1
|
Ma Y, Zhou X, Shen Y, Ma H, Xue Q. Metabolic crosstalk between roots and rhizosphere drives alfalfa decline under continuous cropping. FRONTIERS IN PLANT SCIENCE 2024; 15:1496691. [PMID: 39726426 PMCID: PMC11670254 DOI: 10.3389/fpls.2024.1496691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Considerable biological decline of continuously cropped alfalfa may be tightly linked to rhizosphere metabolism. However, plant-soil feedbacks and age-related metabolic changes in alfalfa stands remain unexplored. The aim of this study was to identify the linkages of rhizosphere and root metabolites, particularly autotoxins and prebiotics, to alfalfa decline under continuous cropping. We performed liquid chromatography-mass spectrometry for non-targeted metabolomic profiling of rhizosphere soils and alfalfa roots in 2- and 6-year-old stands. Differentially abundant metabolites that responded to stand age and associated metabolic pathways were identified. Compared with bulk soils, rhizosphere soils were enriched with more triterpenoid saponins (e.g., medicagenic acid glycosides), which showed inhibitory effects on seed germination and seedling growth. These autotoxic metabolites were accumulated in the old stand age, and their relative abundances were negatively correlated with plant growth, yield, and quality traits, as well as soil total nitrogen and alkali-hydrolyzable nitrogen concentrations. In contrast, prebiotic metabolites, represented by glycerolipids (e.g., glycerophosphocholine) and fatty acyls (e.g., colnelenic acid), were depleted in rhizosphere soils in the old stand. The relative abundances of glycerolipids and fatty acyls were positively correlated with plant traits and soil available phosphorus and alkali-hydrolyzable nitrogen concentrations. Age-induced changes in the rhizosphere metabolome mirrored the reprogramming patterns of root metabolome. The pathways of terpenoid backbone biosynthesis and plant hormone signal transduction, as well as metabolism of galactose, glycerophospholipid, and ɑ-linolenic acid in alfalfa roots were affected by stand age. The upregulation of terpenoid backbone biosynthesis in alfalfa roots of old plants, which stimulated triterpenoid saponin biosynthesis and exudation. Rhizosphere accumulation of autotoxins was accompanied by depletion of prebiotics, leading to soil degradation and exacerbating alfalfa decline. This research aids in the development of prebiotics to prevent and manage continuous cropping obstacles in alfalfa.
Collapse
Affiliation(s)
- Yuanyuan Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Rural Science and Technology Development Center, Yinchuan, Ningxia, China
| | - Xiaoping Zhou
- Ningxia Rural Science and Technology Development Center, Yinchuan, Ningxia, China
| | - Yan Shen
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Hongbin Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Ma Y, Zhou X, Shen Y, Ma H, Fu B, Lan J. Long-term alfalfa planting mediates the coupling of soil water and organic carbon storage in a semi-arid area of the Loess Plateau, China. PeerJ 2024; 12:e18373. [PMID: 39525479 PMCID: PMC11546141 DOI: 10.7717/peerj.18373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
The key to restoring arid and semi-arid ecosystems is maintaining soil water and organic carbon contents. Alfalfa (Medicago sativa L.) is a high-yield perennial forage crop and performs ecological functions as a drought-resistance leguminous herb. It has been widely planted for reconstruction of degraded soils in the Loess Plateau in northwestern China, but long-term planting may affect soil carbon-water coupling and lead to crop yield reduction. To maximize the benefits of reconstructed grassland, this study explored the couplings of soil water, organic carbon, and alfalfa productivity along a reconstruction chronosequence in a semi-arid area of the Loess Plateau. Space-for-time substitution approach was used to select different-aged stands of reconstructed grassland (1, 5, 7, 10, 15, 20, 30 years old). Alfalfa above-ground biomass (AGB), soil water storage (SWS), organic carbon storage (SOCS), and carbon-water coupling coordination degree (D) were measured in the 0-100 cm soil profile. Alfalfa AGB reached a peak in the 7th year, and the degradation began in the 10th year. Both SWS and SOCS varied nonlinearly with stand age. The greatest loss of SWS occurred in the 15th year (80-100 cm depth), whereas the largest increase of SOCS occurred in the 30th year (0-20 cm depth). There was a negative feedback relationship between AGB and SWS over the 30-year study period (Pearson r = -0.835, P = 0.098). AGB and SOCS initially showed a trade-off within the first 10 years (Pearson r = -0.7431, P = 0.2569), in contrast to their positive feedback in the 20-30th years (Pearson r = 0.9978, P = 0.0421). A decoupling between SWS and SOCS (D < 0.6) was observed after 12 years of alfalfa planting. For agricultural production, a greater supply of water and organic fertilizer is required from the 7th year of alfalfa planting, and reseeding may be needed around the 10th year to prolong the life of alfalfa community. Alfalfa should be planted for no more than 12 consecutive years in the study area for ecological protection.
