1
|
Zeng Z, Ma J, Chen B, Tang H, Xian X, Huo Y, Xu Y, Tang X, Gao X, Chen G. A novel, major, and validated QTL for grain zinc concentration independent of yield traits in tetraploid wheat. THE PLANT GENOME 2025; 18:e70029. [PMID: 40268757 PMCID: PMC12018297 DOI: 10.1002/tpg2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/18/2024] [Accepted: 03/08/2025] [Indexed: 04/25/2025]
Abstract
Zinc deficiency is a critical global health issue, with declining grain zinc concentration (GrZnc) over time. To address this, it is essential to explore and utilize genetic resources from wild relatives to enhance GrZnc in cultivated bread wheat (Triticum aestivum L.). This study aimed to identify quantitative trait loci (QTL) for GrZnc using a recombinant inbred line population (AM population), derived from a cross between the Sichuan-endemic tetraploid wheat Ailanmai and wild emmer accession LM001. A linkage map was constructed based on the wheat 55K single-nucleotide polymorphism array, and phenotypic data were collected from five different environments. Four QTL for GrZnc were identified, spanning three chromosomal regions. Notably, a novel and stable QTL, QGrZnc.sau-AM-4A, was detected in all environments and the best linear unbiased prediction dataset. This QTL, with LOD values ranging from 2.72 to 9.31, explained 12.31%-30.50% of the phenotypic variance and was mapped to chromosome arm 4AS (54.43-60.02 Mbp). Interestingly, this QTL had no significant effect on key agronomic traits such as spike length, 1000-kernel weight, kernel number per spikelet, spikelet number per spike, spike density, and plant height, indicating no dilution effects. A kompetitive allele-specific PCR (KASP) marker, KASP-AX-108829087, closely linked to this major QTL, was developed and validated in two different genetic populations. A candidate gene (TRIDC4AG008520) related to zinc absorption and transport was identified within the QGrZnc.sau-AM-4A interval. These findings provide insight into the genetic basis of GrZnc and establish a foundation for further fine mapping and map-based cloning of this locus.
Collapse
Affiliation(s)
- Zhaoyong Zeng
- College of ResourcesSichuan Agricultural UniversityChengduChina
| | - Jian Ma
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Bingjie Chen
- College of ResourcesSichuan Agricultural UniversityChengduChina
| | - Huaping Tang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xin Xian
- College of ResourcesSichuan Agricultural UniversityChengduChina
| | - Yuanfeng Huo
- College of ResourcesSichuan Agricultural UniversityChengduChina
| | - Yinggang Xu
- College of ResourcesSichuan Agricultural UniversityChengduChina
| | - Xiaoyan Tang
- College of ResourcesSichuan Agricultural UniversityChengduChina
| | - Xuesong Gao
- College of ResourcesSichuan Agricultural UniversityChengduChina
| | - Guangdeng Chen
- College of ResourcesSichuan Agricultural UniversityChengduChina
| |
Collapse
|
2
|
Verma A, Singh R, Ahmed S, Kumar R, Sharma S, Dhaliwal HS, Balyan HS, Gupta PK. Further studies on pyramiding of alien genes for high grain Fe and Zn in bread wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:46. [PMID: 40255965 PMCID: PMC12008105 DOI: 10.1007/s11032-025-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Wheat serves as the primary source of staple food for the global human population, thus also making it a significant portion of the calorie intake in our daily vegetarian diets. However, in most of the improved wheat cultivars used for food, the grain is deficient in iron (Fe) and zinc (Zn). Therefore, biofortification involving improvement of grain Fe and Zn has become an important area in the current wheat breeding programmes. For this purpose, efforts have been made to develop alien substitution lines and utilize them for transfer of desirable alien genes to improved wheat cultivars. In the present study, two such genotypes in the background of improved cultivar PBW343LrYr were utilized for pyramiding of the following six desirable genes for enrichment of grain Fe and Zn: IRT2, MTP3, IREG, FRO7, YSL15 and NAS2. A forward breeding strategy, involving crossing of the two genotypes followed by inbreeding was used. Marker-assisted selection (MAS) of the genes of interest associated with grain Fe/Zn and plant type was used following selfing of F1 hybrids. The grains of F6 lines that were derived in this programmes were rich in both Fe and Zn contents in the grain. Among the six best derived lines, the values of improved contents of grain Fe ranged from 47.3 to 60.4 ppm and that of Zn ranged from 39.35 to 47.85 ppm. There was no yield penalty in these improved lines, such that the yield was either equal or better than the checks used in field trials. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01566-0.
