1
|
Aluja M, Acosta E, Enciso-Ortiz E, Ortega-Casas R, Altúzar-Molina A, Camacho-Vázquez C, Monribot-Villanueva JL, Guerrero-Analco JA, Pascacio-Villafán C, Guillén L. Expansion to new habitats and a new commercial host (Malus domestica) by Anastrepha ludens (Tephritidae) likely influenced by global warming. Sci Rep 2024; 14:27729. [PMID: 39533054 PMCID: PMC11557875 DOI: 10.1038/s41598-024-78727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Anastrepha ludens (Mexican fruit-fly) is a highly polyphagous fruit fly species (Tephritidae) attacking wild and commercial fruit from Mexico to Panama. Here we report on a recent habitat and host range expansion as A. ludens lately started to attack apples (Malus domestica) in Mexico, a phenomenon likely influenced by global warming. We document natural infestations in apple-growing regions in the States of Nuevo León and Hidalgo, Mexico where A. ludens has started to attack the cultivars 'Golden Delicious', 'Rayada' and 'Criolla'. No infestations were found in the apple-growing region of Zacatlán, Puebla. To determine apple cultivar susceptibility to the attack of this emerging pest, we ran forced infestation assays in enclosed fruit-bearing branches in all three apple-growing regions and studied the metabolome of all fruit. A clear pattern emerged indicating that the cultivar 'Golden Delicious' was the most susceptible, with 'Criolla' exhibiting complete resistance in one location (Puebla). Although A. ludens can develop in this new host, development rates (egg-adult) and adult emergence were affected when compared with the performance in the natural host 'Marsh' grapefruit. Warmer temperatures and specific secondary metabolites of some apple cultivars are likely contributing to the territorial and host expansion of A. ludens.
Collapse
Affiliation(s)
- Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico.
| | - Emilio Acosta
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico
| | - Erick Enciso-Ortiz
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico
| | - Rafael Ortega-Casas
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico
| | - Carolina Camacho-Vázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico
| | - Juan L Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico
| | - Carlos Pascacio-Villafán
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico
| | - Larissa Guillén
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C.-INECOL, Clúster Científico y Tecnológico BioMimic, Xalapa, 91073, Mexico.
| |
Collapse
|
2
|
Li H, Kan J, Liu C, Yang Q, Lin J, Li X. Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar 'Sucui 1'. EPIGENOMES 2024; 8:40. [PMID: 39584963 PMCID: PMC11587157 DOI: 10.3390/epigenomes8040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Flowers are important plant organs, and their development is correlated with yield in woody fruit trees. For Pyrus pyrifolia cultivar 'Sucui 1', the research on how DNA methylation accurately regulates the expression of TFs and affects the specific regulatory mechanism of flower bud wizening will help reduce wizened buds. METHODS Here, the DNA methylomes and transcriptomes of two types of flower buds from the Pyrus pyrifolia cultivar 'Sucui 1' were compared. RESULTS 320 differentially expressed transcription factors (TFs), in 43 families, were obtained from the wizened bud transcriptome versus the normal bud transcriptome. Most were members of the AP2/ERF, bHLH, C2H2, CO-like, MADS, MYB, and WRKY families, which are involved in flower development. As a whole, the methylation level of TFs in the 'Sucui 1' genome increased once flower bud wizening occurred. A cytosine methylation analysis revealed that the methylation levels of the same gene regions in TFs from two kinds of buds were similar. However, differentially methylated regions were found in gene promoter sequences. The combined whole-genome bisulfite sequencing and RNA-Seq analyses revealed 162 TF genes (including 164 differentially methylated regions) with both differential expression and methylation differences between the two flower bud types. Among them, 126 were classified as mCHH-type methylation genes. Furthermore, the transcriptional down regulation of PpbHLH40, PpERF4, PpERF061, PpLHW, PpMADS6, PpZF-HD11, and PpZFP90 was accompanied by increased DNA methylation. However, PpbHLH130, PpERF011, and PpMYB308 displayed the opposite trend. The expression changes for these TFs were negatively correlated with their methylation states. CONCLUSIONS Overall, our results offer initial experimental evidence of a correlation between DNA methylation and TF transcription in P. pyrifolia in response to bud wizening. This enriched our understanding of epigenetic modulations in woody trees during flower development.
