1
|
Purves RW, Khazaei H, Elessawy FM, Munro R, Shurmer BO, Vandenberg A. Investigation of polyphenol diversity among lentil species (Lens spp.) using mass spectrometry-based metabolomics guided by photodiode array detection. Food Res Int 2025; 209:116154. [PMID: 40253117 DOI: 10.1016/j.foodres.2025.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 04/21/2025]
Abstract
Polyphenol diversity was investigated among seven lentil species, including Lens culinaris (cultivated lentil), L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans, using photodiode array detection coupled with liquid chromatography - mass spectrometry (LC-MS). Principal component analysis showed that most species grouped individually, except L. tomentosus and L. odemensis, which overlapped. The LC-MS data from both negative and positive electrospray ionization modes were used to identify 85 polyphenols observed in the UV-vis spectra, which included 27 proanthocyanidins, 17 flavonols, 15 flavones, and 12 hydroxybenzoic acids. An untargeted (comprehensive) analysis of the LC-MS data using Compound Discoverer software identified additional polyphenols (231 total), including numerous overlapping proanthocyanidins that contribute to a broad peak in the UV-vis spectra. The software analysis uncovered some notable differences among polyphenol profiles and intensities within the flavones, flavonols, and phenolic acids present in the species. This result indicates natural variation among the lentil wild relatives, which in part, is attributed to structurally isomeric compounds. A hierarchical clustering analysis, and a differential analysis using volcano plots used to look for statistically significant differences in polyphenols, illustrated significantly lower relative levels of polyphenols in L. culinaris compared with the wild types, especially within the proanthocyanidins and flavones. Our results highlight the potential of lentil wild relatives to enhance lentil seed quality.
Collapse
Affiliation(s)
- Randy W Purves
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; Department of Plant Sciences, University of Saskatchewan, Agriculture Building 51 Campus Drive Saskatoon SK, S7N 5A8, Canada; Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, 116 Veterinary Road, Saskatoon, SK S7N 2R3, Canada.
| | - Hamid Khazaei
- Production systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland; Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, 00014, Helsinki, Finland
| | - Fatma M Elessawy
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Roger Munro
- Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, 116 Veterinary Road, Saskatoon, SK S7N 2R3, Canada
| | - Bryn O Shurmer
- Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, 116 Veterinary Road, Saskatoon, SK S7N 2R3, Canada
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Agriculture Building 51 Campus Drive Saskatoon SK, S7N 5A8, Canada
| |
Collapse
|
2
|
Machado RSR, Bonhomme V, Soteras R, Jeanty A, Bouby L, Evin A, Fernandes Martins MJ, Gonçalves S, Antolín F, Salavert A, Oliveira HR. The origins and spread of the opium poppy ( Papaver somniferum L.) revealed by genomics and seed morphometrics. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240198. [PMID: 40370019 PMCID: PMC12079135 DOI: 10.1098/rstb.2024.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025] Open
Abstract
The opium poppy (Papaver somniferum L.) is one of the most important plants in human history. It is the main source of opiates used as analgesic medicines or psychotropic drugs, the latter related to addiction problems, illegal trafficking and geopolitical issues. Poppyseed is also used in cooking. The prehistoric origins, domestication and cultivation spread of the opium poppy remain unresolved. Traditionally, Papaver setigerum has been considered the wild ancestor with early cultivation presumed to have occurred in the Western Mediterranean region, where setigerum is autochthonous. Other theories suggest that somniferum may have been introduced by Southwest Asian early farmers as a weed. To investigate these hypotheses, we analysed 190 accessions from 15 Papaver species using genotype-by-sequencing and geometric morphometric (GMM) techniques. Our analysis revealed that setigerum is the only taxa genetically close to somniferum and can be better described as a subspecies. The domesticated plants are, however, distinct from setigerum. Additionally, GMM analysis of seeds also revealed morphological differences between setigerum and somniferum. Some phenotypically wild setigerum accessions exhibited intermediate genetic features, suggesting introgression events. Two major populations were found in somniferum and, to some extent, these correspond to differences in seed form. These two populations may reflect recent attempts to breed varieties rich in opiates, as opposed to varieties used for poppyseed production. This study supports the idea that opium poppy cultivation began in the Western Mediterranean, with setigerum as the wild progenitor, although some wild varieties are likely to be feral forms, which can confound domestication studies.This article is part of the theme issue 'Unravelling domestication: multi-disciplinary perspectives on human and non-human relationships in the past, present and future'.
