1
|
Azeem S, Munir F, Gul A, Amir R. An A-6 subgroup member of DREB gene family positively regulates cold stress tolerance by modulating an antioxidant defense system in transgenic potato. Sci Rep 2025; 15:15421. [PMID: 40316657 PMCID: PMC12048627 DOI: 10.1038/s41598-025-98886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Cold stress adversely influences the growth, development, geographic distribution, and yield of plants. The dehydration-responsive element binding (DREB) transcription factors are central to improving plant's ability to endure cold stress. In this work, the expression pattern of the StDREB30 (A-6) gene was analyzed in response to cold stress in transgenic potato. We provide evidence emphasizing the significance of the StDREB30 under low-temperature stress (4°C) and investigate the potential physiological, molecular and biochemical processes involved. StDREB30 expression levels were quickly elevated upon the cold exposure. Additionally, transgenic potato plants exhibited upregulation of randomly selected downstream genes (StNAC, StDREB1, StDREB2, StSAP, StGT3, and StDHN), improved photosynthetic parameters including coefficient of photochemical quenching (qL), and maximum yield of PSII (Fv'/Fm'), better stomatal performance, increased proline accumulation, decreased malondialdehyde content, electrolyte leakage, and reduced accumulation of hydrogen peroxide, and superoxide when exposed to cold stress. Moreover, StDREB30 improved reactive oxygen scavenging capabilities by stimulating the production of antioxidants such as superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase. Our results propose that StDREB30 serves as a positive regulator in promoting cold tolerance. To our knowledge, no report has been published previously on the study of the StDREB30 (A-6) gene under cold stress in transgenic potatoes.
Collapse
Affiliation(s)
- Saba Azeem
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Alvina Gul
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Agricultural Sciences and Technology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Yang G, Liu Y, Gong Z, Chen S, Wang J, Song L, Liu S. Genome wide identification of LcC2DPs gene family in Lotus corniculatus provides insights into regulatory network in response to abiotic stresses. Sci Rep 2025; 15:13380. [PMID: 40251318 PMCID: PMC12008259 DOI: 10.1038/s41598-025-97896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Low temperatures and drought reduce forage yield and quality, with protein kinases crucial for plant stress response. This study examines the LcC2DPs protein kinase family in Lotus corniculatus, identifying 90 members, with some tandemly distributed on chromosomes 2-6, and grouped into 5 subfamilies (I-V). 34 homologous gene pairs were found in Arabidopsis thaliana. LcC2DP genes promoters contain hormone and stress response elements. GO analysis highlights enrichment in hormone response and kinase activity. Transcriptomic analysis links 78 genes to environmental response and stress growth, with 10 validated by qRT-PCR after treatment with 100 μM ABA and IAA, 20% PEG6000, and 4 °C. Protein interaction analysis identifies 5 core proteins (LcC2DP5, 11, 15, 38, and 58) activated by drought and cold stress. Gene analysis revealed that only LcC2DP5 and LcC2DP15 share co-expression transcription factors, with bZIP, bHLH, WRKY, NAC, MYB-related, MYB, C3H, and C2H2 being prominent. These proteins are expressed under drought and cold conditions, highlighting LcC2DP5 and LcC2DP15 activity. NAC and C2H2 are vital for drought response, while bZIP and MYB-related are important for cold response. This suggests that various LcC2DPs in Lotus corniculatus respond to hormones and stress via a TF regulatory network.
Collapse
Affiliation(s)
- Guangfen Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
- National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, 550025, Guizhou Province, China
| | - Yujie Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zouxian Gong
- Clinical Medical College, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Siya Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Juanying Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
- National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, 550025, Guizhou Province, China
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, 550025, Guizhou Province, China.
| | - Shihui Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
3
|
Liu W, Wang J, Zhu D, Yin X, Du G, Qin Y, Zhang Z, Liu Z. Jasmonic Acid-Mediated Antioxidant Defense Confers Chilling Tolerance in Okra ( Abelmoschus esculentus L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:1100. [PMID: 40219168 PMCID: PMC11991441 DOI: 10.3390/plants14071100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Chilling stress inhibits the growth of okra (Abelmoschus esculentus L.), reduces its overall agricultural yield, and deteriorates fruit quality. Therefore, it is crucial to elucidate the mechanism through which okra plants respond to chilling stress. This study investigates the molecular mechanisms of chilling tolerance by comparing the transcriptome and metabolome of chilling-tolerant (Ae182) and chilling-sensitive (Ae171) okra varieties. We found that Ae182 exhibits higher antioxidant enzyme activities, including SOD, POD, CAT, and APX, suggesting it mitigates oxidative stress more effectively than Ae171. Metabolomics analysis revealed that Ae182 produces higher levels of jasmonic acid (JA) and JA-isoleucine (JA-Ile) under chilling stress, potentially activating genes that alleviate oxidative damage. Additionally, integrated analyses identified key transcription factors, such as AP2, BHLH, and MYB, associated with JA and chilling stress. These findings provide candidate genes for further research on chilling resistance in okra.