Collapse
Affiliation(s)
- Yuanyuan Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Rural Science and Technology Development Center, Yinchuan, China
| | - Xiaoping Zhou
- Ningxia Rural Science and Technology Development Center, Yinchuan, China
- School of Community for Chinese Nation, North Minzu University, Yinchuan, China
| | - Yan Shen
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Northern Yanchi Desert Steppe Observation and Research Station of Ningxia, Yanchi, China
| | - Hongbin Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Northern Yanchi Desert Steppe Observation and Research Station of Ningxia, Yanchi, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Northern Yanchi Desert Steppe Observation and Research Station of Ningxia, Yanchi, China
| | - Jian Lan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Northern Yanchi Desert Steppe Observation and Research Station of Ningxia, Yanchi, China
| |
Collapse
|
3
|
Yang W, Tang S, Xu R, Zhang L, Zhou Z, Yang Y, Li Y, Xiang H. LC-MS based metabolomics identification of natural metabolites against Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1435963. [PMID: 39290733 PMCID: PMC11405212 DOI: 10.3389/fpls.2024.1435963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Fusarium is a soil-borne pathogen that poses a serious threat to the quality and yield of hundreds of crops worldwide, particularly tobacco production. Using metabolomics technology, we investigated natural metabolites from disease-conducting soil (DCS) and disease-suppressing soil (DSS) of tobacco rhizosphere as fungicides to control tobacco Fusarium wilt (TFW), which is mainly caused by Fusarium oxysporum. Furthermore, the antifungal mechanisms of these natural metabolites were preliminarily elucidated through various assessments, including antifungal activity determination, chemotaxis effect tests, PI staining experiments, and measurements of extracellular conductivity and protein content. Metabolomics results showed that the DCS with three different disease grades (G1, G5 and G9 groups) had significantly higher levels of 15, 14 and 233 differential rhizosphere metabolites (DRMs) and significantly lower levels of 72, 152 and 170 DRMs compared to the DSS (G0 group). According to KEGG pathway analysis, these DRMs were found to be enriched in the caffeine metabolism, biosynthesis of phenylpropanoids, galactose metabolism and tyrosine metabolism, etc. Linustatin, scopoletin and phenylpropiolic acid were picked out from these DRMs and found to have suppressive activity against F. oxysporum through correlation analysis and antifungal experiments. The three DRMs showed strong inhibitory effects on the growth and spore germination of F. oxysporum at concentrations of 0.5 mM or higher in each test period. Furthermore, F. oxysporum showed a phobotaxis effect against these three DRMs at concentrations as low as 0.25 mM. Finally, we found that the three DRMs had an inhibitory effect on F. oxysporum by destroying the integrity of the cell membrane and increasing the membrane permeability of F. oxysporum. This study firstly reports the inhibition activity of phenylpropiolic acid and linustatin on F. oxysporum, providing a practical and environmentally friendly method for biocontrol of TFW by using natural fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Sidi Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Rubing Xu
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Zihao Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Yanyan Li
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
4
|
Zhou A, Tang J, Du Q, Deng J, Wu J, Ma H, Wang F. Comparative physiological and transcriptomic analyses provide induction resistance mechanisms of Bacillus tequilensis against Colletotrichum fructicola in Camellia oleifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108912. [PMID: 38972241 DOI: 10.1016/j.plaphy.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Bacillus tequilensis DZY 6715 was isolated from healthy leaves in Camellia oleifera, and the strain DZY 6715 significantly inhibited anthracnose disease resulting from Colletotrichum fructicola in C. oleifera, besides, its associated mechanism of disease resistance was explored. B. tequilensis DZY 6715 treatment controlled mycelial growth of C. fructicola in C. oleifera, and significantly decreased C. oleifera anthracnose incidence and disease index compared with the control group. B. tequilensis DZY 6715 has strong biofilm forming ability, and also secretes extracellular β-1, 3-glucanase and chitinase, which could cause cell membranes damage and increased cellular compound leakage. C.oleifera treated with DZY 6715 also effectively enhanced enzyme activities and stimulated the synthesis the substances related to phenylpropane metabolism and reactive oxygen metabolism. Moreover, transcript profiling analysis revealed more differentially expressed genes related to phenylpropanoid pathway metabolism and antioxidant system inducing by DZY 6715 compared with the control in C. oleifera. Thus, it can be concluded that B. tequilensis DZY 6715 is a suitable bio-control agent to control anthracnose disease in C. oleifera.