Collapse
Affiliation(s)
- Hui Li
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.)
| | - Jialiang Kan
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.)
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, China
| | - Chunxiao Liu
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.)
| | - Qingsong Yang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.)
| | - Jing Lin
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.)
| | - Xiaogang Li
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.)
| |
Collapse
|
3
|
Sato H, Yamane H. Histone modifications affecting plant dormancy and dormancy release: common regulatory effects on hormone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6142-6158. [PMID: 38721634 DOI: 10.1093/jxb/erae205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
As sessile organisms, plants enter periods of dormancy in response to environmental stresses to ensure continued growth and reproduction in the future. During dormancy, plant growth is suppressed, adaptive/survival mechanisms are exerted, and stress tolerance increases over a prolonged period until the plants resume their development or reproduction under favorable conditions. In this review, we focus on seed dormancy and bud dormancy, which are critical for adaptation to fluctuating environmental conditions. We provide an overview of the physiological characteristics of both types of dormancy as well as the importance of the phytohormones abscisic acid and gibberellin for establishing and releasing dormancy, respectively. Additionally, recent epigenetic analyses have revealed that dormancy establishment and release are associated with the removal and deposition of histone modifications at the loci of key regulatory genes influencing phytohormone metabolism and signaling, including DELAY OF GERMINATION 1 and DORMANCY-ASSOCIATED MADS-box genes. We discuss our current understanding of the physiological and molecular mechanisms required to establish and release seed dormancy and bud dormancy, while also describing how environmental conditions control dormancy depth, with a focus on the effects of histone modifications.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Luo Y, Liu H, Han Y, Li W, Wei W, He N. Alternative splicing of the FLOWERING LOCUS C-like gene MaMADS33 is associated with endodormancy in mulberry. FORESTRY RESEARCH 2024; 4:e029. [PMID: 39524424 PMCID: PMC11524320 DOI: 10.48130/forres-0024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional process that generates multiple mRNA isoforms. FLOWERING LOCUS C (FLC) is a pivotal gene in both the vernalization and autonomous pathways of flowering plants, and MaMADS33 is one of the FLC homologs in white mulberry (Morus alba). Recent studies have revealed that MaMADS33 is involved in endodormancy, but the underlying molecular mechanism remains to be characterized. Here, a comparison of MaMADS33 expression among three mulberry cultivars with different degrees of dormancy revealed a positive association between MaMADS33 expression and dormancy. Further 3' and 5' rapid amplification of cDNA ends (RACE) analyses led to identifying four MaMADS33 isoforms derived from AS and designated MaMADS33-AS1-4. Analysis of their coding potential revealed that MaMADS33-AS1 was a long non-coding RNA. Expression profiling and splicing-efficiency analyses showed that cold stress during endodormancy induced AS of MaMADS33, resulting in a predominance of truncated isoforms, especially MaMADS33-AS1. MaMADS33-AS2 expression was upregulated during both endodormancy and ecodormancy, whereas MaMADS33-AS3 and MaMADS33-AS4 were endodormancy-associated isoforms that were upregulated during endodormancy and then downregulated during ecodormancy. MaMADS33-AS4 was used as bait for a yeast two-hybrid screen because its gene expression was higher than that of MaMADS33-AS3, and mulberry winter-accumulating 18 kDa protein (MaWAP18) was identified as an MaMADS33-AS4 interaction partner. The interaction between MaWAP18 and MaMADS33-AS4 was confirmed by a bimolecular fluorescence complementation assay. These findings offer insight into the role of FLC homologs in the endodormancy of woody plants.
