1
|
Baujeu M, Moquet L, Chiroleu F, Becker-Scarpitta A, Reynaud B. The impact of landscape and prey on psyllophagous ladybird communities in a tropical environment. PLoS One 2025; 20:e0320898. [PMID: 40215440 PMCID: PMC11991731 DOI: 10.1371/journal.pone.0320898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/27/2025] [Indexed: 04/14/2025] Open
Abstract
This study examines the community composition and structure of psyllophagous ladybirds in a tropical environment, focusing on their interactions with psyllids as a food resource. It investigates the effects of prey availability and landscape composition on the structure of all ladybird species associated with psyllids and on the presence and abundance of species whose life cycles depend on psyllids. Sampling was conducted in Reunion island on two psyllid-infested plant species, Leucaena leucocephala and Acacia heterophylla. Ladybirds and psyllids were regularly collected during two years using a thermal aspirator, and visual inspection was conducted at eleven sites visited monthly. In this study, 16 ladybird species were identified, and only juveniles from Coccinella septempunctata, Exochomus laeviusculus, and Olla v-nigrum were frequently present, suggesting they can complete their biological cycle on psyllids. The structure of psyllophagous ladybird communities in a tropical environment is driven by the psyllid host plant and the monthly average temperature. When studied separately, food resources or landscape variables did not affect significantly the communities. The distribution of Coccinella septempunctata is limited to high elevations, where it is recognized as an aphid-eating species, mainly in its juvenile form. Conversely, at low elevation, we encountered juvenile individuals of the generalist species Exochomus laeviusculus and the specialist species Olla v-nigrum. The presence and abundance of the generalist was positively influenced by the landscape and the presence of the specialist positively by prey abundance only.
Collapse
Affiliation(s)
- Marine Baujeu
- UMR PV BMT, Université de La Réunion, Saint-Pierre, La Réunion, France
| | - Laura Moquet
- UMR PV BMT, CIRAD, Saint-Pierre, La Réunion, France
| | | | | | - Bernard Reynaud
- UMR PV BMT, Université de La Réunion, Saint-Pierre, La Réunion, France
- UMR PV BMT, CIRAD, Saint-Pierre, La Réunion, France
| |
Collapse
|
2
|
Killiny N, Fereres A. Harnessing the Power of Electrical Penetration Graph Technology to Understand Psyllid-Transmitted Fastidious Bacterial Diseases. PHYTOPATHOLOGY 2025; 115:332-342. [PMID: 39891890 DOI: 10.1094/phyto-11-24-0376-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Psyllids, also called plant lice, are hemipteran insects that feed on phloem sap. In addition to the direct damage they cause to plants, they are vectors of many phloem-restricted bacterial pathogens belonging to the 'Candidatus Liberibacter' spp. and 'Candidatus Phytoplasma' spp. from the apple proliferation group (16SrX). Although 'Candidatus Liberibacter' spp. cells possess cell walls unlike those of the phytoplasmas, they both share a reduced genome and unavailability in culture. In addition, psyllids transmit both species of bacteria in a persistent, circulative, and propagative manner. Because of the similarity of these pathosystems, the electrical penetration graph (EPG) was employed to study the probing behavior of psyllids. Such studies may assist in understanding the specific interactions between the fastidious bacteria, plant hosts, and insect vectors and lead to innovative control strategies. Herein, we discuss the potential of the EPG to study and understand the tritrophic interactions that secure a successful transmission from plant to plant. In addition, the use of the EPG in evaluating psyllid control strategies including pesticides and tolerant varieties is reviewed.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Pruvost O, Boyer K, Labbé F, Weishaar M, Vynisale A, Melot C, Hoareau C, Cellier G, Ravigné V. Genetic Signatures of Contrasted Outbreak Histories of " Candidatus Liberibacter asiaticus", the Bacterium That Causes Citrus Huanglongbing, in Three Outermost Regions of the European Union. Evol Appl 2024; 17:e70053. [PMID: 39691746 PMCID: PMC11649586 DOI: 10.1111/eva.