Collapse
Affiliation(s)
- Anjali Verma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P India
| | - Rakhi Singh
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P India
| | - Shoeb Ahmed
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P India
| | - H. S Dhaliwal
- Department of Genetics, Plants Breeding and Biotechnology, D.K.S.G. Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, H.P India
| | - H. S. Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P India
| | - P. K. Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P India
| |
Collapse
|
3
|
Nasim A, Hao J, Tawab F, Jin C, Zhu J, Luo S, Nie X. Micronutrient Biofortification in Wheat: QTLs, Candidate Genes and Molecular Mechanism. Int J Mol Sci 2025; 26:2178. [PMID: 40076800 PMCID: PMC11900071 DOI: 10.3390/ijms26052178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Micronutrient deficiency (hidden hunger) is one of the serious health problems globally, often due to diets dominated by staple foods. Genetic biofortification of a staple like wheat has surfaced as a promising, cost-efficient, and sustainable strategy. Significant genetic diversity exists in wheat and its wild relatives, but the nutritional profile in commercial wheat varieties has inadvertently declined over time, striving for better yield and disease resistance. Substantial efforts have been made to biofortify wheat using conventional and molecular breeding. QTL and genome-wide association studies were conducted, and some of the identified QTLs/marker-trait association (MTAs) for grain micronutrients like Fe have been exploited by MAS. The genetic mechanisms of micronutrient uptake, transport, and storage have also been investigated. Although wheat biofortified varieties are now commercially cultivated in selected regions worldwide, further improvements are needed. This review provides an overview of wheat biofortification, covering breeding efforts, nutritional evaluation methods, nutrient assimilation and bioavailability, and microbial involvement in wheat grain enrichment. Emerging technologies such as non-destructive hyperspectral imaging (HSI)/red, green, and blue (RGB) phenotyping; multi-omics integration; CRISPR-Cas9 alongside genomic selection; and microbial genetics hold promise for advancing biofortification.
Collapse
Affiliation(s)
- Adnan Nasim
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Junwei Hao
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University Larama, Peshawar 25000, Pakistan;
| | - Ci Jin
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Jiamin Zhu
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Shuang Luo
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Xiaojun Nie
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| |
Collapse
|
4
|
Chen X, You J, Dong N, Wu D, Zhao D, Yong R, Hu W. Molecular mapping and validation of quantitative trait loci for content of micronutrients in wheat grain. FRONTIERS IN PLANT SCIENCE 2025; 15:1522465. [PMID: 39898268 PMCID: PMC11782267 DOI: 10.3389/fpls.2024.1522465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025]
Abstract
Manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), and selenium (Se) are essential micronutrients for human health. However, the genetic basis for the content of Mn, Fe, Cu, Zn, and Se in wheat grains remains unclear. A recombinant inbred lines (RIL) population derived from Yangmai 4/Yanzhan 1 (YM4/YZ1) with wheat 55K single nucleotide polymorphism (SNP) arrays and micronutrient content of two environments was used to construct a genetic linkage map and dissect the quantitative trait loci (QTL) for the content of Mn, Fe, Cu, Zn, and Se in wheat. A total of 8 QTL were detected and located on chromosomes 1A, 1B, 2D, 4D, 7A, and 7D, respectively. Among them, QFe.yaas-2D and QSe.yaas-2D were co-located on chromosome 2D, while QMn.yaas-4D and QZn.yaas-4D were co-located on chromosome 4D, which were in the dwarfing locus of Rht-D1 region. The positive alleles of QCu.yaas-1A, QMn.yaas-1B, and QZn.yaas-7D were contributed by YZ1 and explained 7.66-19.92% of the phenotypic variances, while the positive alleles of QFe.yaas-2D, QSe.yaas-2D, QMn.yaas-4D, QZn.yaas-4D, and QCu.yaas-7A were contributed by YM4 and explained 5.77-20.11% of the phenotypic variances. The positive alleles of QCu.yaas-1A, QMn.yaas-1B, and QMn/Zn.yaas-4D increased TGW by 3.52%, 3.45%, and 7.51% respectively, while the positive alleles of QFe/Se.yaas-2D decreased TGW by 6.45%. Six SNP markers flanked the target QTL were converted into Kompetitive allele specific PCR (KASP) markers, and their effects were validated in a panel of one hundred and forty-nine wheat advanced lines. Twenty-five advanced lines harboring at least five positive alleles were identified in the validation populations. A total of 60 and 51 high-confidence annotated genes for QFe/Se.yaas-2D and QMn/Zn.yaas-4D were identified using the International Wheat Genome Sequencing Consortium Reference Sequence v2.1 (IWGSC RefSeq v2.1), respectively. Some genes in these two regions were involved in stress tolerance, growth development, Zn synthesis in plants. These results provide the basis for fine-mapping the target QTL of micronutrient content and marker-assisted selection in grain quality breeding programs.
