1
|
Liu Y, Ye R, Gao X, Lin R, Li Y. Intermittent Supplementation with Far-Red Light Accelerates Leaf and Bud Development and Increases Yield in Lettuce. PLANTS (BASEL, SWITZERLAND) 2025; 14:139. [PMID: 39795398 PMCID: PMC11723179 DOI: 10.3390/plants14010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Supplementation with far-red light in controlled environment agriculture production can enhance yield by triggering the shade avoidance syndrome. However, the effectiveness of this yield enhancement can be further improved through intermittent far-red light supplementation. In this study, the effects are explored of varying far-red light photon intensities and intermittent exposure durations-specifically at 5, 15, 30, and 45 min intervals-on the growth and development of lettuce (Lactuca sativa) in plant factories, while maintaining a constant red light photon flux and daily light integral. The results showed that compared to constant far-red light, 30 min intermittent far-red light increased yield by 11.7% and the number of leaves and buds by 2.66. Furthermore, the various metrics demonstrated that intermittent far-red light supplementation enhanced the overall effectiveness of the far-red light treatment. This was validated by analyzing phytohormone content and the expression of genes related to hormone metabolism and transport at the tip of the lettuce stems. Transcriptome analysis revealed that the differences in gene expression between treatments were primarily concentrated in genes related to signaling, hormone metabolism, and transport. Weighted Gene Co-expression Network Analysis identified the co-expression modules associated with yield and quality. Additionally, dynamic expression analysis showed genes involved to far-red photoreception, response, and hormone metabolism and transport exhibited optimal rhythmic responses only under 30 min intermittent far-red light supplementation. This suggests that intermittent far-red light irradiation at 30 min intervals is the most effective for activating far-red light signaling influencing hormone metabolism and transport, thereby accelerating the growth of lettuce leaves and buds and ultimately increasing yield.
Collapse
Affiliation(s)
- Yanke Liu
- Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (R.Y.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ye
- Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (R.Y.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Gao
- Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (R.Y.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yang Li
- Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (R.Y.); (X.G.)
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
2
|
Zhang N, Liu Y, Gui S, Wang Y. Regulation of tillering and panicle branching in rice and wheat. J Genet Genomics 2024:S1673-8527(24)00354-0. [PMID: 39675465 DOI: 10.1016/j.jgg.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat. Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage, respectively, both of which are significantly impacted by hormones and genetic factors. Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity. Here, we summarize the recent progress in genetic, hormonal, and environmental factors regulation in the branching of rice and wheat. This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat, but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuhao Liu
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Songtao Gui
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Shomali A, De Diego N, Zhou R, Abdelhakim L, Vrobel O, Tarkowski P, Aliniaeifard S, Kamrani YY, Ji Y, Ottosen CO. The crosstalk of far-red energy and signaling defines the regulation of photosynthesis, growth, and flowering in tomatoes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108458. [PMID: 38408395 DOI: 10.1016/j.plaphy.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
This study investigated the effect of light intensity and signaling on the regulation of far-red (FR)-induced alteration in photosynthesis. The low (LL: 440 μmol m-2 s-1) and high (HL: 1135 μmol m-2 s-1) intensity of white light with or without FR (LLFR: 545 μmol m-2 s-1 including 115 μmol m-2 s-1; HLFR: 1254 μmol m-2 s-1 + 140 μmol m-2 s-1) was applied on the tomato cultivar (Solanum Lycopersicon cv. Moneymaker) and mutants of phytochrome A (phyA) and phytochrome B (phyB1, and phyB2). Both light intensity and FR affected plant morphological traits, leaf biomass, and flowering time. Irrespective of genotype, flowering was delayed by LLFR and accelerated by HLFR compared to the corresponding light intensity without FR. In LLFR, a reduced energy flux through the electron transfer chain along with a reduced energy dissipation per reaction center improved the maximum quantum yield of PSII, irrespective of genotype. HLFR increased net photosynthesis and gas exchange properties in a genotype-dependent manner. FR-dependent regulation of hormones was affected by light signaling. It appeared that PHYB affected the levels of abscisic acid and salicylic acid while PHYA took part in the regulation of CK in FR-exposed plants. Overall, light intensity and signaling of FR influenced plants' photosynthesis and growth by altering electron transport, gas exchange, and changes in the level of endogenous hormones.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, 3391653755, Iran.