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In an era of trade globalization and climate change, crop pathogens and pests are a genuine threat to food security. The detailed characterization of emerging pathogen populations is a prerequisite for managing invasive species pathways and designing sustainable disease control strategies. Huanglongbing is the disease that causes the most damage to citrus, a crop that ranks #1 worldwide in terms of fruit production. Huanglongbing can be caused by three species of the phloem-limited alpha-proteobacterium, "Candidatus Liberibacter," which are transmitted by psyllids. Two of these bacteria are of highest concern, "Ca. Liberibacter asiaticus" and "Ca. Liberibacter africanus," and have distinct thermal optima. These pathogens are unculturable, which complicates their high-throughput genetic characterization. In the present study, we used several genotyping techniques and an extensive sample collection to characterize Ca. Liberibacter populations associated with the emergence of huanglongbing in three French outermost regions of the European Union (Guadeloupe, Martinique and Réunion). The outbreaks were primarily caused by "Ca. Liberibacter asiaticus," as "Ca. Liberibacter africanus" was only found at a single location in Réunion. We emphasize the low diversity and high genetic relatedness between samples from Guadeloupe and Martinique, which suggests the putative movement of the pathogen between the two islands and/or the independent introduction of closely related strains. These samples were markedly different from the samples from Réunion, where the higher genetic diversity revealed by tandem-repeat markers suggests that the disease was probably overlooked for years before being officially identified in 2015. We show that "Ca. Liberibacter asiaticus" occurs from sea level to an altitude of 950 m above sea level and lacks spatial structure. This suggests the pathogen's medium- to long-distance movement. We also suggest that backyard trees acted as relays for disease spread. We discuss the implications of population biology data for surveillance and management of this threatful disease.
Collapse
|
4
|
Lestiyani A, Joko T, Holford P, Charles Beattie GA, Donovan N, Mo J, Subandiyah S, Iwanami T. Natural Infection of Murraya paniculata and Murraya sumatrana with ' Candidatus Liberibacter asiaticus' in Java. PLANT DISEASE 2024; 108:2760-2770. [PMID: 38657079 DOI: 10.1094/pdis-12-23-2593-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) is the putative causal pathogen of the severe Asiatic form of huanglongbing (citrus greening) and is most commonly transmitted by the Asiatic citrus psyllid Diaphorina citri. CLas severely affects many Citrus species and hybrids and has been recorded in the Citrus relative, orange jasmine, Murraya paniculata (L.) Jack (syn. M. exotica L.). In this study, 13 accessions of three Murraya species (M. paniculata, M. sumatrana Roxb., and M. lucida [G.Forst.] Mabb.) and the Papuan form of a putative hybrid (M. omphalocarpa Hayata) were identified morphologically and molecularly based on sequence identity of the matK-5'trnK region of the chloroplast genome, and infection on these plants under field conditions was determined by PCR and quantitative real-time PCR (qPCR) on two to four occasions over 14 months. CLas was repeatedly detected in leaflet midribs by PCR and qPCR on four and three accessions of M. paniculata and M. sumatrana, respectively. It was not detected in leaflet midribs of single accessions of M. lucida and M. omphalocarpa. The species identification of the CLas-positive accessions was further confirmed using all the molecular taxonomic markers consisting of the six fragments of the maternally inherited chloroplast genome and part of the nuclear-encoded internal transcribed spacer (ITS) region. The results indicated that natural infection of M. paniculata and M. sumatrana with CLas can occur in Java. To our knowledge, this is the first demonstration of the natural infection of M. sumatrana with CLas. Further studies are required to determine whether infections persist in the absence of D. citri.