Collapse
Affiliation(s)
- Xiangdong Chen
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Junchao You
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Nannan Dong
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Di Wu
- Lixiahe Institute of Agriculture Sciences, Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu, China
| | - Die Zhao
- Lixiahe Institute of Agriculture Sciences, Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu, China
| | - Rui Yong
- Lixiahe Institute of Agriculture Sciences, Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu, China
| | - Wenjing Hu
- Lixiahe Institute of Agriculture Sciences, Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Benvenuti L, Sette S, De Santis A, Riso P, Petroni K, Crosatti C, Losa A, Martone D, Martini D, Cattivelli L, Ferrari M. Simulation of Daily Iron Intake by Actual Diet Considering Future Trends in Wheat and Rice Biofortification, Environmental, and Dietary Factors: An Italian Case Study. Nutrients 2024; 16:4097. [PMID: 39683491 DOI: 10.3390/nu16234097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND AND AIM Cereals' iron content is a major contributor to dietary iron intake in Europe and a potential for biofortification. A simulation of daily iron intake from wheat and rice over the next 20 years will be quantified. METHODS Food items, and energy and iron intake by age classes are estimated using the Italian dietary survey (IV SCAI). Iron intake and adequacy estimation trends were categorized in four scenarios compared to a baseline (basic scenario; only climate change effects): over wheat and rice biofortification effects (scenario 1); over the shift in whole wheat consumption of up to 50% of the total amount of wheat-based foods (scenario 2); over the shift in brown rice consumption up to 100% of the total amount of rice (scenario 3); over the cumulative effects of biofortifications and whole wheat and brown rice consumption (scenario 4). RESULTS Increasing the iron intake from wheat and rice biofortification and the shift in whole wheat consumption is similar and sufficient to recover the baseline iron depletion effect due to climate change. The shift in brown rice consumption produces a negligible increment in iron intake. The cumulative effects of the corrective actions considered in the scenarios can significantly reduce the iron intake inadequacy, despite not reaching the recommended levels. CONCLUSIONS Corrective actions including biofortification and whole grain consumption are still far from ensuring the full recovery in children and females of fertile age as at-risk groups of iron deficiency. Further actions are needed considering other biofortified food sources, fortified foods, and/or dietary food diversification.
Collapse
Affiliation(s)
- Luca Benvenuti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy
| | - Stefania Sette
- Research Centre for Food and Nutrition, Council for Agricultural and Economics Research, Via Ardeatina 546, 00178 Rome, Italy
| | - Alberto De Santis
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Katia Petroni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Cristina Crosatti
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Alessia Losa
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Via Paullese 28, 26836 Montanaso Lombardo, Italy
| | - Deborah Martone
- Research Centre for Food and Nutrition, Council for Agricultural and Economics Research, Via Ardeatina 546, 00178 Rome, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Luigi Cattivelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Marika Ferrari
- Research Centre for Food and Nutrition, Council for Agricultural and Economics Research, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
6
|
Leonova IN, Kiseleva AA, Salina EA. Identification of Genomic Regions Conferring Enhanced Zn and Fe Concentration in Wheat Varieties and Introgression Lines Derived from Wild Relatives. Int J Mol Sci 2024; 25:10556. [PMID: 39408887 PMCID: PMC11477371 DOI: 10.3390/ijms251910556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Wild and cultivated relatives of wheat are an important source of genetic factors for improving the mineral composition of wheat. In this work, a wheat panel consisting of modern bread wheat varieties, landraces, and introgression lines with genetic material of the wheat species Triticum timopheevii, T. durum, T. dicoccum, and T. dicoccoides and the synthetic line T. kiharae was used to identify loci associated with the grain zinc (GZnC) and iron (GFeC) content. Using a BLINK model, we identified 31 and 73 marker-trait associations (MTAs) for GZnC and GFeC, respectively, of which 19 were novel. Twelve MTAs distributed on chromosomes 1B, 2A, 2B, 5A, and 5B were significantly associated with GZnC, five MTAs on 2A, 2B, and 5D chromosomes were significantly associated with GFeC, and two SNPs located on 2A and 2B were related to the grain concentration of both trace elements. Meanwhile, most of these MTAs were inherited from At and G genomes of T. timopheevii and T. kiharae and positively affected GZnC and GFeC. Eight genes related to iron or zinc transporters, representing diverse gene families, were proposed as the best candidates. Our findings provide an understanding of the genetic basis of grain Zn and Fe accumulation in species of the Timopheevi group and could help in selecting new genotypes containing valuable loci.
