1
|
Gong L, Zhang H, Ma J, Li Z, Li T, Wu C, Li Y, Tao L. Unravel the molecular basis underlying inflorescence color variation in Macadamia based on widely targeted metabolomics. FRONTIERS IN PLANT SCIENCE 2025; 16:1533187. [PMID: 40201779 PMCID: PMC11975671 DOI: 10.3389/fpls.2025.1533187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025]
Abstract
Macadamia integrifolia, a perennial evergreen crop valued for its nutritious nuts, also exhibits a diverse range of inflorescence colors that possess both ornamental and biological significance. Despite the economic importance of macadamia, the molecular mechanisms regulating flower coloration remain understudied. This study employed a combination of metabolomic and biochemical approaches to analyze metabolites present in inflorescences from 11 Macadamia cultivars, representing distinct color phenotypes. A total of 787 metabolites were identified through the use of ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the majority of which were phenolic acids, flavonoids, and flavonols. Principal component analysis and clustering yielded a classification of the samples into three major flower color groups. The differential metabolites were found to be enriched in pathways such as flavonoid, flavonol, and phenylpropanoid biosynthesis, which have been demonstrated to be key contributors to color variation. Moreover, weighted gene co-expression network analysis (WGCNA) identified metabolite modules that were strongly associated with specific flower colors. This revealed that key compounds, including kaempferol, quercetin derivatives, and anthocyanins, were the primary drivers of pigmentation. This study provides a comprehensive framework for understanding the genetic, biochemical, and environmental factors influencing macadamia flower color. These findings contribute to the theoretical understanding of macadamia reproductive biology and have practical implications for molecular breeding, ornamental enhancement, and optimizing pollinator attraction to improve crop yield and ecological sustainability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Tao
- Yunnan Institute of Tropical Crops, Jinghong, China
| |
Collapse
|
2
|
Ke Y, Ashraf U, Wang D, Hassan W, Zou Y, Qi Y, Zhou Y, Abbas F. Function of Anthocyanin and Chlorophyll Metabolic Pathways in the Floral Sepals Color Formation in Different Hydrangea Cultivars. PLANTS (BASEL, SWITZERLAND) 2025; 14:742. [PMID: 40094733 PMCID: PMC11901515 DOI: 10.3390/plants14050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/20/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Hydrangea (Hydrangea macrophylla) is distinguished by having sepals instead of real petals, a trait that facilitates color diversity. Floral color is largely predetermined by structural genes linked to anthocyanin production, but the genetic factors determining floral hue in this non-model plant remain unclear. Anthocyanin metabolites, transcriptome, and the CIEL*a*b* hue system were employed to elucidate the biochemical and molecular mechanisms of floral color formation in three hydrangea cultivars: 'DB' (deep blue), 'LB' (light blue), and 'GB' (green blue). UPLC-MS/MS identified 47 metabolites, with delphinidin, cyanidin, malvidin, petunidin, pelargonidin, and peonidin being prominent. Delphinidins were 90% of the primary component in 'DB'. The dataset identifies 51 and 31 DEGs associated with anthocyanin, flavonoid, and chlorophyll biosynthesis, with CHS, CHI, F3H, F3'5'H, DFR, ANS, BZ1, and 3AT displaying the highest expression in 'DB'. Notably, DFR (cluster-46471.3) exhibits high expression in 'DB' while being down-regulated in 'LB' and 'GB', correlating with higher anthocyanin levels in floral pigmentation. Comparative analyses of 'LB' vs. 'DB', 'DB' vs. 'GB', and 'LB' vs. 'GB' revealed 460, 490, and 444 differentially expressed TFs, respectively. WRKY, ERF, bHLH, NAC, and AP2/ERF showed the highest expression in 'DB', aligning with the color formation and key anthocyanin biosynthesis-related gene expression. The findings reveal the molecular mechanisms behind floral pigmentation variations and lay the groundwork for future hydrangea breeding programs.