Collapse
Affiliation(s)
- Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Hongjiang Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Yuanxiang Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wei Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wuqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
5
|
Cai K, Zhu S, Jiang Z, Xu K, Sun X, Li X. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108931. [PMID: 39003975 DOI: 10.1016/j.plaphy.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Flowering time is a crucial developmental stage in the life cycle of plants, as it determines the reproductive success and overall fitness of the organism. The precise regulation of flowering time is influenced by various internal and external factors, including genetic, environmental, and hormonal cues. This review provided a comprehensive overview of the molecular mechanisms and regulatory pathways of biological macromolecules (e.g. proteins and phytohormone) and environmental factors (e.g. light and temperature) involved in the control of flowering time in plants. We discussed the key proteins and signaling pathways that govern the transition from vegetative growth to reproductive development, highlighting the intricate interplay between genetic networks, environmental cues, and phytohormone signaling. Additionally, we explored the impact of flowering time regulation on plant adaptation, crop productivity, and agricultural practices. Moreover, we summarized the similarities and differences of flowering mechanisms between annual and perennial plants. Understanding the mechanisms underlying flowering time control is not only essential for fundamental plant biology research but also holds great potential for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Kefan Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
6
|
Wu HL, Zhang SL, Feng X, Zhang YQ, Zhou BJ, Cao M, Wang YP, Guo BS, Hou ZX. Possible Mechanism of Sucrose and Trehalose-6-Phosphate in Regulating the Secondary Flower on the Strong Upright Spring Shoots of Blueberry Planted in Greenhouse. PLANTS (BASEL, SWITZERLAND) 2024; 13:2350. [PMID: 39273834 PMCID: PMC11397707 DOI: 10.3390/plants13172350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Secondary flowering is the phenomenon in which a tree blooms twice or more times a year. Along with the development of blueberry (Vaccinium corymbosum L.) fruits in spring, a large number of secondary flowers on the strong upright spring shoots were noticed in blueberries planted in the greenhouse. To reveal the cause and possible regulatory mechanism of the phenomenon, we clarified the phenological characteristics of flower bud differentiation and development on the spring shoots by combining phenological phenotype with anatomical observation. Furthermore, the changes in carbohydrates, trehalose-6-phosphate (Tre6P), and the relationship among the key enzyme regulatory genes for Tre6P metabolism and the key regulatory genes for flower formation during the differentiation process of apical buds and axillary buds were investigated. The results showed that the process of flower bud differentiation and flowering of apical and axillary buds was consistent, accompanied by a large amount of carbohydrate consumption. This process was positively correlated with the expression trends of VcTPS1/2, VcSnRK1, VcFT, VcLFY2, VcSPL43, VcAP1, and VcDAM in general, and negatively correlated with that of VcTPP. In addition, there is a certain difference in the differentiation progress of flower buds between the apical and axillary buds. Compared with axillary buds, apical buds had higher contents of sucrose, fructose, glucose, Tre6P, and higher expression levels of VcTPS2, VcFT, VcSPL43, and VcAP1. Moreover, VcTPS1 and VcTPS2 were more closely related to the physiological substances (sucrose and Tre6P) in axillary bud and apical bud differentiation, respectively. It was suggested that sucrose and trehalose-6-phosphate play a crucial role in promoting flower bud differentiation in strong upright spring shoots, and VcTPS1 and VcTPS2 might play a central role in these activities. Our study provided substantial sight for further study on the mechanism of multiple flowering of blueberries and laid a foundation for the regulation and utilization of the phenomenon of multiple flowering in a growing season of perennial woody plants.
Collapse
Affiliation(s)
- Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Ya-Ping Wang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Bao-Shi Guo
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Blueberry Research & Development Center, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Kumar A, Mushtaq M, Kumar P, Sharma DP, Gahlaut V. Insights into flowering mechanisms in apple (Malus × domestica Borkh.) amidst climate change: An exploration of genetic and epigenetic factors. Biochim Biophys Acta Gen Subj 2024; 1868:130593. [PMID: 38408683 DOI: 10.1016/j.bbagen.2024.130593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Apple (Malus × domestica Borkh.) holds a prominent position among global temperate fruit crops, with flowering playing a crucial role in both production and breeding. This review delves into the intricate mechanisms governing apple flowering amidst the backdrop of climate change, acknowledging the profound influence of external and internal factors on biennial bearing, flower bud quality, and ultimately, fruit quality. Notably, the challenge faced in major apple production regions is not an inadequacy of flowers but an excess, leading to compromised fruit quality necessitating thinning practices. Climate change exacerbates these challenges, rendering apple trees more susceptible to crop failure due to unusual weather events, such as reduced winter snowfall, early spring cold weather, and hailstorms during flowering and fruit setting. Altered climatic conditions, exemplified by increased spring warming coupled with sub-freezing temperatures, negatively impact developing flower buds and decrease overall crop production. Furthermore, changing winter conditions affect chilling accumulation, disrupting flower development and synchronicity. Although the physiological perception of apple flowering has been reviewed in the past, the genetic, epigenetic, and multi-omics regulatory mechanisms governing floral induction and flowering are still rarely discussed in the case of apple flowering. This article comprehensively reviews the latest literature encompassing all aspects of apple flowering, aiming to broaden our understanding and address flowering challenges while also laying a solid foundation for future research in developing cultivars that are ideally adapted to climate change.