Collapse
Affiliation(s)
- Rui S. R. Machado
- ICArEHB, Interdisciplinary Center for Archaeology and Evolution Human Behaviour, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Bonhomme
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Raül Soteras
- Division of Natural Sciences, German Archaeological Institute (DAI), Berlin, BE, Germany
| | - Angele Jeanty
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
- UMRAASPE/BIOARCH, Muséum National d'Histoire Naturelle (MNHN), Centre National de Recherche Scientifique (CNRS), Alliance Sorbonne Université, Paris, France
| | - Laurent Bouby
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Allowen Evin
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - M. Joao Fernandes Martins
- ICArEHB, Interdisciplinary Center for Archaeology and Evolution Human Behaviour, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sandra Gonçalves
- MED – Mediterranean Institute for Agriculture, Environment and Development & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ferran Antolín
- Division of Natural Sciences, German Archaeological Institute (DAI), Berlin, BE, Germany
- Environmental Sciences, Integrative Prehistory and Archaeological Science (IPNA/IPAS), University of Basel, Basel, Switzerland
| | - Aurélie Salavert
- UMRAASPE/BIOARCH, Muséum National d'Histoire Naturelle (MNHN), Centre National de Recherche Scientifique (CNRS), Alliance Sorbonne Université, Paris, France
| | - Hugo Rafael Oliveira
- ICArEHB, Interdisciplinary Center for Archaeology and Evolution Human Behaviour, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
3
|
Mekonnen DZ, Gomes AI, Machado RSR, Oliveira HR. The genomics of t'ef and finger millet domestication and spread. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240196. [PMID: 40370026 PMCID: PMC12079134 DOI: 10.1098/rstb.2024.0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 05/16/2025] Open
Abstract
The Northern Highlands of Ethiopia and Eritrea (NHE) were a centre for food production in Africa, hosting one of the earliest agriculture-based complex societies on the continent. The NHE's geographical connections with the Arabian Peninsula, and Nilotic cultures led to the cultivation of southwest Asian crops and African native domesticates in its territory. Additionally, the NHE were also the domestication centre for crops like t'ef (Eragrostis tef (Zucc.) Trotter) and finger millet (Eleusine coracana L. Gaertn L.), after well-adapted local wild plants. Considering the paucity of the archaeobotanical record in the region and food remains' preservation issues, in this study, we aim to investigate the domestication and spread of t'ef and finger millet using genomics and interpreting the results in the light of archaeological proxies. Our data confirmed Eragrostis pilosa and Eleusine coracana subsp. africana as the sole wild progenitors of t'ef and finger millet, respectively. T'ef was initially domesticated in the NHE before spreading into southern Ethiopia and eastwards into southern Arabia. Finger millet spread followed two routes: one leading eastwards through the Red Sea to India, and the other southwards, through Kenya and Uganda, reaching southern Africa.This article is part of the theme issue 'Unravelling domestication: multi-disciplinary perspectives on human and non-human relationships in the past, present and future'.