Collapse
Affiliation(s)
- Yanguo Ke
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Economics and Management, Kunming University, Kunming 650208, China;
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan;
| | - Dongdong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Waseem Hassan
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60001, Pakistan;
| | - Ying Zou
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming 650214, China; (Y.Z.); (Y.Q.)
| | - Ying Qi
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming 650214, China; (Y.Z.); (Y.Q.)
| | - Yiwei Zhou
- Guangdong Provincial Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| |
Collapse
|
3
|
Zhang Y, Han P, Zhao R, Yu S, Liu H, Ji S, Chen W. Transcriptome and Metabolome Analyses Reveal the Mechanism of Color Differences in Pomegranate ( Punica granatum L.) Red and White Petals. PLANTS (BASEL, SWITZERLAND) 2025; 14:652. [PMID: 40094520 PMCID: PMC11901741 DOI: 10.3390/plants14050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Pomegranate (Punica granatum L.) is an important economic tree, possessing both edible and ornamental value. Flower color is an important ornamental trait of pomegranate, but the color formation pattern and related molecular mechanisms of pomegranate petals are still unclear. In this study, we conducted physiological, transcriptomic, and metabolomic studies on the petals of Tunisia and White pomegranate varieties during the blooming stage. The results showed that compared to White petals, the contents of anthocyanin, carotenoid, and sucrose in Tunisia petals were significantly increased, while the flavonoid content was significantly decreased. Through RNA-seq, 23 DEGs were identified in the anthocyanin synthesis, and 3 DEGs were identified in the carotenoid synthesis. Transcription factor genes such as MYB, bHLH, WRKY, and MADS were identified as key candidates for regulating anthocyanin metabolism. Metabolomic analysis revealed that eight DEMs are associated with anthocyanin synthesis and three DEMs are associated with carotenoid synthesis. In addition, caffeic acid and its derivatives were significantly upregulated in Tunisia petals. In summary, we propose the following hypothesis: the accumulation of anthocyanins and carotenoids is the reason for the red color of Tunisian petals, and the upregulation of structural genes, including PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, DFR, ANS, PSY, and LCYB, leads to an increase in their content. Transcription factor genes such as MYB, bHLH, bZIP, MADS, and WRKY may also play a positive role in anthocyanin accumulation. The research results provide a basis for the theory of pomegranate petal color formation.
Collapse
Affiliation(s)
- Yong Zhang
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.Z.); (H.L.)
| | - Peng Han
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (P.H.); (R.Z.)
| | - Ruijie Zhao
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (P.H.); (R.Z.)
| | - Shuhan Yu
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Hang Liu
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.Z.); (H.L.)
| | - Shuren Ji
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Wei Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| |
Collapse
|
4
|
Sun Y, Hu P, Jiang Y, Wang Z, Chang J, Zhou Y, Shao H. Comprehensive analysis of metabolomics and transcriptomics reveals varied tepal pigmentation across Gloriosa varieties. BMC PLANT BIOLOGY 2025; 25:66. [PMID: 39819392 PMCID: PMC11740357 DOI: 10.1186/s12870-025-06067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Gloriosa L. possesses exceptional ornamental value, with its floral hues exhibiting a wide range of variations. In this study, we employed sophisticated colorimetry, Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS), and transcriptome sequencing to investigate the phenotypic expression of tepal colors, the composition of carotenoids and anthocyanins, and the differential gene expression in four Gloriosa varieties during their full bloom phase. Our findings revealed that the redness of the tepals, indicated by higher a* values, increased with the intensity of the red hue, while lighter colors corresponded to higher L* values. Metabolomic analysis identified 50 carotenoids and 60 anthocyanins. It was observed that carotenoids primarily influence the yellow and orange color of Gloriosa tepals, with β-carotene, lutein, and zeaxanthin being the predominant carotenoids. Anthocyanins serve as the principal coloring agents in the orange, red and purple tepals of Gloriosa. High levels and proportions of cyanidins and pelargonidins are key contributors to the formation of red and purple tepals, while high levels and proportions of peonidins also play a significant role in purple coloration. In contrast, the presence of high levels and proportions of pelargonidins alone is a crucial factor in the formation of orange tepals. Transcriptomic data unearthed 57 and 92 candidate differentially expressed genes (DEGs) belong to carotenoid and anthocyanin biosynthesis pathway, respectively, with PSY, PDS, DFR, and ANS genes considered as critical genes for the differential accumulation of pigments of Gloriosa tepals. Weighted gene co-expression network analysis (WGCNA) revealed significant co-expression patterns between 217 transcription regulatory factors (TFs) and 8 carotenoid biosynthesis genes, and between 194 TFs and 41 anthocyanin biosynthesis genes. qRT-PCR verified the expression patterns of four carotenoid biosynthesis-related genes, eight anthocyanin biosynthesis-related genes, and three transcription regulatory factors. It was found that Cluster-121969.6 (MYB) gene is specifically expressed in the tepals of the four varieties (compared to stems and leaves) and shows a high consistency with the trend of anthocyanin content changes. This research provides new insights into the mechanisms underlying the formation of diverse floral colors in Gloriosa tepals.