Collapse
Affiliation(s)
- Aiting Zhou
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Qianjie Du
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Jia Deng
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, PR China
| | - Jianrong Wu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China; Key Laboratory of Forest Disaster Warning and Control in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, PR China
| | - Huancheng Ma
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China.
| | - Fang Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China; Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
5
|
Guo Y, Huang R, Niu Y, Zhang P, Li Y, Zhang W. Chemical characteristics, antioxidant capacity, bacterial community, and metabolite composition of mulberry silage ensiling with lactic acid bacteria. Front Microbiol 2024; 15:1363256. [PMID: 38650879 PMCID: PMC11033325 DOI: 10.3389/fmicb.2024.1363256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Mulberry has high crude protein and biologically active compounds but is difficult to be ensiled due to the lack of adequate epiphytic LAB. This study aimed to investigate the effects of inoculation with Lactiplantibacillus plantarum and Pediococcus pentosaceus isolated from mulberry with higher antioxidant capacity alone or in combination with Streptococcus bovis on chemical characteristics, antioxidant capacity, bacterial community, and metabolite composition of mulberry silage. The results showed that all inoculation groups had higher dry matter and lower pH than the control group, particularly in LP (dry matter, DM, 32.03% and pH = 4.44) and LP_PP_SB (DM, 31.68% and pH = 4.26) after 60 days of ensiling. Ammonia nitrogen (AN) content was the lowest in both LP_SB and LP_PP_SB groups, which were 1.86 g/kg FM and 1.05 g/kg FM, respectively, (P < 0.05). Only the LP_PP_SB group showed increased polyunsaturated fatty acids (PUFA, 1.2851 g/kg DM, P < 0.05) than the control group. Ferric-reducing antioxidant power (FRAP) values were increased in all inoculation-treated groups compared with the control group (P < 0.05). 2,2-Diphenyl-1-picrylhydrazyl (DDPH), 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and FRAP exhibited the highest levels in the LP_PP- and LP_PP_SB-treated groups. Enterobacter was dominant in both the control and SB-treated groups, and the relative abundance was 41.18% and 32.35%, respectively (P < 0.05). The relative abundance of Lactiplantibacillus was higher in the LP-, LP_PP-, and LP_SB-treated groups (81.84%-82.69%). Relative abundance of Pediococcus was higher in the PP-, PP_SB-, and LP_PP_SB-treated groups (74.27%-85.27%). Untargeted metabolomics analysis results showed that five flavonoids (apigenin, eriodictyol, quercetin-3-glucoside, rutin, and kaempferol-3-O-rutinoside)were upregulated in all inoculation groups (except for the SB-treated groups). Among them, eriodictyol was both positively correlated with ABTS and FRAP and also showed the highest relative abundance in the LP_PP- and LP_PP_SB-treated groups. To the best of our knowledge, this study was the first to investigate the relationship between inoculants of epiphytic lactic acid bacteria and antioxidant capacity by 16s rRNA Illumina sequencing technology and untargeted metabolomics analysis, respectively. Consequently, inoculated L. plantarum, P. pentosaceus alone, respectively, or in combination with S. bovis increased the relative abundance of Lactiplantibacillus and Pediococcus and decreased the relative abundance of Enterobacter, particularly in the LP_PP_SB-treated group. In addition, inoculants could increase the relative abundance of five flavonoids (apigenin, eriodictyol, quercetin-3-glucoside, rutin, and kaempferol-3-O-rutinoside), especially eriodictyol to improve the antioxidant capacity of mulberry silage.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
6
|
Wang X, Wang Y, Fu Y, Zhai Y, Bai X, Liu T, Li G, Zeng L, Zhu S. Multiple omics revealed the growth-promoting mechanism of Bacillus velezensis strains on ramie. FRONTIERS IN PLANT SCIENCE 2024; 15:1367862. [PMID: 38601307 PMCID: PMC11004232 DOI: 10.3389/fpls.2024.1367862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Beneficial bacteria that promote plant growth can shield plants from negative effects. Yet, the specific biological processes that drive the relationships between soil microbes and plant metabolism are still not fully understood. To investigate this further, we utilized a combination of microbiology and non-targeted metabolomics techniques to analyze the impact of plant growth-promoting bacteria on both the soil microbial communities and the metabolic functions within ramie (Boehmeria nivea) tissues. The findings indicated that the yield and traits of ramie plants are enhanced after treatment with Bacillus velezensis (B. velezensis). These B. velezensis strains exhibit a range of plant growth-promoting properties, including phosphate solubilization and ammonia production. Furthermore, strain YS1 also demonstrates characteristics of IAA production. The presence of B. velezensis resulted in a decrease in soil bacteria diversity, resulting in significant changes in the overall structure and composition of soil bacteria communities. Metabolomics showed that B. velezensis significantly altered the ramie metabolite spectrum, and the differential metabolites were notably enriched (P < 0.05) in five main metabolic