1
|
Hoffman PF. Ecosystem relocation on Snowball Earth: Polar-alpine ancestry of the extant surface biosphere? Proc Natl Acad Sci U S A 2025; 122:e2414059122. [PMID: 40324073 DOI: 10.1073/pnas.2414059122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Geological observations informed by climate dynamics imply that the oceans were 99.9% covered by light-blocking ice shelves during two discrete, self-reversing Snowball Earth epochs spanning a combined 60 to 70 Myr of the Cryogenian Period (720 to 635 Ma). The timescale for initial ice advances across the tropical oceans is ~300 y in an ice-atmosphere-ocean general circulation model in Cryogenian paleogeography. Areas of optically thin oceanic ice are usually invoked to account for fossil marine phototrophs, including macroscopic multicellular eukaryotes, before and after each Snowball, but different taxa. Ecosystem relocation is a scenario that does not require thin marine ice. Assume that long before Cryogenian Snowballs, diverse supra- and periglacial biomes were established in polar-alpine regions. When the Snowball onsets occurred, those biomes migrated in step with their ice margins to the equatorial zone of net sublimation. There, they prospered and evolved, their habitat areas expanded, and the cruelty of winter reduced. Nutrients were supplied by dust (loess) derived from cozonal ablative lands where surface winds were strong. When each Snowball finally ended, those biomes were mostly inundated by the meltwater-dominated and rapidly warming lid of a nutrient-rich but depauperate ocean. Some taxa returned to the mountaintops while others restocked the oceans. This ecosystem relocation scenario makes testable predictions. The lineages required for post-Cryogenian biotic radiations should be present in modern polar-alpine biomes. Legacies of polar-alpine ancestry should be found in the genomes of living organisms. Examples of such tests are highlighted herein.
Collapse
Affiliation(s)
- Paul F Hoffman
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
2
|
Permann C, Holzinger A. Zygospore formation in Zygnematophyceae predates several land plant traits. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230356. [PMID: 39343014 PMCID: PMC11449217 DOI: 10.1098/rstb.2023.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Recent research on a special type of sexual reproduction and zygospore formation in Zygnematophyceae, the sister group of land plants, is summarized. Within this group, gamete fusion occurs by conjugation. Zygospore development in Mougeotia, Spirogyra and Zygnema is highlighted, which has recently been studied using Raman spectroscopy, allowing chemical imaging and detection of changes in starch and lipid accumulation. Three-dimensional reconstructions after serial block-face scanning electron microscopy (SBF-SEM) or focused ion beam SEM (FIB-SEM) made it possible to visualize and quantify cell wall and organelle changes during zygospore development. The zygospore walls undergo strong modifications starting from uniform thin cell walls to a multilayered structure. The mature cell wall is composed of a cellulosic endospore and exospore and a central mesospore built up by aromatic compounds. In Spirogyra, the exospore and endospore consist of thick layers of helicoidally arranged cellulose fibrils, which are otherwise only known from stone cells of land plants. While starch is degraded during maturation, providing building blocks for cell wall formation, lipid droplets accumulate and fill large parts of the ripe zygospores, similar to spores and seeds of land plants. Overall, data show similarities between streptophyte algae and embryophytes, suggesting that the genetic toolkit for many land plant traits already existed in their shared algal ancestor. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| |
Collapse
|
3
|
Kunz CF, Goldbecker ES, Darienko T, de Vries J. Genome evolution: Zygnematophyceae on ice. THE NEW PHYTOLOGIST 2024; 244:1125-1127. [PMID: 39001590 DOI: 10.1111/nph.19960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
This article is a Commentary on Bowles et al. (2024), 244: 1629–1643.