Collapse
Affiliation(s)
- Yue Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Pinli Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yanan Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhenzhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Jiaxing Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yiwei Zhou
- Guangdong Provincial Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Haojing Shao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Mila KJ, Hassan J, Hasan MF, Alfagham AT, Ali L, Islam MS, Zubayer M, Gomasta J, Ozaki Y, Siddiqui MH, Khalid F, Mondal MF. Nutritional composition, bioactive compounds and antioxidant potentiality of some indigenous vegetables consumed in Bangladesh. Sci Rep 2024; 14:27699. [PMID: 39532949 PMCID: PMC11557952 DOI: 10.1038/s41598-024-78625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Food and nutrition security are essential for accomplishing sustainable development goals, and a growing population requires various food sources to address hunger and nutrition. Indigenous vegetables are nutritious, healthy, and adaptable to local conditions, making them a potential food and nutrition security resource. Thus, this study aimed to evaluate the nutritional richness of indigenous vegetables by comparing the nutritional content of commonly grown indigenous vegetables like Chenopodium album (Bathua), Coccinia grandis (Telakucha), Amaranthus viridis (Shaknotey), Moringa oleifera (Shojne), Alternanthera philoxeroides (Malancha), and Xanthium strumarium (Ghagra) to BARI Lalshak-1 (Amaranthus tricolor). Shojne violet had the highest lightness (L*), directions (b*), and chroma (c*) of 43.50, 23.69, and 25.02, respectively and telakucha had the highest luminosity (h°) of 114.11. Shaknotey had more moisture (88.97 %) than bathua green (66.62 %) or ghagra (72.55 %). Ghagra had the most chlorophyll a (1.11 mg/g), b (0.65 mg/g), total chlorophyll (2.04 mg/g), ascorbic acid (22.0 mg/100 g), and flavonoids (50.1 mgQE/100 g). Bathua red had significant levels of anthocyanin, carotenoids, and strongest antioxidant activity (IC50 value): 42.9 µg/g, 0.24 mg/g, and 12.4 µg/mL, respectively. Shojne green and telakucha were found rich in phenolic content (136.0 mgGAE/100 g) and β-carotene (2.05 mg/100 g), respectively. Moreover, the studied indigenous vegetables were rich in minerals, potassium, calcium, magnesium, and iron, with a very high K content (49.4-79.4 mg/g). Correlation matrix and PCA showed that ghagra, shojne, and bathua species were nutritionally superior to others. Therefore, the current findings suggest that ghara, shojne and bathua can become a nutrient-rich indigenous vegetable and improve human nutrition.