Collapse
Affiliation(s)
- Irina N. Leonova
- The Federal Research Center, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia; (A.A.K.); (E.A.S.)
| | | | | |
Collapse
|
7
|
Sigalas PP, Shewry PR, Riche A, Wingen L, Feng C, Siluveru A, Chayut N, Burridge A, Uauy C, Castle M, Parmar S, Philp C, Steele D, Orford S, Leverington-Waite M, Cheng S, Griffiths S, Hawkesford MJ. Improving wheat grain composition for human health by constructing a QTL atlas for essential minerals. Commun Biol 2024; 7:1001. [PMID: 39147896 PMCID: PMC11327371 DOI: 10.1038/s42003-024-06692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Wheat is an important source of minerals for human nutrition and increasing grain mineral content can contribute to reducing mineral deficiencies. Here, we identify QTLs for mineral micronutrients in grain of wheat by determining the contents of six minerals in a total of eleven sample sets of three biparental populations from crosses between A.E. Watkins landraces and cv. Paragon. Twenty-three of the QTLs are mapped in two or more sample sets, with LOD scores above five in at least one set with the increasing alleles for sixteen of the QTLs being present in the landraces and seven in Paragon. Of these QTLs, the number for each mineral varies between three and five and they are located on 14 of the 21 chromosomes, with clusters on chromosomes 5A (four), 6A (three), and 7A (three). The gene content within 5 megabases of DNA on either side of the marker for the QTL with the highest LOD score is determined and the gene responsible for the strongest QTL (chromosome 5A for Ca) identified as an ATPase transporter gene (TraesCS5A02G543300) using mutagenesis. The identification of these QTLs, together with associated SNP markers and candidate genes, will facilitate the improvement of grain nutritional quality.
Collapse
Affiliation(s)
| | - Peter R Shewry
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrew Riche
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Luzie Wingen
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Cong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | | | - Noam Chayut
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Amanda Burridge
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UD, UK
| | | | - March Castle
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Saroj Parmar
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | - David Steele
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Simon Orford
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | | | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | | | | |
Collapse
|
8
|
Kumar J, Saini DK, Kumar A, Kumari S, Gahlaut V, Rahim MS, Pandey AK, Garg M, Roy J. Biofortification of Triticum species: a stepping stone to combat malnutrition. BMC PLANT BIOLOGY 2024; 24:668. [PMID: 39004715 PMCID: PMC11247745 DOI: 10.1186/s12870-024-05161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ashish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Supriya Kumari
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Vijay Gahlaut
- Department of Biotechnology, University Center for Research and Development Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohammed Saba Rahim
- CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| |
Collapse
|
9
|
Sun M, Tong J, Dong Y, Pu Z, Zheng J, Zhang Y, Zhang X, Hao C, Xu X, Cao Q, Rasheed A, Ali MB, Cao S, Xia X, He Z, Ni Z, Hao Y. Molecular characterization of QTL for grain zinc and iron concentrations in wheat landrace Chinese Spring. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:148. [PMID: 38836887 DOI: 10.1007/s00122-024-04661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE Three stable QTL for grain zinc concentration were identified in wheat landrace Chinese Spring. Favorable alleles were more frequent in landraces than in modern wheat cultivars. Wheat is a major source of dietary energy for the growing world population. Developing cultivars with enriched zinc and iron can potentially alleviate human micronutrient deficiency. In this study, a recombinant inbred line (RIL) population with 245 lines derived from cross Zhou 8425B/Chinese Spring was used to detect quantitative trait loci (QTL) for grain zinc concentration (GZnC) and grain iron concentration (GFeC) across four environments. Three stable QTL for GZnC with all favorable alleles from Chinese Spring were identified on chromosomes 3BL, 5AL, and 5BL. These QTL explaining maxima of 8.7%, 5.8%, and 7.1% of phenotypic variances were validated in 125 resequenced wheat accessions encompassing both landraces and modern cultivars using six kompetitive allele specific PCR (KASP) assays. The frequencies of favorable alleles for QGZnCzc.caas-3BL, QGZnCzc.caas-5AL and QGZnCzc.caas-5BL were higher in landraces (90.4%, 68.0%, and 100.0%, respectively) compared to modern cultivars (45.9%, 35.4%, and 40.9%), suggesting they were not selected in breeding programs. Candidate gene association studies on GZnC in the cultivar panel further delimited the QTL into 8.5 Mb, 4.1 Mb, and 47.8 Mb regions containing 46, 4, and 199 candidate genes, respectively. The 5BL QTL located in a region where recombination was suppressed. Two stable and three less stable QTL for GFeC with favorable alleles also from Chinese Spring were identified on chromosomes 4BS (Rht-B1a), 4DS (Rht-D1a), 1DS, 3AS, and 6DS. This study sheds light on the genetic basis of GZnC and GFeC in Chinese Spring and provides useful molecular markers for wheat biofortification.