Collapse
Affiliation(s)
- Cäcilia F Kunz
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Elisa S Goldbecker
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Göttingen, Germany
- Department of Applied Bioinformatics, Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| |
Collapse
|
4
|
Bowles AMC, Williams TA, Donoghue PCJ, Campbell DA, Williamson CJ. Metagenome-assembled genome of the glacier alga Ancylonema yields insights into the evolution of streptophyte life on ice and land. THE NEW PHYTOLOGIST 2024; 244:1629-1643. [PMID: 38840553 DOI: 10.1111/nph.19860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Contemporary glaciers are inhabited by streptophyte algae that balance photosynthesis and growth with tolerance of low temperature, desiccation and UV radiation. These same environmental challenges have been hypothesised as the driving force behind the evolution of land plants from streptophyte algal ancestors in the Cryogenian (720-635 million years ago). We sequenced, assembled and analysed the metagenome-assembled genome of the glacier alga Ancylonema nordenskiöldii to investigate its adaptations to life in ice, and whether this represents a vestige of Cryogenian exaptations. Phylogenetic analysis confirms the placement of glacier algae within the sister lineage to land plants, Zygnematophyceae. The metagenome-assembled genome is characterised by an expansion of genes involved in tolerance of high irradiance and UV light, while lineage-specific diversification is linked to the novel screening pigmentation of glacier algae. We found no support for the hypothesis of a common genomic basis for adaptations to ice and to land in streptophytes. Comparative genomics revealed that the reductive morphological evolution in the ancestor of Zygnematophyceae was accompanied by reductive genome evolution. This first genome-scale data for glacier algae suggests an Ancylonema-specific adaptation to the cryosphere, and sheds light on the genome evolution of land plants and Zygnematophyceae.
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, UK
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, NB, E4L 1H3, Canada
| | | |
Collapse
|
5
|
Bowles AMC. A Year at the Forefront of Streptophyte Algal Evolution. Biol Open 2024; 13:bio061673. [PMID: 39297435 PMCID: PMC11423916 DOI: 10.1242/bio.061673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Land plants originated from an algal ancestor ∼500 million years ago in one of the most important evolutionary events for life on Earth. Extant streptophyte algae, their closest living relatives, have subsequently received much attention to better understand this major evolutionary transition. Streptophyte algae occupy many different environments, have diverse genomes and display contrasting morphologies (e.g. unicellular, filamentous, three-dimensional). This has historically made inferring these evolutionary events challenging. This A Year at the Forefront Review focusses on research published between July 2023 and June 2024 and intends to provide a short overview of recent discoveries, innovations, resources, and hypotheses regarding streptophyte algal evolution. This work has provided mechanistic insights into ancient evolutionary events that prefigured the origin of land plants and raises new questions for future research into streptophyte algae.
Collapse
|
6
|
Porfirio-Sousa AL, Tice AK, Morais L, Ribeiro GM, Blandenier Q, Dumack K, Eglit Y, Fry NW, Gomes E Souza MB, Henderson TC, Kleitz-Singleton F, Singer D, Brown MW, Lahr DJG. Amoebozoan testate amoebae illuminate the diversity of heterotrophs and the complexity of ecosystems throughout geological time. Proc Natl Acad Sci U S A 2024; 121:e2319628121. [PMID: 39012821 PMCID: PMC11287125 DOI: 10.1073/pnas.2319628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/01/2024] [Indexed: 07/18/2024] Open
Abstract
Heterotrophic protists are vital in Earth's ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes' evolutionary history and ecological significance in Earth's ecosystems, using testate amoebae as a proxy.