Collapse
Affiliation(s)
- Khurshida Jahan Mila
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Jahidul Hassan
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Fakhrul Hasan
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Alanoud T Alfagham
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Liakat Ali
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Saiful Islam
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Zubayer
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Joydeb Gomasta
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Yukio Ozaki
- Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819- 0395, Japan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Farhan Khalid
- Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Md Ferdous Mondal
- College of Agriculture, International University of Business, Agriculture and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
6
|
Zhou Y, Xu Y, Tan J, Huang L, Zhu G, Ye Y. Role of anthocyanin metabolic diversity in bract coloration of Curcuma alismatifolia varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109156. [PMID: 39341180 DOI: 10.1016/j.plaphy.2024.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Anthocyanins are one of the key metabolites influencing the coloration of ornamental bracts in plants. Curcuma alismatifolia is an emerging ornamental plant, known for the rich diversity in the coloration of its bracts and the variety of anthocyanins present. However, the specific anthocyanin metabolites contributing to this diversity are not entirely clear. This study examines the bract color variation across 19 C. alismatifolia varieties using colorimetric analysis and spectrophotometric determination of total anthocyanin content. The 19 accessions were categorized into four color groups: white, light pink, pink, and purple. Further analysis using anthocyanin metabolomics and transcriptomics was conducted on five C. alismatifolia varieties with significant differences in coloration and total anthocyanin content. In addition to previously reported anthocyanins, delphinidin-3-O-glucoside and peonidin-3-O-rutinoside were identified for the first time as important contributors to the diverse bract coloration in C. alismatifolia. Fifty-three differentially expressed genes (DEGs) were identified in the anthocyanin biosynthesis pathway, and two significant gene modules were determined through WGCNA analysis. Correlation network analysis revealed two BZ1 genes that may be key terminal enzyme genes affecting anthocyanin synthesis in C. alismatifolia bracts. Multiple transcription factors, including MYB, NAC, WRKY, ERF, and bHLH, may be involved in regulating the accumulation of different anthocyanin contents in the bracts. This research sheds light on the genetic and metabolic factors that influence bract coloration in C. alismatifolia.
Collapse
Affiliation(s)
- Yiwei Zhou
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yechun Xu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianjun Tan
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lishan Huang
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Genfa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yuanjun Ye
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Mallick SR, Hassan J, Hoque MA, Sultana H, Kayesh E, Ahmed M, Ozaki Y, Al-Hashimi A, Siddiqui MH. Color, proximate composition, bioactive compounds and antinutrient profiling of rose. Sci Rep 2024; 14:21690. [PMID: 39289436 PMCID: PMC11408722 DOI: 10.1038/s41598-024-72424-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Rose (Rosa sp.) is one of the most important ornamentals which is commercialize for its aesthetic values, essential oils, cosmetic, perfume, pharmaceuticals and food industries in the world. It has wide range of variations that is mostly distinguished by petal color differences which is interlinked with the phytochemicals, secondary metabolites and antinutrient properties. Here, we explored the color, bioactive compounds and antinutritional profiling and their association to sort out the most promising rose genotypes. For this purpose, we employed both quantitative and qualitative evaluation by colorimetric, spectrophotometric and visual analyses following standard protocols. The experiment was laid out in randomized complete block design (RCBD) with three replications where ten rose genotypes labelled R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 were used as plant materials. Results revealed in quantitative assessment, the maximum value of lightness, and the luminosity indicating a brightening of rose petals close to a yellow color from rose accessions R4, and R10, respectively which is further confirmed with the visually observed color of the respective rose petals. Proximate composition analyses showed that the highest amount of carotenoid and β-carotene was found in R10 rose genotype, anthocyanin and betacyanin in R7. Among the bioactive compounds, maximum tocopherol, phenolic and flavonoid content was recorded in R8, R6 and R3 while R1 showed the highest free radical scavenging potentiality with the lowest IC50 (82.60 µg/mL FW) compared to the others. Meanwhile, the enormous variation was observed among the studied rose genotypes regarding the antinutrient contents of tannin, alkaloid, saponin and phytate whereas some other antinutrient like steroids, coumarines, quinones, anthraquinone and phlobatanin were also figured out with their presence or absence following qualitative visualization strategies. Furthermore, according to the Principal Component Analysis (PCA), correlation matrix and cluster analysis, the ten rose genotypes were grouped into three clusters where, cluster-I composed of R3, R4, R5, R8, cluster-II: R9, R10 and cluster-III: R1, R2, R6, R7 where the rose genotypes under cluster III and cluster II were mostly contributed in the total variations by the studied variables. Therefore, the rose genotypes R9, R10 and R1, R2, R6, R7 might be potential valuable resources of bioactive compounds for utilization in cosmetics, food coloration, and drugs synthesis which have considerable health impact.