Collapse
Affiliation(s)
- Degsew Z. Mekonnen
- ICArEHB – The Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal
- EHA - Ethiopian Heritage Authority, Addis Ababa, Ethiopia
| | - Ana Isabel Gomes
- ICArEHB – The Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal
- Centre for Marine and Environmental Research (CIMA)—Infrastructure Network in Aquatic Research (ARNET), Faculty of Science and Technology, University of Algarve, Faro, Portugal
| | - Rui S. R. Machado
- ICArEHB – The Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal
| | - Hugo Rafael Oliveira
- ICArEHB – The Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal
- Faculdade de Ciências Humanas e Sociais, University of Algarve, Faro, Portugal
| |
Collapse
|
4
|
An K, Zhou C, Tong B, Liu D, Shan X, Zhang X, Bian F. Population genetic differentiation and structure of rare plant Anemone shikokiana based on genotyping-by-sequencing (GBS). BMC PLANT BIOLOGY 2024; 24:995. [PMID: 39438785 PMCID: PMC11515793 DOI: 10.1186/s12870-024-05705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Anemone shikokiana (Makino) Makino is a perennial herb of the genus Anemone in the family Ranunculaceae. Endemic to the Shandong Peninsula in China and Shikoku Island in Japan, it is a rare and endangered plant with a narrow, disjunct distribution. It is threatened with extinction and is in urgent need of conservation. Evaluating the genetic diversity of species, revealing the population genetic structure and gene flow, and inferring the population history are of great importance for species conservation, especially for rare and endangered plants. RESULTS In our study, 73 samples from eight wild populations in China were sequenced by Super-GBS, yielding a total of 40.59 G clean reads and 52,231 SNPs. Based on the obtained SNP data set, we evaluated the population genetic diversity, genetic structure, and gene flow of A. shikokiana. A low level of genetic diversity was found (He = 0.1925, Ho = 0.1422). The neighbor-joining (NJ) tree, principal component analysis and ADMIXTURE analysis suggested that these 73 A. shikokiana could be considered as two groups. Pairwise genetic differentiation coefficients (Fst) indicated that genetic differentiation was lower between adjacent populations and higher between geographically separated populations. The gene flow between Kunyu Mountain and Lao Mountain was very low. However, neither of the two regions showed evidence of Isolation by Distance. CONCLUSIONS Here, we revealed the population genetic structure and gene flow of A. shikokiana from the Shandong Peninsula, China. This research provides valuable genetic resources for A. shikokiana and contributes to the scientific and effective conservation of the species.
Collapse
Affiliation(s)
- Kang An
- School of Life Sciences, Yantai University, Yantai, 264000, China
| | - Chunxia Zhou
- School of Life Sciences, Yantai University, Yantai, 264000, China
| | - Boqiang Tong
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Dan Liu
- Shandong Forestry and Grass Germplasm Resource Center, Jinan, 250102, China
| | - Xiaohan Shan
- School of Life Sciences, Yantai University, Yantai, 264000, China
| | - Xin Zhang
- School of Life Sciences, Yantai University, Yantai, 264000, China
| | - Fuhua Bian
- School of Life Sciences, Yantai University, Yantai, 264000, China.
| |
Collapse
|
5
|
Basso MF, Girardin G, Vergata C, Buti M, Martinelli F. Genome-wide transcript expression analysis reveals major chickpea and lentil genes associated with plant branching. FRONTIERS IN PLANT SCIENCE 2024; 15:1384237. [PMID: 38962245 PMCID: PMC11220206 DOI: 10.3389/fpls.2024.1384237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.
Collapse
Affiliation(s)
| | | | - Chiara Vergata
- Department of Biology, University of Florence, Florence, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
6
|
Guerra-García A, Trněný O, Brus J, Renzi JP, Kumar S, Bariotakis M, Coyne CJ, Chitikineni A, Bett KE, Varshney R, Pirintsos S, Berger J, von Wettberg EJB, Smýkal P. Genetic structure and ecological niche space of lentil's closest wild relative, Lens orientalis (Boiss.) Schmalh. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:232-244. [PMID: 38230798 DOI: 10.1111/plb.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Crops arose from wild ancestors and to understand their domestication it is essential to compare the cultivated species with their crop wild relatives. These represent an important source of further crop improvement, in particular in relation to climate change. Although there are about 58,000 Lens accessions held in genebanks, only 1% are wild. We examined the geographic distribution and genetic diversity of the lentil's immediate progenitor L. orientalis. We used Genotyping by Sequencing (GBS) to identify and characterize differentiation among accessions held at germplasm collections. We then determined whether genetically distinct clusters of accessions had been collected from climatically distinct locations. Of the 195 genotyped accessions, 124 were genuine L. orientalis with four identified genetic groups. Although an environmental distance matrix was significantly correlated with geographic distance in a Mantel test, the four identified genetic clusters were not found to occupy significantly different environmental space. Maxent modelling gave a distinct predicted distribution pattern centred in the Fertile Crescent, with intermediate probabilities of occurrence in parts of Turkey, Greece, Cyprus, Morocco, and the south of the Iberian Peninsula with NW Africa. Future projections did not show any dramatic alterations in the distribution according to the climate change scenarios tested. We have found considerable diversity in L. orientalis, some of which track climatic variability. The results of the study showed the genetic diversity of wild lentil and indicate the importance of ongoing collections and in situ conservation for our future capacity to harness the genetic variation of the lentil progenitor.