Collapse
Affiliation(s)
- Weixia Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; (W.L.); (D.Z.); (X.Y.); (G.D.)
| | - Jielin Wang
- Hainan Institute of Zhejiang University, Sanya 572025, China;
| | - Dan Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; (W.L.); (D.Z.); (X.Y.); (G.D.)
| | - Xiaomin Yin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; (W.L.); (D.Z.); (X.Y.); (G.D.)
| | - Gongfu Du
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; (W.L.); (D.Z.); (X.Y.); (G.D.)
| | - Yuling Qin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; (W.L.); (D.Z.); (X.Y.); (G.D.)
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Sanya 572025, China;
| | - Ziji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; (W.L.); (D.Z.); (X.Y.); (G.D.)
| |
Collapse
|
4
|
Dev W, Sultana F, Li H, Hu D, Peng Z, He S, Zhang H, Waqas M, Geng X, Du X. Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112390. [PMID: 39827949 DOI: 10.1016/j.plantsci.2025.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Cold stress has a huge impact on the growth and development of cotton, presenting a significant challenge to its productivity. Comprehending the complex molecular mechanisms that control the reaction to CS is necessary for developing tactics to improve cold tolerance in cotton. This review paper explores how cotton responds to cold stress by regulating gene expression, focusing on both activating and repressing specific genes. We investigate the essential roles that transcription factors and regulatory elements have in responding to cold stress and controlling gene expression to counteract the negative impacts of low temperatures. Through a comprehensive examination of new publications, we clarify the intricacies of transcriptional reprogramming induced by cold stress, emphasizing the connections between different regulatory elements and signaling pathways. Additionally, we investigate the consecutive effects of cold stress on cotton yield, highlighting the physiological and developmental disturbances resulting from extended periods of low temperatures. The knowledge obtained from this assessment allows for a more profound comprehension of the molecular mechanisms that regulate cold stress responses, suggesting potential paths for future research to enhance cold tolerance in cotton by utilizing targeted genetic modifications and biotechnological interventions.
Collapse
Affiliation(s)
- Washu Dev
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fahmida Sultana
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haobo Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Waqas
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoli Geng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China.
| |
Collapse
|
5
|
Shi B, Zheng L, Wang Y, Wang Q. Transcriptomic Profiling Reveals Key Genes Underlying Cold Stress Responses in Camphora. Life (Basel) 2025; 15:319. [PMID: 40003727 PMCID: PMC11857532 DOI: 10.3390/life15020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The genus Camphora encompasses species of significant ecological and economic importance, such as C. parthenoxylon and C. officinarum, which exhibit distinct phenotypic traits and stress responses. This study seeks to elucidate the molecular basis of cold tolerance through comparative transcriptomic analysis complemented by physiological characterization. RNA sequencing revealed 6123 differentially expressed genes between the two species, with enriched pathways related to cold stress, oxidative stress, carotenoid biosynthesis, and photosynthesis. Key genes, such as annexin D5, chlorophyll a/b-binding protein, early light-induced protein 1, 9-cis-epoxycarotenoid dioxygenase, were identified as critical regulators of frost resistance, photosynthetic efficiency, and carotenoid biosynthesis. Functional enrichment analyses highlighted the involvement of signal transduction, membrane stabilization, and secondary metabolism in adaptive responses. Physiological assays supported these findings, showing higher chlorophyll and carotenoid content and enhanced antioxidative enzyme activities in C. parthenoxylon. These results provide valuable insights into the genetic and biochemical mechanisms underlying stress adaptation in Camphora species and offer promising targets for enhancing resilience in economically valuable plants.
Collapse
Affiliation(s)
| | | | | | - Qirui Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (B.S.); (Y.W.)
| |
Collapse
|
6
|
Lai X, Yan J, Chen Z, Zhang Y, Luo F, Cai G, Yan L. Dynamic changes in the transcriptome of tropical region-originated king grasses in response to cold stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1511466. [PMID: 40041019 PMCID: PMC11876387 DOI: 10.3389/fpls.2025.1511466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
Introduction Cold acclimatization in tropical region-originated plants involves complex gene expression reprogramming to adapt to fluctuating temperatures. However, the molecular mechanisms and gene networks regulating cold tolerance in king grass remain largely unknown. Methods To address this, we established a full-length reference transcriptome of king grass to enhance assembly quality and performed multiple time-point transcriptomic analyses following cold treatment at 4°C. Differentially expressed genes (DEGs) and transcription factors (TFs) involved in cold stress response were identified and analyzed through clustering and co-expression network analysis. Results A total of 13,056 DEGs were identified and classified into nine clusters via k-means analysis. The cold response exhibited three distinct phases: early (before 3 h), middle (6-24 h), and late (48-72 h). Early-responsive genes were enriched in glycolipid metabolism and photosynthesis, middle-stage genes in carbohydrate metabolism, and late-stage genes in cold stress, osmotic stress, and endogenous stimuli responses. Key regulators of the ICE-CBF-COR signaling module, including 13 positive and negative regulators, were identified. The co-expression network further revealed mutual regulatory interactions within this module, highlighting its role in cold stress adaptation. Discussion Our findings provide insights into the cold tolerance mechanisms of king grass, offering a genetic basis for modifying cold stress regulators. This research contributes to the broader understanding of low-temperature adaptive mechanisms in tropical plants and supports future breeding strategies for improved cold tolerance.