Collapse
Affiliation(s)
- Sharmila Rani Mallick
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Jahidul Hassan
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Azizul Hoque
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Hasina Sultana
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Emrul Kayesh
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Minhaz Ahmed
- Department of Agroforestry and Environment, Faculty of Forestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Yukio Ozaki
- Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Jariani P, Shahnejat-Bushehri AA, Naderi R, Zargar M, Naghavi MR. Characterization of key genes in anthocyanin and flavonoid biosynthesis during floral development in Rosa canina L. Int J Biol Macromol 2024; 276:133937. [PMID: 39029843 DOI: 10.1016/j.ijbiomac.2024.133937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
This study investigates the transition of Rosa canina L. petals from pink to white, driven by genetic and biochemical factors. It characterizes the expression of ten key genes involved in anthocyanin and flavonoid biosynthesis across five developmental stages, correlating gene expression with flavonoid and anthocyanin concentrations and colorimetric changes. Initially, the petals exhibit a rich flavonoid profile, dominated by Rutin and Kaempferol derivatives. The peak anthocyanin concentration, corresponding to the deepest color saturation, occurs in the subsequent stage. Advanced chromatographic analyses identify key flavonoids persisting into the final white petal stage. Notably, the ANS gene shows a dramatic 137.82-fold increase in expression at the final stage, indicating its crucial role in petal color maturation despite the absence of visible pigmentation. The study provides a comprehensive characterization of the genetic and biochemical mechanisms underlying petal pigmentation, suggesting that reduced anthocyanin synthesis and increased flavonol concentration led to white petals. It also highlights the roles of other genes such as PAL, CCD1, FLS, CHI, CHS, UFGT, F3H, DFR, and RhMYB1, indicating that post-translational modifications and other regulatory mechanisms may influence anthocyanin stability and degradation.
Collapse
Affiliation(s)
- Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran.
| | - Ali-Akbar Shahnejat-Bushehri
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran.
| | - Roohangiz Naderi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran.
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran; Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia.
| |
Collapse
|
9
|
Zhou Y, Xu Y, Zhu GF, Tan J, Lin J, Huang L, Ye Y, Liu J. Pigment Diversity in Leaves of Caladium × hortulanum Birdsey and Transcriptomic and Metabolic Comparisons between Red and White Leaves. Int J Mol Sci 2024; 25:605. [PMID: 38203776 PMCID: PMC10779550 DOI: 10.3390/ijms25010605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Leaf color is a key ornamental characteristic of cultivated caladium (Caladium × hortulanum Birdsey), a plant with diverse leaf colors. However, the genetic improvement of leaf color in cultivated caladium is hindered by the limited understanding of leaf color diversity and regulation. In this study, the chlorophyll and anthocyanin content of 137 germplasm resources were measured to explore the diversity and mechanism of leaf color formation in cultivated caladium. Association analysis of EST-SSR markers and pigment traits was performed, as well as metabolomics and transcriptomics analysis of a red leaf variety and its white leaf mutant. We found significant differences in chlorophyll and anthocyanin content among different color groups of cultivated caladium, and identified three, eight, three, and seven EST-SSR loci significantly associated with chlorophyll-a, chlorophyll-b, total chlorophyll and total anthocyanins content, respectively. The results further revealed that the white leaf mutation was caused by the down-regulation of various anthocyanins (such as cyanidin-3-O-rutinoside, quercetin-3-O-glucoside, and others). This change in concentration is likely due to the down-regulation of key genes (four PAL, four CHS, six CHI, eight F3H, one F3'H, one FLS, one LAR, four DFR, one ANS and two UFGT) involved in anthocyanin biosynthesis. Concurrently, the up-regulation of certain genes (one FLS and one LAR) that divert the anthocyanin precursors to other pathways was noted. Additionally, a significant change in the expression of numerous transcription factors (12 NAC, 12 bZIP, 23 ERF, 23 bHLH, 19 MYB_related, etc.) was observed. These results revealed the genetic and metabolic basis of leaf color diversity and change in cultivated caladium, and provided valuable information for molecular marker-assisted selection and breeding of leaf color in this ornamental plant.