Collapse
Affiliation(s)
- Alfredo L. Porfirio-Sousa
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo05508-090, Brazil
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS39762
| | - Alexander K. Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS39762
- Department of Biological Sciences, Texas Tech University, Lubbock, TX79409
| | - Luana Morais
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo05508-090, Brazil
- Department of Applied Geology, Institute of Geosciences and Exact Sciences, São Paulo State University, Rio Claro13506-900, Brazil
| | - Giulia M. Ribeiro
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo05508-090, Brazil
| | - Quentin Blandenier
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS39762
| | - Kenneth Dumack
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne50674, Germany
| | - Yana Eglit
- Department of Biology, Dalhousie University, Halifax, NSB3H 4R2, Canada
- Department of Biology, Institute for Comparative Genomics, Dalhousie University, Halifax, NSV8P 3E6, Canada
- Department of Biology, University of Victoria, Victoria, BCV8P 3E6, Canada
| | - Nicholas W. Fry
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS39762
| | | | - Tristan C. Henderson
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS39762
| | | | - David Singer
- Soil Science and Environment Group, Changins, Haute école spécialisée de Suisse occidentale University of Applied Sciences and Arts Western Switzerland, Nyon1148, Switzerland
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS39762
- Department of Biological Sciences, Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS39762
| | - Daniel J. G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo05508-090, Brazil
| |
Collapse
|
7
|
Bek J, Steemans P, Frýda J, Žárský V. Silurian Climatic Zonation of Cryptospore, Trilete Spore and Plant Megafossils, with Emphasis on the Přídolí Epoch. Life (Basel) 2024; 14:258. [PMID: 38398767 PMCID: PMC10890225 DOI: 10.3390/life14020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
This paper describes dispersed cryptospores and trilete spores from tropical, temperate and cool climate belts within Přídolí and compares them with the land plant megafossil record. The palynology of earlier intervals in the Silurian are also reviewed. A common feature of the cryptospore and trilete spore records is that their number is surprisingly lowest in the tropical climatic belt and much higher in the temperate and especially in the cool latitude, and the highest number of cryptospore taxa occurring only in one belt is found in the cool belt while the highest number of trilete spore taxa that occurred only in one belt is recorded in the temperate belt. In general, based on the dispersed spore record, we can estimate that the plant assemblages of the tropical belt were dominated by rhyniophytes; trimerophytes probably prevailed over rhyniophytes in the temperate belt, and rhyniophytes again dominated within the cool belt.
Collapse
Affiliation(s)
- Jiří Bek
- Laboratory of Palaeobiology and Palaeoecology, Institute of Geology of the Academy of Sciences of the Czech Republic, 165 00 Prague, Czech Republic
| | - Philippe Steemans
- Eddy Lab/Palaeopalynology, Department of Geology, University of Liège, 4000 Liège, Belgium;
| | - Jiří Frýda
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 165 21 Praha 6, Czech Republic
- Czech Geological Survey, 118 21 Prague 1, Czech Republic
| | - Viktor Žárský
- Faculty of Science, Charles University, 128 43 Prague 2, Czech Republic;
| |
Collapse
|
8
|
Dumack K, Lara E, Duckert C, Ermolaeva E, Siemensma F, Singer D, Krashevska V, Lamentowicz M, Mitchell EAD. It's time to consider the Arcellinida shell as a weapon. Eur J Protistol 2024; 92:126051. [PMID: 38194835 DOI: 10.1016/j.ejop.2024.126051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The shells of testate amoebae are morphologically diverse and persistent in the environment. Accordingly, the examination of the morphology and composition of shells became a standard tool in ecological, palaeoecological, and evolutionary studies. However, so far the function of the shell remains poorly understood and, although based on limited evidence, the shell was considered as a defense mechanism. Based on recent evidence, we propose that the shell of arcellinid testate amoebae is a crucial component facilitating the amoebae's attack of large prey. Accordingly, the shell is not purely protective, but must be considered also as a weapon. This change in perspective opens up numerous new avenues in protistology and will lead to a substantial change in ecological, palaeoecological, and evolutionary research.
Collapse
Affiliation(s)
- Kenneth Dumack
- Terrestrial Ecology, Zülpicher Straße 47b, University of Cologne, Germany.