Collapse
Affiliation(s)
- Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
| | - Junfeng Yan
- Chengdu Ke’an Technology Co., Ltd., Chengdu, China
| | - Zihan Chen
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
| | - Yizheng Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
- Mianyang Youxian Innovation Technology and Industrial Technology Research Institute, Mianyang, China
| | - Fan Luo
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
| | - Guangze Cai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
- Mianyang Youxian Innovation Technology and Industrial Technology Research Institute, Mianyang, China
| |
Collapse
|
7
|
Yu Q, Zheng Q, Liu C, Zhang J, Xie Y, Yao W, Li J, Zhang N, Hao X, Xu W. Phosphorylation-dependent VaMYB4a regulates cold stress in grapevine by inhibiting VaPIF3 and activating VaCBF4. PLANT PHYSIOLOGY 2025; 197:kiaf035. [PMID: 39854635 DOI: 10.1093/plphys/kiaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025]
Abstract
Cold stress severely impacts the quality and yield of grapevine (Vitis L.). In this study, we extend our previous work to elucidate the role and regulatory mechanisms of Vitis amurensis MYB transcription factor 4a (VaMYB4a) in grapevine's response to cold stress. Our results identified VaMYB4a as a key positive regulator of cold stress. We demonstrated that VaMYB4a undergoes phosphorylation by V. amurensis calcineurin B-like (CBL) proteins-interacting protein kinase 18 (VaCIPK18) under cold stress, a process that activates VaMYB4a transcriptional activity. Using chromatin immunoprecipitation sequencing (ChIP-seq). We performed a comprehensive genomic search to identify downstream components that interact with VaMYB4a, leading to the discovery of a basic helix-loop-helix transcription factor, V. amurensis phytochrome-interacting factor 3 (VaPIF3). VaMYB4a attenuated the transcriptional activity of VaPIF3 through a phosphorylation-dependent interaction under cold conditions. Furthermore, VaPIF3, which interacts with and inhibits V. amurensis C-repeat binding factor 4 (VaCBF4, a known positive regulator of cold stress), has its activity attenuated by VaMYB4a, which mediates the modulation of this pathway. Notably, VaMYB4a also interacted with and promoted the expression of VaCBF4 in a phosphorylation-dependent manner. Our study shows that VaMYB4a positively modulates cold tolerance in plants by simultaneously downregulating VaPIF3 and upregulating VaCBF4. These findings provide a nuanced understanding of the transcriptional response in grapevine under cold stress and contribute to the broader field of plant stress physiology.
Collapse
Affiliation(s)
- Qinhan Yu
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiaoling Zheng
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Chang Liu
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wenkong Yao
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiaxin Li
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grape and Wine Research Institute, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xinyi Hao
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grape and Wine Research Institute, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Weirong Xu
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Ningxia Grape and Wine Research Institute, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
8
|
Feng Y, Li Z, Kong X, Khan A, Ullah N, Zhang X. Plant Coping with Cold Stress: Molecular and Physiological Adaptive Mechanisms with Future Perspectives. Cells 2025; 14:110. [PMID: 39851537 PMCID: PMC11764090 DOI: 10.3390/cells14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Cold stress strongly hinders plant growth and development. However, the molecular and physiological adaptive mechanisms of cold stress tolerance in plants are not well understood. Plants adopt several morpho-physiological changes to withstand cold stress. Plants have evolved various strategies to cope with cold stress. These strategies included changes in cellular membranes and chloroplast structure, regulating cold signals related to phytohormones and plant growth regulators (ABA, JA, GA, IAA, SA, BR, ET, CTK, and MET), reactive oxygen species (ROS), protein kinases, and inorganic ions. This review summarizes the mechanisms of how plants respond to cold stress, covering four main signal transduction pathways, including the abscisic acid (ABA) signal transduction pathway, Ca2+ signal transduction pathway, ROS signal transduction pathway, and mitogen-activated protein kinase (MAPK/MPK) cascade pathway. Some transcription factors, such as AP2/ERF, MYB, WRKY, NAC, and bZIP, not only act as calmodulin-binding proteins during cold perception but can also play important roles in the downstream chilling-signaling pathway. This review also highlights the analysis of those transcription factors such as bHLH, especially bHLH-type transcription factors ICE, and discusses their functions as phytohormone-responsive elements binding proteins in the promoter region under cold stress. In addition, a theoretical framework outlining plant responses to cold stress tolerance has been proposed. This theory aims to guide future research directions and inform agricultural production practices, ultimately enhancing crop resilience to cold stress.