Collapse
Affiliation(s)
- Yiwei Zhou
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510642, China
| | - Yechun Xu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510642, China
| | - Gen-Fa Zhu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510642, China
| | - Jianjun Tan
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
| | - Jingyi Lin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
| | - Lishan Huang
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
| | - Yuanjun Ye
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510642, China
| | - Jinmei Liu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Y.Z.)
| |
Collapse
|
10
|
Zhou Y, Zou X, Yan F, He J, Zeng S, Yu Y, Tang X, Liang X, Cai X, Yu R, Fan Y. Phenotypic Variation in Flower Color and Morphology in the Gerbera ( Gerbera hybrida) F 1 Hybrid Population and Their Association with EST-SSR Markers. Int J Mol Sci 2023; 25:203. [PMID: 38203375 PMCID: PMC10779396 DOI: 10.3390/ijms25010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Gerbera (Gerbera hybrida) is a widely cultivated ornamental plant. However, its genetic improvement is limited by the lack of genetic analysis and molecular markers for traits. In this study, we analyzed the phenotypic and genotypic variation of 140 F1 progeny from two gerbera varieties with different flower types and colors. We evaluated the flower's morphology, color, and pigment content of the F1 population and performed cluster principal component analysis (PCA) and correlation analysis. The results showed that the main ornamental traits of the hybrid progeny varied greatly. The segregation ratios of single and double flowers and ligulate and split ray florets were both 1:1. The flower colors of the F1 progeny were mainly red and purple-red, similar to the male parent's color. Furthermore, we conducted a genetic analysis of the hybrid progeny using EST-SSR markers and performed association analysis with phenotypic traits. We identified 2, 2, 3, 1, and 2 loci to be associated with peduncle length (PL), ray floret length (RFL), and outer ray floret; the level of apex relative to the top of involucre (LAI); outer corolla lips (OCL); and the b* of ray floret color, respectively. Our results reveal the genetic patterns of important ornamental traits and provide a theoretical basis and practical tools for gerbera genetic breeding.
Collapse
Affiliation(s)
- Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Xinru Zou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
| | - Fulong Yan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
| | - Jingjuan He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
| | - Sixian Zeng
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoshuang Tang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
| | - Xuanguo Liang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
| | - Xiuping Cai
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
| | - Rangcai Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (R.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Sun Y, Hu P, Jiang Y, Li J, Chang J, Zhang H, Shao H, Zhou Y. Integrated Metabolome and Transcriptome Analysis of Petal Anthocyanin Accumulation Mechanism in Gloriosa superba 'Rothschildiana' during Different Flower Development Stages. Int J Mol Sci 2023; 24:15034. [PMID: 37894715 PMCID: PMC10606226 DOI: 10.3390/ijms242015034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Flower color is a key ornamental trait in plants. The petals of Gloriosa superba 'Rothschildiana' petals undergo a color transformation from yellow to red during their development, but the molecular mechanism of this process remains unexplored. This study examines the anthocyanin profiles and gene expression patterns of 'Rothschildiana' petals across four developmental stages: bud (S1), initial opening (S2), half opening (S3), and full opening stage (S4). A total of 59 anthocyanins were identified with significant increases in cyanidin-3,5-O-diglucoside, cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, and pelargonidin-3,5-O-diglucoside levels observed during petal maturation. Transcriptome analysis revealed 46 differentially expressed genes implicated in flavonoid and anthocyanin biosynthesis. Additionally, three gene modules were found to be associated with anthocyanin accumulation throughout flower development. Expression levels of genes associated with auxin, abscisic acid, brassinosteroid signaling, and transcription factors such as NACs and WRKYs underwent significant changes and exhibited strong correlations with several flavonoid and anthocyanin biosynthetic genes in these modules. These findings offer novel insights into the molecular underpinnings of flower color variation and lay the groundwork for the improvement of G. superba.