Collapse
Affiliation(s)
- Mengjing Sun
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- State Key Laboratory of Crop Heterosis and Utilization, College of Agronomy, China Agricultural University, Beijing, 100094, China
| | - Jingyang Tong
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yan Dong
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zongjun Pu
- Institute of Crop Sciences, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Jianmin Zheng
- Institute of Crop Sciences, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, Hebei, China
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xiaowan Xu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Qiang Cao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Awais Rasheed
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mohamed Badry Ali
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Shuanghe Cao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xianchun Xia
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Zhongfu Ni
- State Key Laboratory of Crop Heterosis and Utilization, College of Agronomy, China Agricultural University, Beijing, 100094, China.
| | - Yuanfeng Hao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
10
|
Tadesse W, Gataa ZE, Rachdad FE, Baouchi AE, Kehel Z, Alemu A. Single- and multi-trait genomic prediction and genome-wide association analysis of grain yield and micronutrient-related traits in ICARDA wheat under drought environment. Mol Genet Genomics 2023; 298:1515-1526. [PMID: 37851098 PMCID: PMC10657311 DOI: 10.1007/s00438-023-02074-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Globally, over 2 billion people suffer from malnutrition due to inadequate intake of micronutrients. Genomic-assisted breeding is identified as a valuable method to facilitate developing new improved plant varieties targeting grain yield and micronutrient-related traits. In this study, a genome-wide association study (GWAS) and single- and multi-trait-based genomic prediction (GP) analysis was conducted using a set of 252 elite wheat genotypes from the International Center for Agricultural Research in Dry Areas (ICARDA). The objective was to identify linked SNP markers, putative candidate genes and to evaluate the genomic estimated breeding values (GEBVs) of grain yield and micronutrient-related traits.. For this purpose, a field trial was conducted at a drought-prone station, Merchouch, Morocco for 2 consecutive years (2018 and 2019) followed by GWAS and genomic prediction analysis with 10,173 quality SNP markers. The studied genotypes exhibited a significant genotypic variation in grain yield and micronutrient-related traits. The GWAS analysis identified highly significantly associated markers and linked putative genes on chromosomes 1B and 2B for zinc (Zn) and iron (Fe) contents, respectively. The genomic predictive ability of selenium (Se) and Fe traits with the multi-trait-based GP GBLUP model was 0.161 and 0.259 improving by 6.62 and 4.44%, respectively, compared to the corresponding single-trait-based models. The identified significantly linked SNP markers, associated putative genes, and developed GP models could potentially facilitate breeding programs targeting to improve the overall genetic gain of wheat breeding for grain yield and biofortification of micronutrients via marker-assisted (MAS) and genomic selection (GS) methods.
Collapse
Affiliation(s)
- Wuletaw Tadesse
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Zakaria El Gataa
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Fatima Ezzahra Rachdad
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Adil El Baouchi
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Zakaria Kehel
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
11
|
Sun M, Luo Q, Zheng Q, Tong J, Wang Y, Song J, Zhang Y, Pu Z, Zheng J, Liu L, Zhou A, Rasheed A, Li M, Cao S, Xia X, He Z, Hao Y. Molecular characterization of stable QTL and putative candidate genes for grain zinc and iron concentrations in two related wheat populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:217. [PMID: 37782334 DOI: 10.1007/s00122-023-04467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
KEY MESSAGE Major QTL for grain zinc and iron concentrations were identified on the long arm of chromosomes 2D and 6D. Gene-based KASP markers were developed for putative candidate genes TaIPK1-2D and TaNAS10-6D. Micronutrient malnutrition is one of the most common public health problems in the world. Biofortification, the most attractive and sustainable solution to surmount malnutrition requires the development of micronutrient enriched new crop cultivars. In this study, two recombinant inbred line (RIL) populations, ZM175/XY60 and ZM175/LX987, were used to identify QTL for grain zinc concentration (GZnC), grain iron concentration (GFeC) and thousand grain weight (TGW). Eight QTL for GZnC, six QTL for GFeC and five QTL for TGW were detected. Three QTL on chromosomes 2DL and 4BS and chromosome 6A showed pleiotropic effects on all three traits. The 4BS and 6A QTL also increased plant height and might be Rht-B1a and Rht25a, respectively. The 2DL locus within a suppressed recombination region was identified in both RIL populations and the favorable allele simultaneously increasing GZnC, GFeC and TGW was contributed by XY60 and LX987. A QTL on chromosome 6DL associated only with GZnC was detected in ZM175/XY60 and was validated in JD8/AK58 RILs using kompetitive allele-specific PCR (KASP) marker K_AX-110119937. Both the 2DL and 6DL QTL were new loci for GZnC. Based on gene annotations, sequence variations and expression profiles, the phytic acid biosynthesis gene TaIPK1-2D and nicotianamine synthase gene TaNAS10-6D were predicted as candidate genes. Their gene-based KASP markers were developed and validated in a cultivar panel of 343 wheat accessions. This study investigated the genetic basis of GZnC and GFeC and provided valuable candidate genes and markers for breeding Zn- and Fe-enriched wheat.