| | - Enrique Lara
- Real Jardín Botánico-CSIC, C. Moyano 1 28014, Madrid, Spain
| | - Clément Duckert
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile Argand 11 2000, Neuchâtel, Switzerland
| | - Elizaveta Ermolaeva
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile Argand 11 2000, Neuchâtel, Switzerland
| | | | - David Singer
- Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Valentyna Krashevska
- Senckenberg Biodiversity and Climate Research Centre, Functional Environmental Genomics, Senckenberganlage 25 60325, Frankfurt, Germany
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences Adam Mickiewicz University in Poznan, Bogumiła Krygowskiego 10 61-680, Poznan, Poland
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile Argand 11 2000, Neuchâtel, Switzerland
| |
Collapse
|
9
|
Bowles AMC, Williamson CJ, Williams TA, Donoghue PCJ. Cryogenian Origins of Multicellularity in Archaeplastida. Genome Biol Evol 2024; 16:evae026. [PMID: 38333966 PMCID: PMC10883732 DOI: 10.1093/gbe/evae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Earth was impacted by global glaciations during the Cryogenian (720 to 635 million years ago; Ma), events invoked to explain both the origins of multicellularity in Archaeplastida and radiation of the first land plants. However, the temporal relationship between these environmental and biological events is poorly established, due to a paucity of molecular and fossil data, precluding resolution of the phylogeny and timescale of archaeplastid evolution. We infer a time-calibrated phylogeny of early archaeplastid evolution based on a revised molecular dataset and reappraisal of the fossil record. Phylogenetic topology testing resolves deep archaeplastid relationships, identifying two clades of Viridiplantae and placing Bryopsidales as sister to the Chlorophyceae. Our molecular clock analysis infers an origin of Archaeplastida in the late-Paleoproterozoic to early-Mesoproterozoic (1712 to 1387 Ma). Ancestral state reconstruction of cytomorphological traits on this time-calibrated tree reveals many of the independent origins of multicellularity span the Cryogenian, consistent with the Cryogenian multicellularity hypothesis. Multicellular rhodophytes emerged 902 to 655 Ma while crown-Anydrophyta (Zygnematophyceae and Embryophyta) originated 796 to 671 Ma, broadly compatible with the Cryogenian plant terrestrialization hypothesis. Our analyses resolve the timetree of Archaeplastida with age estimates for ancestral multicellular archaeplastids coinciding with the Cryogenian, compatible with hypotheses that propose a role of Snowball Earth in plant evolution.
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
10
|
Permann C, Stegner M, Roach T, Loacker V, Lewis LA, Neuner G, Holzinger A. Striking differences in frost hardiness and inability to cold acclimate in two Mougeotia species (Zygnematophyceae) from alpine and lowland habitats. PHYSIOLOGIA PLANTARUM 2024; 176:e14167. [PMCID: PMC10952266 DOI: 10.1111/ppl.14167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2025]
Abstract
Zygnematophyceae, a class of freshwater green algae, exhibit distinctive seasonal dynamics. The increasing frequency of cold snaps during the growing season might challenge the persistence of some populations. The present study explored the frost hardiness of two Mougeotia species isolated from different elevations and habitats. Additionally, a phylogenetic (rbc L sequence), ultrastructural and physiological characterization was performed. Both species, grown under standard culture conditions and cold acclimated cultures (+4°C), were exposed to freezing temperatures down to −9°C. Furthermore, ultrastructural‐, hydrogen peroxide (H2O2)‐ and photosynthetic pigment analysis were performed on cells exposed to −2°C, with and without induced ice nucleation. The alpine M. disjuncta showed a higher frost hardiness (LT50 = −5.8°C), whereas the lowland M. scalaris was susceptible to ice. However, frost hardiness did not improve after cold acclimation in either species but rather decreased significantly in M. disjuncta (LT50 = −4.7°C). Despite darkness, prolonged sub‐zero temperatures or freezing induced the activation of the xanthophyll (VAZ) cycle in M. scalaris . Our results demonstrate that frost hardiness varies within the genus Mougeotia and that the VAZ cycle can be activated in the dark under subzero temperature‐ and freezing stress but does not necessarily increase frost hardiness. As highly frost hardy cell types are usually formed at the end of the growing season, the ability of young cells to survive ice formation in the upper subzero temperature range represents a crucial survival strategy in populations exposed to late spring frosts.
