides, at later stages. In loh1-2, the Psm resistance, PCD, and sphingolipid accumulation were mostly suppressed by inactivation of the lipase-like proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4), and partly suppressed by loss of SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2). The LOH1 inhibitor fumonisin B1 (FB1) triggered EDS1/PAD4-independent LCB accumulation, and EDS1/PAD4-dependent cell death, resistance to Psm, and C16 Cer accumulation. Loss of LOH2 enhances FB1-, and sphinganine-induced PCD, indicating that CSI negatively regulates the signaling triggered by CSII inhibition. Like Cer, LCBs mediate cell death and immunity signaling, partly through the EDS1/PAD4 pathway. Our results show that the two classes of ceramide synthases differentially regulate EDS1/PAD4-dependent PCD and immunity via subtle control of LCBs and Cers in Arabidopsis.
Collapse
|
27
|
Li Q, Yuan Q, Wang T, Zhan Y, Yang L, Fan Y, Lei H, Su J. Fumonisin B 1 Inhibits Cell Proliferation and Decreases Barrier Function of Swine Umbilical Vein Endothelial Cells. Toxins (Basel) 2021; 13:toxins13120863. [PMID: 34941701 PMCID: PMC8704807 DOI: 10.3390/toxins13120863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
The fumonisins are a group of common mycotoxins found around the world that mainly contaminate maize. As environmental toxins, they pose a threat to human and animal health. Fumonisin B1 (FB1) is the most widely distributed and the most toxic. FB1 can cause pulmonary edema in pigs. However, the current toxicity mechanism of fumonisins is still in the exploratory stage, which may be related to sphingolipid metabolism. Our study is designed to investigate the effect of FB1 on the cell proliferation and barrier function of swine umbilical vein endothelial cells (SUVECs). We show that FB1 can inhibit the cell viability of SUVECs. FB1 prevents cells from entering the S phase from the G1 phase by regulating the expression of the cell cycle-related genes cyclin B1, cyclin D1, cyclin E1, Cdc25c, and the cyclin-dependent kinase-4 (CDK-4). This results in an inhibition of cell proliferation. In addition, FB1 can also change the cell morphology, increase paracellular permeability, destroy tight junctions and the cytoskeleton, and reduce the expression of tight junction-related genes claudin 1, occludin, and ZO-1. This indicates that FB1 can cause cell barrier dysfunction of SUVECs and promote the weakening or even destruction of the connections between endothelial cells. In turn, this leads to increased blood vessel permeability and promotes exudation. Our findings suggest that FB1 induces toxicity in SUVECs by affecting cell proliferation and disrupting the barrier function.
Collapse
|
28
|
Xie L, Wu Y, Wang Y, Jiang Y, Yang B, Duan X, Li T. Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117793. [PMID: 34274647 DOI: 10.1016/j.envpol.2021.117793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxins are increasingly considered as micropollutants in the environment. Fumonisins, as one of the most important mycotoxins, cause potential health threats to humans and animals due to their ubiquitous contamination on cereals, fruit, vegetables and other environmental samples around the world. However, the contribution of fumonisins to the interaction of fungi with plant hosts is not still fully understood. Here, we investigated the effect of fumonisin B1 (FB1) on the infection of Fusarium proliferatum on banana fruit and the underlying mechanisms from the host perspective. Our results found that FB1 treatment increased the aggressiveness of F. proliferatum on banana fruit and inhibited the defense ability of banana fruit via decreasing phenylalanine ammonia lyase (PAL), β-1,3-glucanase (GLU) and chitinase (CHI) activities. Meanwhile, FB1 accelerated cell death, indicated by higher relative conductivity, MDA content and higher transcripts of cell death-related genes. FB1 treatment resulted in higher hydrogen peroxide (H2O2) content possibly due to MaRBOHs induction. These consequences accelerated the ROS-dependent cell death, which subsequently result in reduction of disease resistance of banana fruit. Additionally, energy metabolism and MaDORN1s-mediated eATP signaling might involve in FB1-meidiated suppression of banana defense responses. Collectively, results of the current study indicated that FB1 contamination triggered the cell death of banana peel, subsequently instigating the invasion and growth of F. proliferatum on banana fruit. In summary, for the first time, we demonstrated a previously unidentified role of fumonisins as a potential virulence factor of F. proliferatum in modulating fruit defense response, which provides new insight on the biological roles of fumonisins.
Collapse
Affiliation(s)
- Lihong Xie
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanfei Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yong Wang
- Zhongshan Customs Technical Center, Zhongshan, 442000, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
29
|
A polyketide synthase gene cluster required for pathogenicity of Pseudocercospora fijiensis on banana. PLoS One 2021; 16:e0258981. [PMID: 34705882 PMCID: PMC8550591 DOI: 10.1371/journal.pone.0258981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/09/2021] [Indexed: 11/19/2022] Open
Abstract
Pseudocercospora fijiensis is the causal agent of the highly destructive black Sigatoka disease of banana. Previous research has focused on polyketide synthase gene clusters in the fungus, given the importance of polyketide pathways in related plant pathogenic fungi. A time course study of expression of the previously identified PKS7-1, PKS8-2, and PKS10-2 gene clusters showed high expression of all three PKS genes and the associated clustered genes in infected banana plants from 2 weeks post-inoculation through 9 weeks. Engineered transformants silenced for PKS8-2 and PKS10-2 were developed and tested for pathogenicity. Inoculation of banana plants with silencing transformants for PKS10-2 showed significant reduction in disease symptoms and severity that correlated with the degree of silencing in the conidia used for inoculation, supporting a critical role for PKS10-2 in disease development. Unlike PKS10-2, a clear role for PKS8-2 could not be determined. Two of four PKS8-2 silencing transformants showed reduced disease development, but disease did not correlate with the degree of PKS8-2 silencing in the transformants. Overall, the degree of silencing obtained for the PKS8-2 transformants was less than that obtained for the PKS10-2 transformants, which may have limited the utility of the silencing strategy to identify a role for PKS8-2 in disease. Orthologous PKS10-2 clusters had previously been identified in the related banana pathogens Pseudocercospora musae and Pseudocercospora eumusae. Genome analysis identified orthologous gene clusters to that of PKS10-2 in the newly sequenced genomes of Pseudocercospora fuligena and Pseudocercospora cruenta, pathogens of tomato and cowpea, respectively. Our results support an important role for the PKS10-2 polyketide pathway in pathogenicity of Pseudocercospora fijiensis, and suggest a possible role for this pathway in disease development by other Pseudocercospora species.
Collapse
|
30
|
The Effect of Fusarium verticillioides Fumonisins on Fatty Acids, Sphingolipids, and Oxylipins in Maize Germlings. Int J Mol Sci 2021; 22:ijms22052435. [PMID: 33670954 PMCID: PMC7957515 DOI: 10.3390/ijms22052435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.
Collapse
|