Collapse
Affiliation(s)
- Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang, 050031, Hebei, China
| | - Zongjun Pu
- Institute of Crop Sciences, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Jianmin Zheng
- Institute of Crop Sciences, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Lianzheng Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, Xinjiang, China
| | - Anding Zhou
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, Xinjiang, China
| | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
12
|
Potapova NA, Timoshchuk AN, Tiys ES, Vinichenko NA, Leonova IN, Salina EA, Tsepilov YA. Multivariate Genome-Wide Association Study of Concentrations of Seven Elements in Seeds Reveals Four New Loci in Russian Wheat Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:3019. [PMID: 37687266 PMCID: PMC10489822 DOI: 10.3390/plants12173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Wheat is a cereal grain that plays an important role in the world's food industry. The identification of the loci that change the concentration of elements in wheat seeds is an important challenge nowadays especially for genomic selection and breeding of novel varieties. In this study, we performed a multivariate genome-wide association study (GWAS) of the seven traits-concentrations of Zn, Mg, Mn, Ca, Cu, Fe, and K in grain-of the Russian collection of common wheat Triticum aestivum (N = 149 measured in two years in two different fields). We replicated one known locus associated with the concentration of Zn (IAAV1375). We identified four novel loci-BS00022069_51 (associated with concentrations of Ca and K), RFL_Contig6053_3082 (associated with concentrations of Fe and Mn), Kukri_rep_c70864_329 (associated with concentrations of all elements), and IAAV8416 (associated with concentrations of Fe and Mn)-three of them were located near the genes TraesCS6A02G375400, TraesCS7A02G094800, and TraesCS5B02G325400. Our result adds novel information on the loci involved in wheat grain element contents and may be further used in genomic selection.
Collapse
Affiliation(s)
- Nadezhda A. Potapova
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, Russia
| | - Anna N. Timoshchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny S. Tiys
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia A. Vinichenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina N. Leonova
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yakov A. Tsepilov
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Ma J, Ren J, Yuan X, Yuan M, Zhang D, Li C, Zeng Q, Wu J, Han D, Jiang L. Genome-wide association study reveals the genetic variation and candidate gene for grain calcium content in bread wheat. PLANT CELL REPORTS 2023:10.1007/s00299-023-03036-3. [PMID: 37227494 DOI: 10.1007/s00299-023-03036-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE This study provides important information on the genetic basis of GCaC in wheat, thus contributing to breeding efforts to improve the nutrient quality of wheat. Calcium (Ca) plays important roles in the human body. Wheat grain provides the main diet for billions of people worldwide but is low in Ca content. Here, grain Ca content (GCaC) of 471 wheat accessions was determined in four field environments. A genome-wide association study (GWAS) was performed to reveal the genetic basis of GCaC using the phenotypic data form four environments and a wheat 660 K single nucleotide polymorphism (SNP) array. Twelve quantitative trait locus (QTLs) for GCaC were identified on chromosomes 1A, 1D, 2A, 3B, 6A, 6D, 7A, and 7D, which was significant in at least two environments. Haplotype analysis revealed that the phenotypic difference between the haplotypes of TraesCS6D01G399100 was significant (P ≤ 0.05) across four environments, suggesting it as an important candidate gene for GCaC. This research enhances our understanding of the genetic architecture of GCaC for further improving the nutrient quality of wheat.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Jingjie Ren
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xuqing Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China.