Collapse
Affiliation(s)
- Yan Feng
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.F.); (Z.L.); (X.K.)
| | - Zengqiang Li
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.F.); (Z.L.); (X.K.)
| | - Xiangjun Kong
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.F.); (Z.L.); (X.K.)
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China;
- Department of Agronomy, College of Agriculture, Shandong Agriculture University, Tai’an 271018, China
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar;
| | - Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.F.); (Z.L.); (X.K.)
| |
Collapse
|
9
|
Cui J, Li C, Qi J, Yu W, Li C. Hydrogen sulfide in plant cold stress: functions, mechanisms, and challenge. PLANT MOLECULAR BIOLOGY 2024; 115:12. [PMID: 39718661 DOI: 10.1007/s11103-024-01535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Cold stress is an environmental factor that seriously restricts the growth, production and survival of plants, and has received extensive attention in recent years. Hydrogen sulfide (H2S) is an ubiquitous gas signaling molecule, and its role in alleviating plant cold stress has become a research focus in recent years. This paper reviews for the first time the significant effect of H2S on improving plant cold resistance, which makes up for the gaps in the existing literature. In general, H2S improves plant tolerance to cold stress by activating antioxidant reaction and promoting the accumulation of metabolic substances such as chlorophyll, flavonoids, proline, sucrose and total soluble sugar in plants. Interestingly, H2S also interacts with nitric oxide (NO), auxin, jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH) to alleviate cold stress. More importantly, in the process of alleviating cold stress with H2S, gene expression related to H2S synthesis, cold response and antioxidant is up-regulated or down-regulated, leading to the improvement of plant cold resistance. This paper also points out the problems existing in the current research and the potential of H2S in agricultural practice, and provides relevant theoretical references for future research in this field.
Collapse
Affiliation(s)
- Jing Cui
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Chuanghao Li
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Qi
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
10
|
Liu X, Zhang C, Lamlom SF, Zhao K, Abdelghany AM, Wang X, Zhang F, Yuan R, Han D, Zha B, Lu W, Ren H, Zhang B. Genetic Adaptations of Soybean to Cold Stress Reveal Key Insights Through Transcriptomic Analysis. BIOLOGY 2024; 13:856. [PMID: 39596811 PMCID: PMC11591561 DOI: 10.3390/biology13110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Low temperatures greatly restrict the development, growth, and productivity of soybeans, with their effects differing across various cultivars. The present work investigated the transcriptome and physiological reactions of two soybean cultivars, namely "KD52" exhibiting cold tolerance and "DS17" displaying cold sensitivity, to cold stress across a precisely defined period. The soybean plants were subjected to cold treatment at 6 °C for durations of 0, 2, 4, and 8 h. A comparative physiological marker study revealed distinct reactions to cold stress in the two cultivars. The findings showed that increased malondialdehyde levels provided evidence of DS17's heightened vulnerability to lipid peroxidation and membrane degradation. In contrast, the KD52 cultivar exhibited increased activities of antioxidant enzymes, including peroxidase and superoxide dismutase, in response to cold exposure, suggesting a strong antioxidant defense system against oxidative stress. The transcriptomic analysis revealed dynamic responses, mapping 54,532 genes. Within this group, a total of 234 differentially expressed genes (DEGs) were found to be consistently changed at several time intervals, showing unique expression patterns across the two cultivars. Analysis of the association between these important DEGs and the physiological indicators revealed candidate genes that may be involved in controlling oxidative damage and antioxidant defenses. Some key genes showed a progressive rise in expression over time in both cultivars, with a more significant acceleration in KD52, and are probably involved in promoting adaptation processes during extended periods of cold exposure. The identification of improved defense mechanisms in KD52, together with the identification of crucial genes, offers great prospects for enhancing the cold stress resilience of soybean.
Collapse
Affiliation(s)
- Xiulin Liu
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China; (X.L.); (C.Z.); (K.Z.); (X.W.); (F.Z.); (R.Y.); (H.R.)
| | - Chunlei Zhang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China; (X.L.); (C.Z.); (K.Z.); (X.W.); (F.Z.); (R.Y.); (H.R.)
| | - Sobhi F. Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Kezhen Zhao
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China; (X.L.); (C.Z.); (K.Z.); (X.W.); (F.Z.); (R.Y.); (H.R.)
| | - Ahmed M. Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt;
| | - Xueyang Wang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China; (X.L.); (C.Z.); (K.Z.); (X.W.); (F.Z.); (R.Y.); (H.R.)
| | - Fengyi Zhang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China; (X.L.); (C.Z.); (K.Z.); (X.W.); (F.Z.); (R.Y.); (H.R.)