Collapse
Affiliation(s)
- Ayu Lestiyani
- Study Program of Biotechnology, Graduate School, Universitas Gadjah Mada, Barek, Yogyakarta 55281, Indonesia
- Study Program of Agrotechnology, Faculty of Agriculture, Universitas Tidar, Magelang, Central Java 56116, Indonesia
| | - Tri Joko
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Paul Holford
- School of Science, Western Sydney University, Penrith 2751, Australia
| | | | | | - Jianhua Mo
- NSW Department of Primary Industries, Orange, Australia
| | - Siti Subandiyah
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Toru Iwanami
- Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
5
|
Ameline A, Karkach A, Denoirjean T, Grondin M, Molinari F, Turpin P, Delatte H, Reynaud B. Bacterial plant pathogens affect the locomotor behavior of the insect vector: a case study of Citrus volkameriana-Triozae erytreae-Candidatus Liberibacter asiaticus system. INSECT SCIENCE 2024; 31:901-910. [PMID: 37822228 DOI: 10.1111/1744-7917.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023]
Abstract
Plant pathogens can alter the behavior of their insect vectors as well as their survival and reproduction. The African psyllid, Trioza erytreae, is one of the vectors of Huanglongbing, a citrus disease caused mainly by "Candidatus Liberibacter asiaticus" (CLas). The purpose of this study was to characterize the effects of CLas on the psyllid, T. erytreae using Citrus volkamerina plants as the study system. The study focused more specifically on the CLas effects prior to and after its acquisition by the psyllid T. erytreae. Our results did not support the hypothesis that CLas effects psyllid probing behavior prior to acquisition; few differences were observed between uninfected T. erytrea feeding on CLas-infected versus control plants. On the other hand, compared to psyllids that had completed their development on control plants, the ones that had completed their development on a CLas-infected plant exhibited changes in their behavior (greater velocity), physiology (smaller mass) and biochemistry (lower water and lipid content). Altogether, our results confirm the existence of a marked postacquisition effect on the vector locomotor behavior and a minor preacquisition effect of CLas on the vector behavior, which can be partially explained by physiological and biochemical changes.
Collapse
Affiliation(s)
- Arnaud Ameline
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Alain Karkach
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Thomas Denoirjean
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Martial Grondin
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Florencia Molinari
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Patrick Turpin
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Hélène Delatte
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Bernard Reynaud
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| |
Collapse
|
6
|
Miranda MP, Fitches EC, Sukiran NA, Eduardo WI, Garcia RB, Jaciani FJ, Readshaw JJ, Bell J, Peña L. Spider venom neurotoxin based bioinsecticides: A novel bioactive for the control of the Asian citrus psyllid Diaphorina citri (Hemiptera). Toxicon 2024; 239:107616. [PMID: 38218384 DOI: 10.1016/j.toxicon.2024.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a key vector of the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas) associated with huanglongbing (HLB), the most serious and currently incurable disease of citrus worldwide. Here we report the first investigation into the potential use of a spider venom-derived recombinant neurotoxin, ω/κ-HxTx-Hv1h (hereafter HxTx-Hv1h) when delivered alone or when fused to snowdrop lectin (Galanthus nivalis agglutinin; GNA) to control D. citri. Proteins, including GNA alone, were purified from fermented transformed yeast Pichia pastoris cultures. Recombinant HxTx-Hv1h, HxTx-Hv1h/GNA and GNA were all orally toxic to D. citri, with Day 5 median lethal concentrations (LC50) derived from dose-response artificial diet assays of 27, 20 and 52 μM, respectively. Western analysis of whole insect protein extracts confirmed that psyllid mortality was attributable to protein ingestion and that the fusion protein was stable to cleavage by D. citri proteases. When applied topically (either via droplet or spray) HxTx-Hv1h/GNA was the most effective of the proteins causing >70 % mortality 5 days post treatment, some 2 to 3-fold higher levels of mortality as compared to the toxin alone. By contrast, no significant mortality or phenotypic effects were observed for bumble bees (Bombus terrestris L.) fed on the recombinant proteins in acute toxicity assays. This suggests that HxTx-Hv1h/GNA has potential as a novel bioinsecticide for the management of D. citri offering both enhanced target specificity as compared to chemical pesticides and compatibility with integrated pest management (IPM) strategies.
Collapse
Affiliation(s)
- Marcelo P Miranda
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Elaine C Fitches
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom.