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
14
|
Zhao C, Tong J, Gao Z, Liu J, Hao Y, Xia X, He Z, Zhang Y, Tian W. Genome-wide association study of alkylresorcinols content in 161 wheat cultivars. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Li Y, Tao F, Hao Y, Tong J, Xiao Y, Zhang H, He Z, Reynolds M. Linking genetic markers with an eco-physiological model to pyramid favourable alleles and design wheat ideotypes. PLANT, CELL & ENVIRONMENT 2023; 46:780-795. [PMID: 36517924 DOI: 10.1111/pce.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Genetic markers can be linked with eco-physiological crop models to accurately predict genotype performance and individual markers' contributions in target environments, exploring interactions between genotype and environment. Here, wheat (Triticum aestivum L.) yield was dissected into seven traits corresponding to cultivar genetic coefficients in an eco-physiological model. Loci for these traits were discovered through the genome-wide association studies (GWAS). The cultivar genetic coefficients were derived from the loci using multiple linear regression or random forest, building a marker-based eco-physiological model. It is then applied to simulate wheat yields and design virtual ideotypes. The results indicated that the loci identified through GWAS explained 46%-75% variations in cultivar genetic coefficients. Using the marker-based model, the normalized root mean square error (nRMSE) between the simulated yield and observed yield was 13.95% by multiple linear regression and 13.62% by random forest. The nRMSE between the simulated and observed maturity dates was 1.24% by multiple linear regression and 1.11% by random forest, respectively. Structural equation modelling indicated that variations in grain yield could be well explained by cultivar genetic coefficients and phenological data. In addition, 24 pleiotropic loci in this study were detected on 15 chromosomes. More significant loci were detected by the model-based dissection method than considering yield per se. Ideotypes were identified by higher yield and more favourable alleles of cultivar genetic traits. This study proposes a genotype-to-phenotype approach and demonstrates novel ideas and tools to support the effective breeding of new cultivars with high yield through pyramiding favourable alleles and designing crop ideotypes.
Collapse
Affiliation(s)
- Yibo Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fulu Tao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonggui Xiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
16
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
17
|
Ma J, Ye M, Liu Q, Yuan M, Zhang D, Li C, Zeng Q, Wu J, Han D, Jiang L. Genome-wide association study for grain zinc concentration in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1169858. [PMID: 37077637 PMCID: PMC10106671 DOI: 10.3389/fpls.2023.1169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Introduction Zinc (Zn) deficiency causes serious diseases in people who rely on cereals as their main food source. However, the grain zinc concentration (GZnC) in wheat is low. Biofortification is a sustainable strategy for reducing human Zn deficiency. Methods In this study, we constructed a population of 382 wheat accessions and determined their GZnC in three field environments. Phenotype data was used for a genome-wide association study (GWAS) using a 660K single nucleotide polymorphism (SNP) array, and haplotype analysis identified an important candidate gene for GZnC. Results We found that GZnC of the wheat accessions showed an increasing trend with their released years, indicating that the dominant allele of GZnC was not lost during the breeding process. Nine stable quantitative trait loci (QTLs) for GZnC were identified on chromosomes 3A, 4A, 5B, 6D, and 7A. And an important candidate gene for GZnC, namely, TraesCS6D01G234600, and GZnC between the haplotypes of this gene showed, significant difference (P ≤ 0.05) in three environments. Discussion A novel QTL was first identified on chromosome 6D, this finding enriches our understanding of the genetic basis of GZnC in wheat. This study provides new insights into valuable markers and candidate genes for wheat biofortification to improve GZnC.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| | - Miaomiao Ye
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qianqian Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| |
Collapse
|
18
|
Ma J, Liu Y, Zhang P, Chen T, Tian T, Wang P, Che Z, Shahinnia F, Yang D. Identification of quantitative trait loci (QTL) and meta-QTL analysis for kernel size-related traits in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:607. [PMID: 36550393 PMCID: PMC9784057 DOI: 10.1186/s12870-022-03989-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Kernel size-related traits, including kernel length (KL), kernel width (KW), kernel diameter ratio (KDR) and kernel thickness (KT), are critical determinants for wheat kernel weight and yield and highly governed by a type of quantitative genetic basis. Genome-wide identification of major and stable quantitative trait loci (QTLs) and functional genes are urgently required for genetic improvement in wheat kernel yield. A hexaploid wheat population consisting of 120 recombinant inbred lines was developed to identify QTLs for kernel size-related traits under different water environments. The meta-analysis and transcriptome evaluation were further integrated to identify major genomic regions and putative candidate genes. RESULTS The analysis of variance (ANOVA) revealed more significant genotypic effects for kernel size-related traits, indicating the moderate to high heritability of 0.61-0.89. Thirty-two QTLs for kernel size-related traits were identified, explaining 3.06%-14.2% of the phenotypic variation. Eleven stable QTLs were detected in more than three water environments. The 1103 original QTLs from the 34 previous studies and the present study were employed for the MQTL analysis and refined into 58 MQTLs. The average confidence interval of the MQTLs was 3.26-fold less than that of the original QTLs. The 1864 putative candidate genes were mined within the regions of 12 core MQTLs, where 70 candidate genes were highly expressed in spikes and kernels by comprehensive analysis of wheat transcriptome data. They were involved in various metabolic pathways, such as carbon fixation in photosynthetic organisms, carbon metabolism, mRNA surveillance pathway, RNA transport and biosynthesis of secondary metabolites. CONCLUSIONS Major genomic regions and putative candidate genes for kernel size-related traits in wheat have been revealed by an integrative strategy with QTL linkage mapping, meta-analysis and transcriptomic assessment. The findings provide a novel insight into understanding the genetic determinants of kernel size-related traits and will be useful for the marker-assisted selection of high yield in wheat breeding.