Collapse
Affiliation(s)
- A Guerra-García
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - O Trněný
- Agriculture Research Ltd, Troubsko, Czech Republic
| | - J Brus
- Department of Geoinformatics, Palacký University, Olomouc, Czech Republic
| | - J P Renzi
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - S Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - M Bariotakis
- Department of Biology, University of Crete, Heraklion, Greece
- Botanical Garden, Rethymnon, Greece
| | - C J Coyne
- Western Regional Plant Introduction Station, USDA-ARS, Pullman, WA, USA
| | - A Chitikineni
- International Crop Research Institute for the semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - K E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - R Varshney
- International Crop Research Institute for the semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Murdoch University, Murdoch, WA, Australia
| | - S Pirintsos
- Department of Biology, University of Crete, Heraklion, Greece
| | - J Berger
- CSIRO Plant Industry, Wembley, WA, Australia
| | - E J B von Wettberg
- Department of Plant and Soil Sciences, Gund Institute for the Environment, University of Vermont, Burlington, VT, USA
| | - P Smýkal
- Department of Botany, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
7
|
Rouichi S, Idrissi O, Sohail Q, Marrou H, Sinclair TR, Hejjaoui K, Amri M, Ghanem ME. Limited-transpiration trait in response to high vapor pressure deficit from wild to cultivated species: study of the Lens genus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4875-4887. [PMID: 37422910 DOI: 10.1093/jxb/erad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Lentil (Lens culinaris Medik.) is commonly grown in drought-prone areas where terminal heat and drought are frequent. The limited-transpiration (TRlim) trait under high vapor pressure deficit (VPD) could be a way to conserve water and increase yield under water deficit conditions. The TRlim trait was examined in cultivated and wild lentil species together with its evolution throughout the breeding pipeline. Sixty-one accessions representing the six wild lentil species (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) and 13 interspecific advanced lines were evaluated in their transpiration response to high VPD. A large variation in transpiration rate (TR) response to increased VPD was recorded among wild lentil accessions, with 43 accessions exhibiting a breakpoint (BP) in their TR response to increasing VPD, with values ranging from 0.92 kPa to 3.38 kPa under greenhouse conditions. Ten genotypes for the interspecific advanced lines displayed a BP with an average of 1.95 kPa, much lower than previously reported for cultivated lentil. Results from field experiments suggest that the TRlim trait (BP=0.97 kPa) positively affected yield and yield-related parameters during the years with late-season water stress. The selection of TRlim genotypes for high VPD environments could improve lentil productivity in drought-prone areas.