| | - Nur Afiqah Sukiran
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Wellington I Eduardo
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Rafael B Garcia
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Fabrício J Jaciani
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Jennifer J Readshaw
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Jack Bell
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Leandro Peña
- Instituto de Biologıa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Universidad Politécnica de Valencia, Spain
| |
Collapse
|
7
|
Pérez-Otero R, Pérez-Turco R, Neto J, Fereres A. The African Psyllid Trioza erytreae Del Guercio (1918) Is Very Sensitive to Low Relative Humidity and High Temperatures. INSECTS 2024; 15:62. [PMID: 38249068 PMCID: PMC10815994 DOI: 10.3390/insects15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The African citrus psyllid, Trioza erytreae, is one of the two vectors of Huanglongbing, the most serious citrus disease worldwide. The first detection of T. erytreae in the European mainland was on the northwest of the Iberian Peninsula in 2014. Since then, the pest has spread throughout northern Spain (Galicia, Asturias, Cantabria, País Vasco) and along the western Atlantic coast of Portugal (from the Douro e Minho region to the Algarve). We conducted a series of laboratory experiments on lemon plants at different temperatures (from 8 to 34 °C) and humidity conditions (from 40 to 90%) to find out the influence of extreme temperatures and relative humidities (RHs) on the mortality, development and reproduction of T. erytreae. Our results show that temperatures above 30 °C and below 10 °C are very detrimental for nymphal development and nymphs were unable to reach the adult stage. Furthermore, eggs were unable to hatch under temperatures above 33 °C and below 8 °C. Adult mortality was highest at 34 °C and killed more than 50% of the population. We also found that relative humidity is crucial for the development and survival of T. erytreae. Nymphs were unable to reach the adult stage at an RH of 90% and 40%. Also, fecundity was significantly reduced at 90 and 40% RH, and fertility was lowest at 40% RH. Nymphal mortality was highest at an RH of 40%, which was the most detrimental humidity among all tested for the survival and development of T. erytreae. Our work concludes that T. erytreae establishment and spread will be maximum in regions with a temperate and humid climate, being rare in regions where dry and hot weather conditions predominate.
Collapse
Affiliation(s)
- Rosa Pérez-Otero
- Estación Fitopatolóxica Areeiro, Deputación de Pontevedra, Subida a la Robleda, s/n, 36153 Pontevedra, Spain; (R.P.-O.); (R.P.-T.)
| | - Raquel Pérez-Turco
- Estación Fitopatolóxica Areeiro, Deputación de Pontevedra, Subida a la Robleda, s/n, 36153 Pontevedra, Spain; (R.P.-O.); (R.P.-T.)
| | - Joana Neto
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Faculty of Sciences, University of Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal;
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, ICA-CSIC, Calle Serrano 115 dpdo, 28006 Madrid, Spain
| |
Collapse
|
8
|
Galvañ A, Bassanezi RB, Luo W, Vanaclocha P, Vicent A, Lázaro E. Risk-based regionalization approach for area-wide management of HLB vectors in the Mediterranean Basin. FRONTIERS IN PLANT SCIENCE 2023; 14:1256935. [PMID: 38111874 PMCID: PMC10725980 DOI: 10.3389/fpls.2023.1256935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023]
Abstract
Huanglongbing (HLB) is one of the most devastating citrus diseases worldwide. It is associated with the non-culture bacteria Candidatus Liberibacter spp., which can be transmitted by grafting and/or the psyllid vectors Diaphorina citri (ACP) and Trioza erytreae (AfCP). Although HLB has not been reported in the Mediterranean Basin to date, both vectors are present, and thus represent a serious threat to the citrus industry in this region. Resistant citrus cultivars or effective therapeutic treatments are not currently available for HLB. Nevertheless, area-wide pest management via coordinated management efforts over large areas has been implemented in Brazil, China and the USA for HLB control. This study proposes an open access flexible methodology to address area-wide management of both HLB vectors in the Mediterranean Basin. Based on a risk-based approach which considers climatic information and other variables that may influence vector introduction and spread, such as conventional, organic, abandoned and residential citrus areas as well as transportation corridors, an area-wide management division in pest management areas (PMAs) is proposed. The size and location of these PMAs were estimated by means of a hierarchical clustering algorithm with spatial constraints whose performance was assessed under different configuration scenarios. This proposal may assist policymakers and the citrus industry of the citrus-growing areas of the Mediterranean Basin in risk management planning in the case of the spread of HLB vectors or a possible introduction of the disease. Additionally, it may be a valuable resource to inform opinion dynamic models, enabling the identification of pivotal factors for the success of control measures.