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Rong Zhou
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Lamis Abdelhakim
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, 3391653755, Iran
| | - Yousef Yari Kamrani
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Yongran Ji
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, PO Box 16, Wageningen, 6700AA, the Netherlands
| | - Carl-Otto Ottosen
- Department of Food Science- Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| |
Collapse
|
4
|
Wang Y, Jiang Z, Li W, Yang X, Li C, Cai D, Pan Y, Su W, Chen R. Supplementary Low Far-Red Light Promotes Proliferation and Photosynthetic Capacity of Blueberry In Vitro Plantlets. Int J Mol Sci 2024; 25:688. [PMID: 38255762 PMCID: PMC10815622 DOI: 10.3390/ijms25020688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Far-red light exerts an important regulatory influence on plant growth and development. However, the mechanisms underlying far-red light regulation of morphogenesis and photosynthetic characteristics in blueberry plantlets in vitro have remained elusive. Here, physiological and transcriptomic analyses were conducted on blueberry plantlets in vitro supplemented with far-red light. The results indicated that supplementation with low far-red light, such as 6 μmol m-2 s-1 and 14 μmol m-2 s-1 far-red (6FR and 14FR) light treatments, significantly increased proliferation-related indicators, including shoot length, shoot number, gibberellin A3, and trans-zeatin riboside content. It was found that 6FR and 14 FR significantly reduced chlorophyll content in blueberry plantlets but enhanced electron transport rates. Weighted correlation network analysis (WGCNA) showed the enrichment of iron ion-related genes in modules associated with photosynthesis. Genes such as NAC, ABCG11, GASA1, and Erf74 were significantly enriched within the proliferation-related module. Taken together, we conclude that low far-red light can promote the proliferative capacity of blueberry plantlets in vitro by affecting hormone pathways and the formation of secondary cell walls, concurrently regulating chlorophyll content and iron ion homeostasis to affect photosynthetic capacity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Z.J.); (W.L.); (X.Y.); (C.L.); (D.C.); (Y.P.)
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Z.J.); (W.L.); (X.Y.); (C.L.); (D.C.); (Y.P.)
| |
Collapse
|
5
|
Lei K, Hu H, Chang M, Sun C, Ullah A, Yu J, Dong C, Gao Q, Jiang D, Cao W, Tian Z, Dai T. A low red/far-red ratio restricts nitrogen assimilation by inhibiting nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:107850. [PMID: 38042099 DOI: 10.1016/j.plaphy.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 12/04/2023]
Abstract
Understanding the physiological mechanism underlying nitrogen levels response to a low red/far-red ratio (R/FR) can provide new insights for optimizing wheat yield potential but has been not well documented. This study focused on the changes in nitrogen levels, nitrogen assimilation and nitrate uptake in wheat plants grown with and without additional far-red light. A low R/FR reduced wheat nitrogen accumulation and grain yield compared with the control. The levels of total nitrogen, free amino acid and ammonium were decreased in leaves but nitrate content was temporarily increased under a low R/FR. The nitrate reductase (NR) activity in leaves was more sensitive to a low R/FR than glutamine synthetase, glutamate synthase, glutamic oxalacetic transaminase and glutamic-pyruvic transaminase. Further analysis showed that a low R/FR had little effect on the NR activation state but reduced the level of NR protein and the expression of encoding gene TaNR1.2. Interestingly, a low R/FR rapidly induced TaPIL5 expression rather than TaHY5 and other members of TaPILs in wheat, suggesting that TaPIL5 was the key transcription factor response to a low R/FR in wheat and might be involved in the downregulation of TaNR1.2 expression. Besides, a low R/FR downregulated the expression of TaNR1.2 in leaves earlier than that of TaNRT1.1/1.2/1.5/1.8 in roots, which highlights the importance of NR and nitrogen assimilation in response to a low R/FR. Our results provide revelatory evidence that restricted nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 mediate the suppression of nitrogen assimilation under a low R/FR in wheat.
Collapse
Affiliation(s)
- Kangqi Lei
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hang Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengjie Chang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Attiq Ullah
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinhong Yu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chaofeng Dong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiang Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weixing Cao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Chen Z, Chen Y, Shi L, Wang L, Li W. Interaction of Phytohormones and External Environmental Factors in the Regulation of the Bud Dormancy in Woody Plants. Int J Mol Sci 2023; 24:17200. [PMID: 38139028 PMCID: PMC10743443 DOI: 10.3390/ijms242417200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bud dormancy and release are essential phenomena that greatly assist in adapting to adverse growing conditions and promoting the holistic growth and development of perennial plants. The dormancy and release process of buds in temperate perennial trees involves complex interactions between physiological and biochemical processes influenced by various environmental factors, representing a meticulously orchestrated life cycle. In this review, we summarize the role of phytohormones and their crosstalk in the establishment and release of bud dormancy. External environmental factors, such as light and temperature, play a crucial role in regulating bud germination. We also highlight the mechanisms of how light and temperature are involved in the regulation of bud dormancy by modulating phytohormones. Moreover, the role of nutrient factors, including sugar, in regulating bud dormancy is also discussed. This review provides a foundation for enhancing our understanding of plant growth and development patterns, fostering agricultural production, and exploring plant adaptive responses to adversity.
Collapse
Affiliation(s)
| | | | | | | | - Weixing Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.C.); (Y.C.); (L.S.); (L.W.)
| |
Collapse
|