| | - Rongqiang Yuan
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China; (X.L.); (C.Z.); (K.Z.); (X.W.); (F.Z.); (R.Y.); (H.R.)
| | - Dezhi Han
- Heihe Branch Institute, Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China;
| | - Bire Zha
- School of Modern Agriculture and Ecological Environment, Resource Utilization and Plant Protection, Heilongjiang University, Harbin 150080, China;
| | - Wencheng Lu
- Heihe Branch Institute, Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China;
| | - Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China; (X.L.); (C.Z.); (K.Z.); (X.W.); (F.Z.); (R.Y.); (H.R.)
| | - Bixian Zhang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China; (X.L.); (C.Z.); (K.Z.); (X.W.); (F.Z.); (R.Y.); (H.R.)
| |
Collapse
|
11
|
Białoskórska M, Rucińska A, Boczkowska M. Molecular Mechanisms Underlying Freezing Tolerance in Plants: Implications for Cryopreservation. Int J Mol Sci 2024; 25:10110. [PMID: 39337593 PMCID: PMC11432106 DOI: 10.3390/ijms251810110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is a crucial technique for the long-term ex situ conservation of plant genetic resources, particularly in the context of global biodiversity decline. This process entails freezing biological material at ultra-low temperatures using liquid nitrogen, which effectively halts metabolic activities and preserves plant tissues over extended periods. Over the past seven decades, a plethora of techniques for cryopreserving plant materials have been developed. These include slow freezing, vitrification, encapsulation dehydration, encapsulation-vitrification, droplet vitrification, cryo-plates, and cryo-mesh techniques. A key challenge in the advancement of cryopreservation lies in our ability to understand the molecular processes underlying plant freezing tolerance. These mechanisms include cold acclimatization, the activation of cold-responsive genes through pathways such as the ICE-CBF-COR cascade, and the protective roles of transcription factors, non-coding RNAs, and epigenetic modifications. Furthermore, specialized proteins, such as antifreeze proteins (AFPs) and late embryogenesis abundant (LEA) proteins, play crucial roles in protecting plant cells during freezing and thawing. Despite its potential, cryopreservation faces significant challenges, particularly in standardizing protocols for a wide range of plant species, especially those from tropical and subtropical regions. This review highlights the importance of ongoing research and the integration of omics technologies to improve cryopreservation techniques, ensuring their effectiveness across diverse plant species and contributing to global efforts regarding biodiversity conservation.
Collapse
Affiliation(s)
- Magdalena Białoskórska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| | - Anna Rucińska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
- Botanical Garden, Center for Biological Diversity Conservation in Powsin, Polish Academy of Science, Prawdziwka 2, 02-976 Warszawa, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
12
|
Song H, Wang M, Shen J, Wang X, Qin C, Wei P, Niu Y, Ren J, Pan X, Liu A. Physiological and transcriptomic profiles reveal key regulatory pathways involved in cold resistance in sunflower seedlings. Genomics 2024; 116:110926. [PMID: 39178997 DOI: 10.1016/j.ygeno.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.
Collapse
Affiliation(s)
- Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Peipei Wei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Yaojun Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329, China.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| |
Collapse
|
13
|
Amjad M, Wang Y, Han S, Haider MZ, Sami A, Batool A, Shafiq M, Ali Q, Dong J, Sabir IA, Manzoor MA. Genome wide identification of phenylalanine ammonia-lyase (PAL) gene family in Cucumis sativus (cucumber) against abiotic stress. BMC Genom Data 2024; 25:76. [PMID: 39187758 PMCID: PMC11348668 DOI: 10.1186/s12863-024-01259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Phenylalanine ammonia lyase (PAL) is a widely studied enzyme in plant biology due to its role in connecting primary metabolism to secondary phenylpropanoid metabolism, significantly influencing plant growth, development, and stress response. Although PAL genes have been extensively studied in various plant species but their exploration in cucumber has been limited. This study successfully identified 11 CsPAL genes in Cucumis sativus (cucumber). These CsPAL genes were categorized based on their conserved sequences revealing patterns through MEME analysis and multiple sequence alignment. Interestingly, cis-elements related to stress were found in the promoter regions of CsPAL genes, indicating their involvement in responding to abiotic stress. Furthermore, these gene's promoters contained components associated with light, development and hormone responsiveness. This suggests that they may have roles in hormone developmental processes. MicroRNAs were identified as a key regulators for the CsPAL genes, playing a crucial role in modulating their expression. This discovery underscores the complex regulatory network involved in the plant's response to various stress conditions. The influence of these microRNAs further highlights the complicated mechanisms that plants use to manage stress. Gene expression patterns were analyzed using RNA-seq data. The significant upregulation of CsPAL9 during HT3h (heat stress for 3 h) and the heightened upregulation of both CsPAL9 and CsPAL7 under HT6h (heat stress for 6 h) in the transcriptome study suggest a potential role for these genes in cucumber's tolerance to heat stress. This comprehensive investigation aims to enhance our understanding of the PAL gene family's versatility, offering valuable insights for advancements in cucumber genetics.