Collapse
Affiliation(s)
- Anshul Kumar
- MS Swaminathan School of Agriculture, Shoolini University, Bhajol, Solan, Himachal Pradesh 173229, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bhajol, Solan, Himachal Pradesh 173229, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. YS Parmar University of Horticulture and Forestry Nauni Solan, Himachal Pradesh 173230, India.
| | - Dharam Paul Sharma
- Department of Fruit Science, Dr. YS Parmar University of Horticulture and Forestry Nauni Solan, Himachal Pradesh 173230, India
| | - Vijay Gahlaut
- University Centre for Research & Development, Chandigarh University, Punjab 140413, India.
| |
Collapse
|
8
|
Zhang M, Cheng W, Wang J, Cheng T, Lin X, Zhang Q, Li C. Genome-Wide Identification of Callose Synthase Family Genes and Their Expression Analysis in Floral Bud Development and Hormonal Responses in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2023; 12:4159. [PMID: 38140486 PMCID: PMC10748206 DOI: 10.3390/plants12244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Callose is an important polysaccharide composed of beta-1,3-glucans and is widely implicated in plant development and defense responses. Callose synthesis is mainly catalyzed by a family of callose synthases, also known as glucan synthase-like (GSL) enzymes. Despite the fact that GSL family genes were studied in a few plant species, their functional roles have not been fully understood in woody perennials. In this study, we identified total of 84 GSL genes in seven plant species and classified them into six phylogenetic clades. An evolutionary analysis revealed different modes of duplication driving the expansion of GSL family genes in monocot and dicot species, with strong purifying selection constraining the protein evolution. We further examined the gene structure, protein sequences, and physiochemical properties of 11 GSL enzymes in Prunus mume and observed strong sequence conservation within the functional domain of PmGSL proteins. However, the exon-intron distribution and protein motif composition are less conservative among PmGSL genes. With a promoter analysis, we detected abundant hormonal responsive cis-acting elements and we inferred the putative transcription factors regulating PmGSLs. To further understand the function of GSL family genes, we analyzed their expression patterns across different tissues, and during the process of floral bud development, pathogen infection, and hormonal responses in Prunus species and identified multiple GSL gene members possibly implicated in the callose deposition associated with bud dormancy cycling, pathogen infection, and hormone signaling. In summary, our study provides a comprehensive understanding of GSL family genes in Prunus species and has laid the foundation for future functional research of callose synthase genes in perennial trees.