Collapse
Affiliation(s)
- Anaïs Galvañ
- Centre de Protecció Vegetal i Biotecnologia, Institut Valencià d’Investigacions Agràries (IVIA), Moncada, Spain
| | - Renato Beozzo Bassanezi
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Araraquara, SP, Brazil
| | - Weiqi Luo
- Agricultural Research Service, U.S. Department of Agriculture, Fort Pierce, FL, United States
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC, United States
| | - Pilar Vanaclocha
- Centre de Protecció Vegetal i Biotecnologia, Institut Valencià d’Investigacions Agràries (IVIA), Moncada, Spain
| | - Antonio Vicent
- Centre de Protecció Vegetal i Biotecnologia, Institut Valencià d’Investigacions Agràries (IVIA), Moncada, Spain
| | - Elena Lázaro
- Centre de Protecció Vegetal i Biotecnologia, Institut Valencià d’Investigacions Agràries (IVIA), Moncada, Spain
| |
Collapse
|
9
|
Ebert TA, Shawer D, Brlansky RH, Rogers ME. Seasonal Patterns in the Frequency of Candidatus Liberibacter Asiaticus in Populations of Diaphorina citri (Hemiptera: Psyllidae) in Florida. INSECTS 2023; 14:756. [PMID: 37754724 PMCID: PMC10532026 DOI: 10.3390/insects14090756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Candidatus Liberibacter asiaticus (CLas) is one of the putative causal agents of huanglongbing, which is a serious disease in citrus production. The pathogen is transmitted by Diaphorina citri Kuwayama (Hemiptera: Psyllidae). As an observational study, six groves in central Florida and one grove at the southern tip of Florida were sampled monthly from January 2008 through February 2012 (50 months). The collected psyllids were sorted by sex and abdominal color. Disease prevalence in adults peaked in November, with a minor peak in February. Gray/brown females had the highest prevalence, and blue/green individuals of either sex had the lowest prevalence. CLas prevalence in blue/green females was highly correlated with the prevalence in other sexes and colors. Thus, the underlying causes for seasonal fluctuations in prevalence operated in a similar fashion for all psyllids. The pattern was caused by larger nymphs displacing smaller ones from the optimal feeding sites and immunological robustness in different sex-color morphotypes. Alternative hypotheses were also considered. Improving our understanding of biological interactions and how to sample them will improve management decisions. We agree with other authors that psyllid management is critical year-round.
Collapse
Affiliation(s)
- Timothy A. Ebert
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| | - Dalia Shawer
- Department of Economic Entomology, Faculty of Agriculture, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Ron H. Brlansky
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| | - Michael E. Rogers
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA; (R.H.B.); (M.E.R.)
| |
Collapse
|
10
|
Martoni F, Smith R, Piper AM, Lye J, Trollip C, Rodoni BC, Blacket MJ. Non-destructive insect metabarcoding for surveillance and biosecurity in citrus orchards: recording the good, the bad and the psyllids. PeerJ 2023; 11:e15831. [PMID: 37601253 PMCID: PMC10437040 DOI: 10.7717/peerj.15831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Background The Australian citrus industry remains one of the few in the world to be unaffected by the African and the Asian citrus psyllids, Trioza erytreae Del Guercio and Diaphorina citri Kuwayama, respectively, and the diseases their vectored bacteria can cause. Surveillance, early detection, and strict quarantine measures are therefore fundamental to safeguard Australian citrus. However, long-term targeted surveillance for exotic citrus pests can be a time-consuming and expensive activity, often relying on manually screening large numbers of trap samples and morphological identification of specimens, which requires a high level of taxonomic knowledge. Methods Here we evaluated the use of non-destructive insect metabarcoding for exotic pest surveillance in citrus orchards. We conducted an 11-week field trial, between the months of December and February, at a horticultural research farm (SuniTAFE Smart Farm) in the Northwest of Victoria, Australia, and processed more than 250 samples collected from three types of invertebrate traps across four sites. Results The whole-community metabarcoding data enabled comparisons between different trapping methods, demonstrated the spatial variation of insect diversity across the same orchard, and highlighted how comprehensive assessment of insect biodiversity requires use of multiple complimentary trapping methods. In addition to revealing the diversity of native psyllid species in citrus orchards, the non-targeted metabarcoding approach identified a diversity of other pest and beneficial insects and arachnids within the trap bycatch, and recorded the presence of the triozid Casuarinicola cf warrigalensis for the first time in Victoria. Ultimately, this work highlights how a non-targeted surveillance approach for insect monitoring coupled with non-destructive DNA metabarcoding can provide accurate and high-throughput species identification for biosecurity and biodiversity monitoring.