Collapse
Affiliation(s)
- Muskan Amjad
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- Department of Botany, Government Graduate College Township, Lahore, Pakistan
| | - Yuexia Wang
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China
| | - Shiming Han
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China.
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Alia Batool
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Jihong Dong
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Liu X, Wang T, Ruan Y, Xie X, Tan C, Guo Y, Li B, Qu L, Deng L, Li M, Liu C. Comparative Metabolome and Transcriptome Analysis of Rapeseed ( Brassica napus L.) Cotyledons in Response to Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2212. [PMID: 39204648 PMCID: PMC11360269 DOI: 10.3390/plants13162212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cold stress affects the seed germination and early growth of winter rapeseed, leading to yield losses. We employed transmission electron microscopy, physiological analyses, metabolome profiling, and transcriptome sequencing to understand the effect of cold stress (0 °C, LW) on the cotyledons of cold-tolerant (GX74) and -sensitive (XY15) rapeseeds. The mesophyll cells in cold-treated XY15 were severely damaged compared to slightly damaged cells in GX74. The fructose, glucose, malondialdehyde, and proline contents increased after cold stress in both genotypes; however, GX74 had significantly higher content than XY15. The pyruvic acid content increased after cold stress in GX74, but decreased in XY15. Metabolome analysis detected 590 compounds, of which 32 and 74 were differentially accumulated in GX74 (CK vs. cold stress) and XY15 (CK vs. cold stressed). Arachidonic acid and magnoflorine were the most up-accumulated metabolites in GX74 subjected to cold stress compared to CK. There were 461 and 1481 differentially expressed genes (DEGs) specific to XY15 and GX74 rapeseeds, respectively. Generally, the commonly expressed genes had higher expressions in GX74 compared to XY15 in CK and cold stress conditions. The expression changes in DEGs related to photosynthesis-antenna proteins, chlorophyll biosynthesis, and sugar biosynthesis-related pathways were consistent with the fructose and glucose levels in cotyledons. Compared to XY15, GX74 showed upregulation of a higher number of genes/transcripts related to arachidonic acid, pyruvic acid, arginine and proline biosynthesis, cell wall changes, reactive oxygen species scavenging, cold-responsive pathways, and phytohormone-related pathways. Taken together, our results provide a detailed overview of the cold stress responses in rapeseed cotyledons.
Collapse
Affiliation(s)
- Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
| | - Xiang Xie
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Chengfang Tan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lichao Deng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.L.); (Y.G.)
- Yuelushan Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China; (Y.R.); (X.X.); (C.T.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
15
|
Mahmoud LM, Killiny N, Dutt M. Physiological and molecular responses of 'Hamlin' sweet orange trees expressing the VvmybA1 gene under cold stress conditions. PLANTA 2024; 260:67. [PMID: 39088064 DOI: 10.1007/s00425-024-04496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
MAIN CONCLUSION Overexpression of VvmybA1 transcription factor in 'Hamlin' citrus enhances cold tolerance by increasing anthocyanin accumulation. This results in improved ROS scavenging, altered gene expression, and stomatal regulation, highlighting anthocyanins' essential role in citrus cold acclimation. Cold stress is a significant threat to citrus cultivation, impacting tree health and productivity. Anthocyanins are known for their role as pigments and have emerged as key mediators of plant defense mechanisms against environmental stressors. This study investigated the potential of anthocyanin overexpression regulated by grape (Vitis vinifera) VvmybA1 transcription factor to enhance cold stress tolerance in citrus trees. Transgenic 'Hamlin' citrus trees overexpressing VvmybA1 were exposed to a 30-day cold stress period at 4 °C along with the control wild-type trees. Our findings reveal that anthocyanin accumulation significantly influences chlorophyll content and their fluorescence parameters, affecting leaf responses to cold stress. Additionally, we recorded enhanced ROS scavenging capacity and distinct expression patterns of key transcription factors and antioxidant-related genes in the transgenic leaves. Furthermore, VvmybA1 overexpression affected stomatal aperture regulation by moderating ABA biosynthesis, resulting in differential responses in a stomatal opening between transgenic and wild-type trees under cold stress. Transgenic trees exhibited reduced hydrogen peroxide levels, enhanced flavonoids, radical scavenging activity, and altered phytohormonal profiles. These findings highlighted the role of VvmybA1-mediated anthocyanin accumulation in enhancing cold tolerance. The current study also underlines the potential of anthocyanin overexpression as a critical regulator of the cold acclimation process by scavenging ROS in plant tissues.