Collapse
Affiliation(s)
- Salma Rouichi
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Omar Idrissi
- Laboratory of Food Legumes Breeding, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco
| | - Quahir Sohail
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Hélène Marrou
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Thomas R Sinclair
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, USA
| | - Kamal Hejjaoui
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Moez Amri
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Michel Edmond Ghanem
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| |
Collapse
|
8
|
Rajpal VR, Singh A, Kathpalia R, Thakur RK, Khan MK, Pandey A, Hamurcu M, Raina SN. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1127239. [PMID: 36998696 PMCID: PMC10044020 DOI: 10.3389/fpls.2023.1127239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 05/31/2023]
Abstract
Crop wild relatives (CWRs), landraces and exotic germplasm are important sources of genetic variability, alien alleles, and useful crop traits that can help mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising due to global climatic changes. In the pulse crop genus Lens, the cultivated varieties have a narrow genetic base due to recurrent selections, genetic bottleneck and linkage drag. The collection and characterization of wild Lens germplasm resources have offered new avenues for the genetic improvement and development of stress-tolerant, climate-resilient lentil varieties with sustainable yield gains to meet future food and nutritional requirements. Most of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and resistance to diseases are quantitative and require the identification of quantitative trait loci (QTLs) for marker assisted selection and breeding. Advances in genetic diversity studies, genome mapping and advanced high-throughput sequencing technologies have helped identify many stress-responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop traits in the CWRs. The recent integration of genomics technologies with plant breeding has resulted in the generation of dense genomic linkage maps, massive global genotyping, large transcriptomic datasets, single nucleotide polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced lentil genomic research substantially and allowed for the identification of QTLs for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild species genomes (~4Gbp) opens up newer possibilities for understanding genomic architecture and evolution of this important legume crop. This review highlights the recent strides in the characterization of wild genetic resources for useful alleles, development of high-density genetic maps, high-resolution QTL mapping, genome-wide studies, MAS, genomic selections, new databases and genome assemblies in traditionally bred genus Lens for future crop improvement amidst the impending global climate change.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| |
Collapse
|
9
|
Platani M, Sokefun O, Bassil E, Apidianakis Y. Genetic engineering and genome editing in plants, animals and humans: Facts and myths. Gene 2023; 856:147141. [PMID: 36574935 DOI: 10.1016/j.gene.2022.147141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Human history is inextricably linked to the introduction of desirable heritable traits in plants and animals. Selective breeding (SB) predates our historical period and has been practiced since the advent of agriculture and farming more than ten thousand years ago. Since the 1970s, methods of direct plant and animal genome manipulation are constantly being developed. These are collectively described as "genetic engineering" (GE). Plant GE aims to improve nutritional value, insect resistance and weed control. Animal GE has focused on livestock improvement and disease control. GE applications also involve medical improvements intended to treat human disease. The scientific consensus built around marketed products of GE organisms (GEOs) is usually well established, noting significant benefits and low risks. GEOs are exhaustively scrutinized in the EU and many non-EU countries for their effects on human health and the environment, but scrutiny should be equally applied to all previously untested organisms derived directly from nature or through selective breeding. In fact, there is no evidence to suggest that natural or selectively bred plants and animals are in principle safer to humans than GEOs. Natural and selectively bred strains evolve over time via genetic mutations that can be as risky to humans and the environment as the mutations found in GEOs. Thus, previously untested plant and animal strains aimed for marketing should be proven useful or harmful to humans only upon comparative testing, regardless of their origin. Highlighting the scientific consensus declaring significant benefits and rather manageable risks provided by equitably accessed GEOs, can mitigate negative predispositions by policy makers and the public. Accordingly, we provide an overview of the underlying technologies and the scientific consensus to help resolve popular myths about the safety and usefulness of GEOs.