Collapse
Affiliation(s)
- Francesco Martoni
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| | - Reannon Smith
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| | - Alexander M. Piper
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| | - Jessica Lye
- Citrus Australia Ltd., Wandin North, Victoria, Australia
| | - Conrad Trollip
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Mark J. Blacket
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| |
Collapse
|
11
|
Aidoo OF, Ablormeti FK, Ninsin KD, Antwi-Agyakwa AK, Osei-Owusu J, Heve WK, Dofuor AK, Soto YL, Edusei G, Osabutey AF, Sossah FL, Aryee CO, Alabi OJ, Sétamou M. First report on the presence of huanglongbing vectors (Diaphorina citri and Trioza erytreae) in Ghana. Sci Rep 2023; 13:11366. [PMID: 37443168 PMCID: PMC10344884 DOI: 10.1038/s41598-023-37625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
As significant threats to global citrus production, Diaphorina citri (Kuwayama; Hemiptera: Psyllidae) and Trioza erytreae (Del Guercio; Hemiptera: Triozidae) have caused considerable losses to citrus trees globally. Diaphorina citri vectors "Candidatus Liberibacter asiaticus" and "Ca. L. americanus", whereas T. erytreae transmits "Ca. L. africanus" and "Ca. L. asiaticus", the pathogens responsible for citrus greening disease or Huanglongbing (HLB). Though HLB is a destructive disease of citrus wherever it occurs, information on the occurrence and geographical distribution of its vectors in Africa is limited. In recent surveys to determine if HLB vectors are present in Ghana, we observed eggs, nymphs, and adults of insects suspected to be D. citri and T. erytreae. Using morphological traits and DNA analyses, the identity of the suspected insects was confirmed to be D. citri and T. erytreae. Individuals of D. citri and T. erytreae were examined using qPCR for CLaf, CLam, and CLas, but none of them tested positive for any of the Liberibacter species. Herein we report, for the first time, the presence of D. citri and T. erytreae in Ghana (West Africa). We discuss the implications of this new threat to the citrus industry to formulate appropriate management strategies.
Collapse
Affiliation(s)
- Owusu F Aidoo
- Department of Biological Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana.
| | - Fred K Ablormeti
- Council for Scientific Industrial Research, Oil Palm Research Institute, Coconut Research Programme, P. O. Box 245, Sekondi, Ghana
| | - Kodwo D Ninsin
- Department of Biological Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | | | - Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - William K Heve
- Department of Biological Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | - Aboagye K Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | - Yovanna L Soto
- Texas A&M University-Kingsville Citrus Center, Weslaco, 78599, USA
| | - George Edusei
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | | | - Frederick L Sossah
- Council for Scientific Industrial Research, Oil Palm Research Institute, Coconut Research Programme, P. O. Box 245, Sekondi, Ghana
| | | | - Olufemi J Alabi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, 78596, USA
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, 78599, USA.
| |
Collapse
|
12
|
Batarseh TN, Batarseh SN, Morales-Cruz A, Gaut BS. Comparative genomics of the Liberibacter genus reveals widespread diversity in genomic content and positive selection history. Front Microbiol 2023; 14:1206094. [PMID: 37434713 PMCID: PMC10330825 DOI: 10.3389/fmicb.2023.1206094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
'Candidatus Liberibacter' is a group of bacterial species that are obligate intracellular plant pathogens and cause Huanglongbing disease of citrus trees and Zebra Chip in potatoes. Here, we examined the extent of intra- and interspecific genetic diversity across the genus using comparative genomics. Our approach examined a wide set of Liberibacter genome sequences including five pathogenic species and one species not known to cause disease. By performing comparative genomics analyses, we sought to understand the evolutionary history of this genus and to identify genes or genome regions that may affect pathogenicity. With a set of 52 genomes, we performed comparative genomics, measured genome rearrangement, and completed statistical tests of positive selection. We explored markers of genetic diversity across the genus, such as average nucleotide identity across the whole genome. These analyses revealed the highest intraspecific diversity amongst the 'Ca. Liberibacter solanacearum' species, which also has the largest plant host range. We identified sets of core and accessory genes across the genus and within each species and measured the ratio of nonsynonymous to synonymous mutations (dN/dS) across genes. We identified ten genes with evidence of a history of positive selection in the Liberibacter genus, including genes in the Tad complex, which have been previously implicated as being highly divergent in the 'Ca. L. capsica' species based on high values of dN.
Collapse
Affiliation(s)
| | - Sarah N. Batarseh
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Abraham Morales-Cruz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, United States
| |
Collapse
|