Collapse
Affiliation(s)
- Lamiaa M Mahmoud
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, USA
| | - Manjul Dutt
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Yang Y, Cai Q, Luo L, Sun Z, Li L. Genome-Wide Analysis of C-Repeat Binding Factor Gene Family in Capsicum baccatum and Functional Exploration in Low-Temperature Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:549. [PMID: 38498531 PMCID: PMC10891952 DOI: 10.3390/plants13040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Capsicum baccatum is a close relative of edible chili peppers (Capsicum annuum) with high economic value. The CBF gene family plays an important role in plant stress resistance physiology. We detected a total of five CBF genes in the C. baccatum genome-wide sequencing data. These genes were scattered irregularly across four chromosomes. The genes were categorized into three groupings according to their evolutionary relationships, with genes in the same category showing comparable principles for motif composition. The 2000 bp upstream of CbCBF contains many resistance-responsive elements, hormone-responsive elements, and transcription factor binding sites. These findings emphasize the crucial functions of these genes in responding to challenging conditions and physiological regulation. Analysis of tissue-specific expression revealed that CbCBF3 exhibited the greatest level of expression among all tissues. Under conditions of low-temperature stress, all CbCBF genes exhibited different levels of responsiveness, with CbCBF3 showing a considerable up-regulation after 0.25 h of cold stress, indicating a high sensitivity to low-temperature response. The importance of the CbCBF3 gene in the cold response of C. baccatum was confirmed by the use of virus-induced gene silencing (VIGS) technology, as well as the prediction of its protein interaction network. To summarize, this study conducts a thorough bioinformatics investigation of the CbCBF gene family, showcases the practicality of employing VIGS technology in C. baccatum, and confirms the significance of the CbCBF3 gene in response to low temperatures. These findings provide significant references for future research on the adaptation of C. baccatum to low temperatures.
Collapse
Affiliation(s)
- Yanbo Yang
- College of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China;
| | - Qihang Cai
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (Q.C.); (L.L.)
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, International Technological Cooperation Base of High Effective Economic Forestry Cultivating of Yunnan Province, South and Southeast Asia Joint R&D Center of Economic Forest Full Industry Chain of Yunnan Province, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Li Luo
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (Q.C.); (L.L.)
| | - Zhenghai Sun
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (Q.C.); (L.L.)
- Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, International Technological Cooperation Base of High Effective Economic Forestry Cultivating of Yunnan Province, South and Southeast Asia Joint R&D Center of Economic Forest Full Industry Chain of Yunnan Province, College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China
| | - Liping Li
- College of Wetland, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
17
|
Kalve S, House MA, Tar’an B. Freezing stress response of wild and cultivated chickpeas. FRONTIERS IN PLANT SCIENCE 2024; 14:1310459. [PMID: 38375446 PMCID: PMC10876003 DOI: 10.3389/fpls.2023.1310459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Chickpea is an economically and nutritionally important grain legume globally, however, cold stress has adverse effects on its growth. In cold countries, like Canada where the growing season is short, having cold stress-tolerant varieties is crucial. Crop wild relatives of chickpea, especially Cicer reticulatum, can survive in suboptimal environments and are an important resource for crop improvement. In this study, we explored the performance of eleven C. reticulatum wild accessions and two chickpea cultivars, CDC Leader and CDC Consul, together with a cold sensitive check ILC533 under freezing stress. Freezing tolerance was scored based on a 1-9 scale. The wild relatives, particularly Kesen_075 and CudiA_152, had higher frost tolerance compared to the cultivars, which all died after frost treatment. We completed transcriptome analysis via mRNA sequencing to assess changes in gene expression in response to freezing stress and identified 6,184 differentially expressed genes (DEGs) in CDC Consul, and 7,842 DEGs in Kesen_075. GO (gene ontology) analysis of the DEGs revealed that those related to stress responses, endogenous and external stimuli responses, secondary metabolite processes, and photosynthesis were significantly over-represented in CDC Consul, while genes related to endogenous stimulus responses and photosynthesis were significantly over-represented in Kesen_075. These results are consistent with Kesen_075 being more tolerant to freezing stress than CDC Consul. Moreover, our data revealed that the expression of CBF pathway-related genes was impacted during freezing conditions in Kesen_075, and expression of these genes is believed to alleviate the damage caused by freezing stress. We identified genomic regions associated with tolerance to freezing stress in an F2 population derived from a cross between CDC Consul and Kesen_075 using QTL-seq analysis. Eight QTLs (P<0.05) on chromosomes Ca3, Ca4, Ca6, Ca7, Ca8, and two QTLs (P<0.01) on chromosomes Ca4 and Ca8, were associated with tolerance to freezing stress. Interestingly, 58 DEGs co-located within these QTLs. To our knowledge, this is the first study to explore the transcriptome and QTLs associated with freezing tolerance in wild relatives of chickpea under controlled conditions. Altogether, these findings provide comprehensive information that aids in understanding the molecular mechanism of chickpea adaptation to freezing stress and further provides functional candidate genes that can assist in breeding of freezing-stress tolerant varieties.