Collapse
Affiliation(s)
- Maria Platani
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Owolabi Sokefun
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Elias Bassil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | | |
Collapse
|
10
|
Civantos-Gómez I, Rubio Teso ML, Galeano J, Rubiales D, Iriondo JM, García-Algarra J. Climate change conditions the selection of rust-resistant candidate wild lentil populations for in situ conservation. FRONTIERS IN PLANT SCIENCE 2022; 13:1010799. [PMID: 36407589 PMCID: PMC9669080 DOI: 10.3389/fpls.2022.1010799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 06/02/2023]
Abstract
Crop Wild Relatives (CWR) are a valuable source of genetic diversity that can be transferred to commercial crops, so their conservation will become a priority in the face of climate change. Bizarrely, in situ conserved CWR populations and the traits one might wish to preserve in them are themselves vulnerable to climate change. In this study, we used a quantitative machine learning predictive approach to project the resistance of CWR populations of lentils to a common disease, lentil rust, caused by fungus Uromyces viciae-fabae. Resistance is measured through a proxy quantitative value, DSr (Disease Severity relative), quite complex and expensive to get. Therefore, machine learning is a convenient tool to predict this magnitude using a well-curated georeferenced calibration set. Previous works have provided a binary outcome (resistant vs. non-resistant), but that approach is not fine enough to answer three practical questions: which variables are key to predict rust resistance, which CWR populations are resistant to rust under current environmental conditions, and which of them are likely to keep this trait under different climate change scenarios. We first predict rust resistance in present time for crop wild relatives that grow up inside protected areas. Then, we use the same models under future climate IPCC (Intergovernmental Panel on Climate Change) scenarios to predict future DSr values. Populations that are rust-resistant by now and under future conditions are optimal candidates for further evaluation and in situ conservation of this valuable trait. We have found that rust-resistance variation as a result of climate change is not uniform across the geographic scope of the study (the Mediterranean basin), and that candidate populations share some interesting common environmental conditions.
Collapse
Affiliation(s)
- Iciar Civantos-Gómez
- Complex System Group, Universidad Politécnica de Madrid, Madrid, Spain
- Faculty of Economics and Business Administration, Universidad Pontificia Comillas, Madrid, Spain
| | - María Luisa Rubio Teso
- ECOEVO Research Group, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Javier Galeano
- Complex System Group, Universidad Politécnica de Madrid, Madrid, Spain
| | - Diego Rubiales
- Instituto de Agricultura Sostenible (CSIC) Avenida Menéndez Pidal s/n Campus Alameda del Obispo, Córdoba, Spain
| | - José María Iriondo
- ECOEVO Research Group, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Javier García-Algarra
- DRACO Research Group, Centro Universitario de Tecnología y Arte Digital, Las Rozas, Spain
| |
Collapse
|
11
|
Tayşi N, Kaymaz Y, Ateş D, Sari H, Toker C, Tanyolaç MB. Complete chloroplast genome sequence of Lens ervoides and comparison to Lens culinaris. Sci Rep 2022; 12:15068. [PMID: 36064865 PMCID: PMC9445179 DOI: 10.1038/s41598-022-17877-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Lens is a member of the Papilionoideae subfamily of Fabaceae and is generally used as a source of vegetable protein as part of human diets in many regions worldwide. Chloroplast (cp) genomes are highly active genetic components of plants and can be utilized as molecular markers for various purposes. As one of the wild lentil species, the Lens ervoides cp genome has been sequenced for the first time in this study using next-generation sequencing. The de novo assembly of the cp genome resulted in a single 122,722 bp sequence as two separate coexisting structural haplotypes with similar lengths. Results indicated that the cp genome of L. ervoides belongs to the inverted repeat lacking clade. Several noteworthy divergences within the coding regions were observed in ndhB, ndhF, rbcL, rpoC2, and ycf2 genes. Analysis of relative synonymous codon usage showed that certain genes, psbN, psaI, psbI, psbE, psbK, petD, and ndhC, preferred using biased codons more often and therefore might have elevated expression and translation efficiencies. Overall, this study exhibited the divergence level between the wild-type and cultured lentil cp genomes and pointed to certain regions that can be utilized as distinction markers for various goals.