Collapse
Grants
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- GHSJ 2020-Z4 Research Program Sponsored by State Key Laboratory of Aridland Crop Science, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 21YF5NA089 Key Research and Development Program of Gansu Province, China
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 2022CYZC-44 Industrial Support Plan of Colleges and Universities in Gansu Province
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 31760385 National Natural Science Foundation of China
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- 22ZD6NA010 Key Sci & Tech Special Project of Gansu Province
- Key Sci & Tech Special Project of Gansu Province
Collapse
Affiliation(s)
- Jingfu Ma
- State Key Lab of Aridland Crop Science, Lanzhou, Gansu, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuan Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Peipei Zhang
- State Key Lab of Aridland Crop Science, Lanzhou, Gansu, China
| | - Tao Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Tian Tian
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Peng Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhuo Che
- Plant Seed Master Station of Gansu Province, Lanzhou, Gansu, China
| | - Fahimeh Shahinnia
- Institute for Crop Science and Plant Breeding, Bavarian State Research Centre for Agriculture, Freising, Germany
| | - Delong Yang
- State Key Lab of Aridland Crop Science, Lanzhou, Gansu, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
19
|
Juliana P, Govindan V, Crespo-Herrera L, Mondal S, Huerta-Espino J, Shrestha S, Poland J, Singh RP. Genome-Wide Association Mapping Identifies Key Genomic Regions for Grain Zinc and Iron Biofortification in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:903819. [PMID: 35845653 PMCID: PMC9280339 DOI: 10.3389/fpls.2022.903819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 05/02/2023]
Abstract
Accelerating breeding efforts for developing biofortified bread wheat varieties necessitates understanding the genetic control of grain zinc concentration (GZnC) and grain iron concentration (GFeC). Hence, the major objective of this study was to perform genome-wide association mapping to identify consistently significant genotyping-by-sequencing markers associated with GZnC and GFeC using a large panel of 5,585 breeding lines from the International Maize and Wheat Improvement Center. These lines were grown between 2018 and 2021 in an optimally irrigated environment at Obregon, Mexico, while some of them were also grown in a water-limiting drought-stressed environment and a space-limiting small plot environment and evaluated for GZnC and GFeC. The lines showed a large and continuous variation for GZnC ranging from 27 to 74.5 ppm and GFeC ranging from 27 to 53.4 ppm. We performed 742,113 marker-traits association tests in 73 datasets and identified 141 markers consistently associated with GZnC and GFeC in three or more datasets, which were located on all wheat chromosomes except 3A and 7D. Among them, 29 markers were associated with both GZnC and GFeC, indicating a shared genetic basis for these micronutrients and the possibility of simultaneously improving both. In addition, several significant GZnC and GFeC associated markers were common across the irrigated, water-limiting drought-stressed, and space-limiting small plots environments, thereby indicating the feasibility of indirect selection for these micronutrients in either of these environments. Moreover, the many significant markers identified had minor effects on GZnC and GFeC, suggesting a quantitative genetic control of these traits. Our findings provide important insights into the complex genetic basis of GZnC and GFeC in bread wheat while implying limited prospects for marker-assisted selection and the need for using genomic selection.
Collapse
Affiliation(s)
| | - Velu Govindan
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | | | | | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico, Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Chapingo, Mexico
| | - Sandesh Shrestha
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| |
Collapse
|