Collapse
Affiliation(s)
| | | | - Bunyamin Tar’an
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Ding T, Li W, Li F, Ren M, Wang W. microRNAs: Key Regulators in Plant Responses to Abiotic and Biotic Stresses via Endogenous and Cross-Kingdom Mechanisms. Int J Mol Sci 2024; 25:1154. [PMID: 38256227 PMCID: PMC10816238 DOI: 10.3390/ijms25021154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dramatic shifts in global climate have intensified abiotic and biotic stress faced by plants. Plant microRNAs (miRNAs)-20-24 nucleotide non-coding RNA molecules-form a key regulatory system of plant gene expression; playing crucial roles in plant growth; development; and defense against abiotic and biotic stress. Moreover, they participate in cross-kingdom communication. This communication encompasses interactions with other plants, microorganisms, and insect species, collectively exerting a profound influence on the agronomic traits of crops. This article comprehensively reviews the biosynthesis of plant miRNAs and explores their impact on plant growth, development, and stress resistance through endogenous, non-transboundary mechanisms. Furthermore, this review delves into the cross-kingdom regulatory effects of plant miRNAs on plants, microorganisms, and pests. It proceeds to specifically discuss the design and modification strategies for artificial miRNAs (amiRNAs), as well as the protection and transport of miRNAs by exosome-like nanovesicles (ELNVs), expanding the potential applications of plant miRNAs in crop breeding. Finally, the current limitations associated with harnessing plant miRNAs are addressed, and the utilization of synthetic biology is proposed to facilitate the heterologous expression and large-scale production of miRNAs. This novel approach suggests a plant-based solution to address future biosafety concerns in agriculture.
Collapse
Affiliation(s)
- Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
19
|
Konecny T, Nikoghosyan M, Binder H. Machine learning extracts marks of thiamine's role in cold acclimation in the transcriptome of Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1303542. [PMID: 38126012 PMCID: PMC10731266 DOI: 10.3389/fpls.2023.1303542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Introduction The escalating challenge of climate change has underscored the critical need to understand cold defense mechanisms in cultivated grapevine Vitis vinifera. Temperature variations can affect the growth and overall health of vine. Methods We used Self Organizing Maps machine learning method to analyze gene expression data from leaves of five Vitis vinifera cultivars each treated by four different temperature conditions. The algorithm generated sample-specific "portraits" of the normalized gene expression data, revealing distinct patterns related to the temperature conditions applied. Results Our analysis unveiled a connection with vitamin B1 (thiamine) biosynthesis, suggesting a link between temperature regulation and thiamine metabolism, in agreement with thiamine related stress response established in Arabidopsis before. Furthermore, we found that epigenetic mechanisms play a crucial role in regulating the expression of stress-responsive genes at low temperatures in grapevines. Discussion Application of Self Organizing Maps portrayal to vine transcriptomics identified modules of coregulated genes triggered under cold stress. Our machine learning approach provides a promising option for transcriptomics studies in plants.
Collapse
Affiliation(s)
- Tomas Konecny
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Maria Nikoghosyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Bioinformatics Group, Institute of Molecular Biology Institute of National Academy of Sciences RA, Yerevan, Armenia
| | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Petruccelli R, Bartolini G, Ganino T, Zelasco S, Lombardo L, Perri E, Durante M, Bernardi R. Cold Stress, Freezing Adaptation, Varietal Susceptibility of Olea europaea L.: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:1367. [PMID: 35631792 PMCID: PMC9144808 DOI: 10.3390/plants11101367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Olive (Olea europaea L.) is an evergreen xerophytic tree characterizing vegetative landscape and historical-cultural identity of the Mediterranean Basin. More than 2600 cultivars constitute the rich genetic patrimony of the species cultivated in approximately 60 countries. As a subtropical species, the olive tree is quite sensitive to low temperatures, and air temperature is the most critical environmental factor limiting olive tree growth and production. In this present review, we explored the detrimental effects caused of low temperatures on olive cultivars, and analyzed the most frequently experimental procedures used to evaluate cold stress. Then, current findings freezing stress physiology and gene are summarized in olive tree, with an emphasis on adaptive mechanisms for cold tolerance. This review might clear the way for new research on adaptive mechanisms for cold acclimation and for improvement of olive growing management.
Collapse
Affiliation(s)
- Raffaella Petruccelli
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
| | - Giorgio Bartolini
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
| | - Tommaso Ganino
- Institute of BioEconomy, National Research Council (CNR/IBE), 50019 Sesto Fiorentino, Italy; (R.P.); (G.B.)
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Samanta Zelasco
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Luca Lombardo
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Enzo Perri
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit and Citrus Crops, 87036 Rende, Italy; (S.Z.); (L.L.); (E.P.)
| | - Mauro Durante
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56121 Pisa, Italy; (M.D.); (R.B.)
| | - Rodolfo Bernardi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56121 Pisa, Italy; (M.D.); (R.B.)
| |
Collapse
|