Collapse
Affiliation(s)
- Nurbanu Tayşi
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Yasin Kaymaz
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Duygu Ateş
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Hatice Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Cengiz Toker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - M Bahattin Tanyolaç
- Bioengineering Department, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
12
|
Guerra‐Garcia A, Haile T, Ogutcen E, Bett KE, von Wettberg EJ. An evolutionary look into the history of lentil reveals unexpected diversity. Evol Appl 2022; 15:1313-1325. [PMID: 36051460 PMCID: PMC9423085 DOI: 10.1111/eva.13467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The characterization and preservation of genetic variation in crops is critical to meeting the challenges of breeding in the face of changing climates and markets. In recent years, the use of single nucleotide polymorphisms (SNPs) has become routine, allowing us to understand the population structure, find divergent lines for crosses, and illuminate the origin of crops. However, the focus on SNPs overlooks other forms of variation, such as copy number variation (CNVs). Lentil is the third most important cold-season legume and was domesticated in the Fertile Crescent. We genotyped 324 accessions that represent its global diversity, and using both SNPs and CNVs, we dissected the population structure and genetic variation, and identified candidate genes. Eight clusters were detected, most of them located in or near the Fertile Crescent, even though different clusters were present in distinct regions. The cluster from South Asia was particularly differentiated and presented low diversity, contrasting with the clusters from the Mediterranean and the northern temperate. Accessions from North America were mainly assigned to one cluster and were highly diverse, reflecting the efforts of breeding programs to integrate variation. Thirty-three genes were identified as candidates under selection and among their functions were sporopollenin synthesis in pollen, a component of chlorophyll B reductase that partially determines the antenna size, and two genes related to the import system of chloroplasts. Eleven percent of all lentil genes and 21% of lentil disease resistance genes were affected by CNVs. The gene categories overrepresented in these genes were "enzymes," "Cell Wall Organization," and "external stimuli response." All the genes found in the latter were associated with pathogen response. CNVs provided information about population structure and might have played a role in adaptation. The incorporation of CNVs in diversity studies is needed for a broader understanding of how they evolve and contribute to domestication.
Collapse
Affiliation(s)
- Azalea Guerra‐Garcia
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Teketel Haile
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Ezgi Ogutcen
- Conservatoire et Jardin Botaniques de la Ville de GenèveGenevaSwitzerland
| | - Kirstin E. Bett
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Eric J. von Wettberg
- Plant and Soil Science and Gund Institute for the EnvironmentUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
13
|
Ambika, Aski MS, Gayacharan, Hamwieh A, Talukdar A, Kumar Gupta S, Sharma BB, Joshi R, Upadhyaya HD, Singh K, Kumar R. Unraveling Origin, History, Genetics, and Strategies for Accelerated Domestication and Diversification of Food Legumes. Front Genet 2022; 13:932430. [PMID: 35979429 PMCID: PMC9376740 DOI: 10.3389/fgene.2022.932430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Domestication is a dynamic and ongoing process of transforming wild species into cultivated species by selecting desirable agricultural plant features to meet human needs such as taste, yield, storage, and cultivation practices. Human plant domestication began in the Fertile Crescent around 12,000 years ago and spread throughout the world, including China, Mesoamerica, the Andes and Near Oceania, Sub-Saharan Africa, and eastern North America. Indus valley civilizations have played a great role in the domestication of grain legumes. Crops, such as pigeon pea, black gram, green gram, lablab bean, moth bean, and horse gram, originated in the Indian subcontinent, and Neolithic archaeological records indicate that these crops were first domesticated by early civilizations in the region. The domestication and evolution of wild ancestors into today’s elite cultivars are important contributors to global food supply and agricultural crop improvement. In addition, food legumes contribute to food security by protecting human health and minimize climate change impacts. During the domestication process, legume crop species have undergone a severe genetic diversity loss, and only a very narrow range of variability is retained in the cultivars. Further reduction in genetic diversity occurred during seed dispersal and movement across the continents. In general, only a few traits, such as shattering resistance, seed dormancy loss, stem growth behavior, flowering–maturity period, and yield traits, have prominence in the domestication process across the species. Thus, identification and knowledge of domestication responsive loci were often useful in accelerating new species’ domestication. The genes and metabolic pathways responsible for the significant alterations that occurred as an outcome of domestication might aid in the quick domestication of novel crops. Further, recent advances in “omics” sciences, gene-editing technologies, and functional analysis will accelerate the domestication and crop improvement of new crop species without losing much genetic diversity. In this review, we have discussed about the origin, center of diversity, and seed movement of major food legumes, which will be useful in the exploration and utilization of genetic diversity in crop improvement. Further, we have discussed about the major genes/QTLs associated with the domestication syndrome in pulse crops and the future strategies to improve the food legume crops.