Collapse
Affiliation(s)
| | | | - Thomas Roach
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Louise A. Lewis
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Gilbert Neuner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | |
Collapse
|
11
|
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. The origin and early evolution of plants. TRENDS IN PLANT SCIENCE 2023; 28:312-329. [PMID: 36328872 DOI: 10.1016/j.tplants.2022.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant (archaeplastid) evolution has transformed the biosphere, but we are only now beginning to learn how this took place through comparative genomics, phylogenetics, and the fossil record. This has illuminated the phylogeny of Archaeplastida, Viridiplantae, and Streptophyta, and has resolved the evolution of key characters, genes, and genomes - revealing that many key innovations evolved long before the clades with which they have been casually associated. Molecular clock analyses estimate that Streptophyta and Viridiplantae emerged in the late Mesoproterozoic to late Neoproterozoic, whereas Archaeplastida emerged in the late-mid Palaeoproterozoic. Together, these insights inform on the coevolution of plants and the Earth system that transformed ecology and global biogeochemical cycles, increased weathering, and precipitated snowball Earth events, during which they would have been key to oxygen production and net primary productivity (NPP).
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
12
|
Simpson C. Coming together to understand multicellularity. Trends Ecol Evol 2023. [DOI: 10.1016/j.tree.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Ashraf MA. A nuclear Pandora's box: functions of nuclear envelope proteins in cell division. AOB PLANTS 2023; 15:plac065. [PMID: 36779223 PMCID: PMC9910035 DOI: 10.1093/aobpla/plac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The nucleus is characteristic of eukaryotic cells and nuclear envelope proteins are conserved across the kingdoms. Over the years, the function of these proteins was studied in the intact nuclear envelope. Knowledge regarding the localization and function of nuclear envelope proteins during mitosis, after the nuclear envelope breaks down, is limited. Until recently, the localization of nuclear envelope proteins during mitosis has been observed with the mitotic apparatus. In this context, research in plant cell biology is more advanced compared to non-plant model systems. Although current studies shed light on the localization of nuclear envelope proteins, further experiments are required to determine what, if any, functional role different nuclear envelope proteins play during mitosis. This review will highlight our current knowledge about the role of nuclear envelope proteins and point out the unanswered questions as future direction.
Collapse
|
14
|
Permann C, Gierlinger N, Holzinger A. Zygospores of the green alga Spirogyra: new insights from structural and chemical imaging. FRONTIERS IN PLANT SCIENCE 2022; 13:1080111. [PMID: 36561459 PMCID: PMC9763465 DOI: 10.3389/fpls.2022.1080111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Zygnematophyceae, a class of streptophyte green algae and sister group to land plants (Embryophytes) live in aquatic to semi-terrestrial habitats. The transition from aquatic to terrestrial environments requires adaptations in the physiology of vegetative cells and in the structural properties of their cell walls. Sexual reproduction occurs in Zygnematophyceae by conjugation and results in the formation of zygospores, possessing unique multi-layered cell walls, which might have been crucial in terrestrialization. We investigated the structure and chemical composition of field sampled Spirogyra sp. zygospore cell walls by multiple microscopical and spectral imaging techniques: light microscopy, confocal laser scanning microscopy, transmission electron microscopy following high pressure freeze fixation/freeze substitution, Raman spectroscopy and atomic force microscopy. This comprehensive analysis allowed the detection of the subcellular organization and showed three main layers of the zygospore wall, termed endo-, meso- and exospore. The endo- and exospore are composed of polysaccharides with different ultrastructural appearance, whereas the electron dense middle layer contains aromatic compounds as further characterized by Raman spectroscopy. The possible chemical composition remains elusive, but algaenan or a sporopollenin-like material is suggested. Similar compounds with a non-hydrolysable character can be found in moss spores and pollen of higher plants, suggesting a protective function against desiccation stress and high irradiation. While the tripartite differentiation of the zygospore wall is well established in Zygnematopyhceae, Spirogyra showed cellulose fibrils arranged in a helicoidal pattern in the endo- and exospore. Initial incorporation of lipid bodies during early zygospore wall formation was also observed, suggesting a key role of lipids in zygospore wall synthesis. Multimodal imaging revealed that the cell wall of the sexually formed zygospores possess a highly complex internal structure as well as aromatics, likely acting as protective compounds and leading to impregnation. Both, the newly discovered special three-dimensional arrangement of microfibrils and the integration of highly resistant components in the cell wall are not found in the vegetative state. The variety of methods gave a comprehensive view on the intricate zygospore cell wall and its potential key role in the terrestrial colonization and plant evolution is discussed.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| |
Collapse
|
15
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|