Collapse
Affiliation(s)
- Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Wenhui Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Xinlian Lin
- Flower Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China;
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Cuiling Li
- Flower Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China;
| |
Collapse
|
9
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
10
|
Qin C, Du T, Zhang R, Wang Q, Liu Y, Wang T, Cao H, Bai Q, Zhang Y, Su S. Integrated transcriptome, metabolome and phytohormone analysis reveals developmental differences between the first and secondary flowering in Castanea mollissima. FRONTIERS IN PLANT SCIENCE 2023; 14:1145418. [PMID: 37008486 PMCID: PMC10060901 DOI: 10.3389/fpls.2023.1145418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Chestnut (Castanea mollissima BL.) is an important woody grain, and its flower formation has a significant impact on fruit yield and quality. Some chestnut species in northern China re-flower in the late summer. On the one hand, the second flowering consumes a lot of nutrients in the tree, weakening the tree and thus affecting flowering in the following year. On the other hand, the number of female flowers on a single bearing branch during the second flowering is significantly higher than that of the first flowering, which can bear fruit in bunches. Therefore, these can be used to study the sex differentiation of chestnut. METHODS In this study, the transcriptomes, metabolomes, and phytohormones of male and female chestnut flowers were determined during spring and late summer. We aimed to understand the developmental differences between the first and secondary flowering stages in chestnuts. We analysed the reasons why the number of female flowers is higher in the secondary flowering than in the first flowering and found ways to increase the number of female flowers or decrease the number of male flowers in chestnuts. RESULTS Transcriptome analysis of male and female flowers in different developmental seasons revealed that EREBP-like mainly affected the development of secondary female flowers and HSP20 mainly affected the development of secondary male flowers. KEGG enrichment analysis showed that 147 common differentially-regulated genes were mainly enriched from circadian rhythm-plant, carotenoid biosynthesis, phenylpropanoid biosynthesis, and plant hormone signal transduction pathways. Metabolome analysis showed that the main differentially accumulated metabolites in female flowers were flavonoids and phenolic acids, whereas the main differentially accumulated metabolites in male flowers were lipids, flavonoids, and phenolic acids. These genes and their metabolites are positively correlated with secondary flower formation. Phytohormone analysis showed that abscisic and salicylic acids were negatively correlated with secondary flower formation. MYB305, a candidate gene for sex differentiation in chestnuts, promoted the synthesis of flavonoid substances and thus increased the number of female flowers. DISCUSSION We constructed a regulatory network for secondary flower development in chestnuts, which provides a theoretical basis for the reproductive development mechanism of chestnuts. This study has important practical implications for improving chestnut yield and quality.
Collapse
|
11
|
Sabir IA, Manzoor MA, Shah IH, Abbas F, Liu X, Fiaz S, Shah AN, Jiu S, Wang J, Abdullah M, Zhang C. Evolutionary and Integrative Analysis of Gibberellin-Dioxygenase Gene Family and Their Expression Profile in Three Rosaceae Genomes ( F. vesca, P. mume, and P. avium) Under Phytohormone Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:942969. [PMID: 35874024 PMCID: PMC9302438 DOI: 10.3389/fpls.2022.942969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The gibberellin-dioxygenase (GAox) gene family plays a crucial role in regulating plant growth and development. GAoxs, which are encoded by many gene subfamilies, are extremely critical in regulating bioactive GA levels by catalyzing the subsequent stages in the biosynthesis process. Moreover, GAoxs are important enzymes in the GA synthesis pathway, and the GAox gene family has not yet been identified in Rosaceae species (Prunus avium L., F. vesca, and P. mume), especially in response to gibberellin and PCa (prohexadione calcium; reduce biologically active GAs). In the current investigation, 399 GAox members were identified in sweet cherry, Japanese apricot, and strawberry. Moreover, they were further classified into six (A-F) subgroups based on phylogeny. According to motif analysis and gene structure, the majority of the PavGAox genes have a remarkably well-maintained exon-intron and motif arrangement within the same subgroup, which may lead to functional divergence. In the systematic investigation, PavGAox genes have several duplication events, but segmental duplication occurs frequently. A calculative analysis of orthologous gene pairs in Prunus avium L., F. vesca, and P. mume revealed that GAox genes are subjected to purifying selection during the evolutionary process, resulting in functional divergence. The analysis of cis-regulatory elements in the upstream region of the 140 PavGAox members suggests a possible relationship between genes and specific functions of hormone response-related elements. Moreover, the PavGAox genes display a variety of tissue expression patterns in diverse tissues, with most of the PavGAox genes displaying tissue-specific expression patterns. Furthermore, most of the PavGAox genes express significant expression in buds under phytohormonal stresses. Phytohormones stress analysis demonstrated that some of PavGAox genes are responsible for maintaining the GA level in plant-like Pav co4017001.1 g010.1.br, Pav sc0000024.1 g340.1.br, and Pav sc0000024.1 g270.1.mk. The subcellular localization of PavGAox protein utilizing a tobacco transient transformation system into the tobacco epidermal cells predicted that GFP signals were mostly found in the cytoplasm. These findings will contribute to a better understanding of the GAox gene family's interaction with prohexadione calcium and GA, as well as provide a strong framework for future functional characterization of GAox genes in sweet cherry.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Farhat Abbas
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xunju Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Songtao Jiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Abdullah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|