Collapse
|
14
|
Hellwig T, Abbo S, Ophir R. Phylogeny and disparate selection signatures suggest two genetically independent domestication events in pea (Pisum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:419-439. [PMID: 35061306 PMCID: PMC9303476 DOI: 10.1111/tpj.15678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/15/2022] [Indexed: 05/25/2023]
Abstract
Domestication is considered a model of adaptation that can be used to draw conclusions about the modus operandi of selection in natural systems. Investigating domestication may give insights into how plants react to different intensities of human manipulation, which has direct implication for the continuing efforts of crop improvement. Therefore, scientists of various disciplines study domestication-related questions to understand the biological and cultural bases of the domestication process. We employed restriction site-associated DNA sequencing (RAD-seq) of 494 Pisum sativum (pea) samples from all wild and domesticated groups to analyze the genetic structure of the collection. Patterns of ancient admixture were investigated by analysis of admixture graphs. We used two complementary approaches, one diversity based and one based on differentiation, to detect the selection signatures putatively associated with domestication. An analysis of the subpopulation structure of wild P. sativum revealed five distinct groups with a notable geographic pattern. Pisum abyssinicum clustered unequivocally within the P. sativum complex, without any indication of hybrid origin. We detected 32 genomic regions putatively subjected to selection: 29 in P. sativum ssp. sativum and three in P. abyssinicum. The two domesticated groups did not share regions under selection and did not display similar haplotype patterns within those regions. Wild P. sativum is structured into well-diverged subgroups. Although Pisum sativum ssp. humile is not supported as a taxonomic entity, the so-called 'southern humile' is a genuine wild group. Introgression did not shape the variation observed within the sampled germplasm. The two domesticated pea groups display distinct genetic bases of domestication, suggesting two genetically independent domestication events.
Collapse
Affiliation(s)
- Timo Hellwig
- The Levi Eshkol School of AgricultureThe Hebrew University of JerusalemJerusalem, RehovotIsrael
- Volcani Center, Agricultural Research OrganizationRishon LeZionIsrael
- Institute of Plant Genetics, Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Shahal Abbo
- The Levi Eshkol School of AgricultureThe Hebrew University of JerusalemJerusalem, RehovotIsrael
| | - Ron Ophir
- Volcani Center, Agricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
15
|
Müller M, Niesar M, Berens I, Gailing O. Genotyping by sequencing reveals lack of local genetic structure between two German Ips typographus L. populations. FORESTRY RESEARCH 2022; 2:1. [PMID: 39525416 PMCID: PMC11524269 DOI: 10.48130/fr-2022-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2024]
Abstract
The European spruce bark beetle (Ips typographus L.) is a serious pest in Norway spruce stands. While usually attacking freshly fallen trees or trees with a reduced defense system, also healthy trees can be infested during massive outbreaks of I. typographus that can occur after catastrophic events such as drought periods or storms. Knowledge of the genetic structure of this species, especially on local scales is still ambiguous. While local population structure was reported in some studies, others did not detect any differentiation among I. typographus populations. Here, we used genotyping by sequencing to infer the genetic structure of two I. typographus populations in western Germany, which had a distance of approx. 58 km from each other. Based on 16,830 SNPs we detected high genetic diversity, but very low genetic differentiation between the populations (FST: 0.001) and a lack of population structure. These results suggest a high dispersal ability of I. typographus.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073 Göttingen, Germany
| | - Mathias Niesar
- Landesbetrieb Wald und Holz NRW, Team Forest and Climate Protection, Steinmüllerallee 13, 51643 Gummersbach, Germany
| | - Ignaz Berens
- Landesbetrieb Wald und Holz NRW, Nationalparkforstamt Eifel, Urftseestraße 34, 53937 Schleiden
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|