Collapse
Affiliation(s)
- Yue Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.S.); (P.H.); (Y.J.); (J.L.); (J.C.); (H.Z.)
| | - Pinli Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.S.); (P.H.); (Y.J.); (J.L.); (J.C.); (H.Z.)
| | - Yanan Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.S.); (P.H.); (Y.J.); (J.L.); (J.C.); (H.Z.)
| | - Jun Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.S.); (P.H.); (Y.J.); (J.L.); (J.C.); (H.Z.)
| | - Jiaxing Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.S.); (P.H.); (Y.J.); (J.L.); (J.C.); (H.Z.)
| | - Huihui Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.S.); (P.H.); (Y.J.); (J.L.); (J.C.); (H.Z.)
| | - Haojing Shao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.S.); (P.H.); (Y.J.); (J.L.); (J.C.); (H.Z.)
| | - Yiwei Zhou
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Zhou Y, Ye Y, Zhu G, Xu Y, Tan J, Liu J. Diversity, classification, and EST-SSR-based association analysis of caladium ornamental traits. PHYSIOLOGIA PLANTARUM 2023; 175:e13841. [PMID: 36513960 DOI: 10.1111/ppl.13841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Caladium (Caladium × Hortulanum Birdsey) is a popular ornamental plant with a wide range of vibrant leaf color among Araceae. Even after years of breeding, creating new caladium leaf color variations is extremely difficult. Molecular marker-assisted selection is an effective approach for accelerating breeding, but few studies on the molecular markers associated with caladium traits have been performed. In the current study, 144 caladium accessions were used to examine 12 phenotypic characteristics. The coefficient of variation for four numerical characters ranged from 23.94% to 43.22%, and the Shannon-Wiener indexes for eight descriptive characters ranged from 0.13 to 1.52. Based on L*, a*, b*, C, h° values determined by a colorimeter and hierarchical cluster analysis, the leaf color can be divided into four groups: pale green, green, light pink, and red. Furthermore, 7708 new SSR loci were identified by transcriptome sequencing, and 26 SSR markers with high polymorphism and reproducibility were screened. Genetic structure, NJ clustering, and PCoA analysis revealed that 144 accessions could be divided into three clusters, with genetic structure being closely related to germplasm origin. An association analysis revealed that the SSR markers 2, 1, 1, 1, 1, and 1 were mainly associated with petiole color, main vein color, blade upperside glossiness, and C, b*, and L* of leaf color (p < 0.01). These findings will serve as a valuable reference for evaluating germplasm resources and caladium molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Yiwei Zhou
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Yuanjun Ye
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Genfa Zhu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Yechun Xu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Jianjun Tan
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| | - Jinmei Liu
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, China
| |
Collapse
|
13
|
Grohar MC, Medic A, Ivancic T, Veberic R, Jogan J. Color Variation and Secondary Metabolites' Footprint in a Taxonomic Complex of Phyteuma sp. (Campanulaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2894. [PMID: 36365351 PMCID: PMC9658285 DOI: 10.3390/plants11212894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In the genus Phyteuma, the taxonomic delimitation of some species is difficult since a high variability of morphological traits, such as flower color, is present, probably due to high levels of hybridization. Historic descriptions and the morphological traits used in the taxonomic keys are sometimes unclear and lead to misinterpretations. Here, a detailed analysis of flower color variability in different populations of sympatric P. spicatum, P. ovatum, and P. persicifolium constitutes a new approach to clarifying the taxonomic statuses. The numeric analysis of color, providing colorimetric variables, together with the detailed description of the metabolic profiles of populations with different flower colors, constitute a unique chemical fingerprint that identifies species and subspecies with clear markers. This study is the most complete metabolic research on genus Phyteuma, since we identified and quantified 44 phenolic compounds using HPLC-MS, comprising 14 phenolic acids, 23 flavonols and flavones, and, for the first time in the genus, 7 anthocyanins involved in flower color variability. This approach contributes to clarifying the differences between species, which is particularly relevant in taxonomic complexes such as the present, where morphology fails to clearly differentiate taxa at specific and intraspecific levels.
Collapse
Affiliation(s)
- Mariana Cecilia Grohar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Aljaz Medic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Tea Ivancic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Robert Veberic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Jernej Jogan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|