pathways: lipid metabolism, nucleotide metabolism, amino acid metabolism, plant secondary metabolites biosynthesis, and plant hormones biosynthesis. Seven common differential metabolites were identified. Correlation analysis showed that the microorganisms were closely related to metabolite accumulation and yield index. In the B. velezensis YS1 and B. velezensis Y4-6-1 treatment groups, the relative abundances of BIrii41 and Bauldia were significantly positively correlated with sphingosine, 9,10,13-TriHOME, fresh weight, and root weight, indicating that these microorganisms regulate the formation of various metabolites, promoting the growth and development of ramie. Conclusively, B. velezensis (particularly YS1) played an important role in regulating soil microbial structure and promoting plant metabolism, growth, and development. The application of the four types of bacteria in promoting ramie growth provides a good basis for future application of biological fertilizers and bio-accelerators.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
7
|
Yang H, Wu Y, Che J, Wu W, Lyu L, Li W. LC-MS and GC-MS Metabolomics Analyses Revealed That Different Exogenous Substances Improved the Quality of Blueberry Fruits under Soil Cadmium Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:904-915. [PMID: 38112527 DOI: 10.1021/acs.jafc.3c05879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exogenous substances (ESs) can regulate plant growth and respond to environmental stress, but the effects of different ESs on blueberry fruit quality under soil cadmium (Cd) toxicity and related metabolic mechanisms are still unclear. In this study, four ES treatments [salicylic acid (SA), spermidine (Spd), 2,4-epibrassinolide (EBR), and melatonin (MT)] significantly increased blueberry fruit size, single-fruit weight, sweetness, and anthocyanin content under soil Cd toxicity and effectively reduced fruit Cd content to safe consumption levels by promoting mineral uptake (Ca, Mg, Mn, Cu and Zn). Furthermore, a total of 445, 360, 429, and 554 differentially abundant metabolites (DAMs) (LC-MS) and 63, 48, 79, and 73 DAMs (GC-MS) were identified from four comparison groups (SA/CK, Spd/CK, EBR/CK and MT/CK), respectively. The analyses revealed that ESs improved blueberry fruit quality and tolerance to Cd toxicity mainly by regulating the changes in metabolites related to ABC transporters, the TCA cycle, flavonoid biosynthesis, and phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing 210014, China
| | - Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing 210014, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Gu Y, Chen X, Shen Y, Chen X, He G, He X, Wang G, He H, Lv Z. The response of nutrient cycle, microbial community abundance and metabolic function to nitrogen fertilizer in rhizosphere soil of Phellodendron chinense Schneid seedlings. Front Microbiol 2023; 14:1302775. [PMID: 38173676 PMCID: PMC10762311 DOI: 10.3389/fmicb.2023.1302775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Nitrogen (N) as an essential macronutrient affects the soil nutrient cycle, microbial community abundance, and metabolic function. However, the specific responses of microorganisms and metabolic functions in rhizosphere soil of Phellodendron chinense Schneid seedlings to N addition remain unclear. In this study, four treatments (CK, N5, N10 and N15) were conducted, and the soil physicochemical properties, enzyme activities, microbial community abundances and diversities, metabolism, and gene expressions were investigated in rhizosphere soil of P. chinense Schneid. The results showed that N addition significantly decreased rhizosphere soil pH, among which the effect of N10 treatment was better. N10 treatment significantly increased the contents of available phosphorus (AP), available potassium (AK), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and sucrase (SU) activity, as well as fungal diversity and the relative expression abundances of amoA and phoD genes in rhizosphere soil, but observably decreased the total phosphorus (TP) content, urease (UR) activity and bacterial diversity, among which the pH, soil organic matter (SOM), AP, NH4+-N and NO3--N were the main environmental factors for affecting rhizosphere soil microbial community structure based on RDA and correlation analyses. Meanwhile, N10 treatment notably enhanced the absolute abundances of the uracil, guanine, indole, prostaglandin F2α and γ-glutamylalanine, while reduced the contents of D-phenylalanine and phenylacetylglycine in rhizosphere soil of P. chinense Schneid seedlings. Furthermore, the soil available nutrients represented a significant correlation with soil metabolites and dominant microorganisms, suggesting that N10 addition effectively regulated microbial community abundance and metabolic functions by enhancing nutrient cycle in the rhizosphere soil of P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Yuanzheng Gu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xianglin Chen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yan Shen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL, United States
| | - Gongxiu He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xinxing He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Guangjun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhencheng Lv
- School of Life Sciences, Huizhou University, Huizhou, Guangdong, China
| |
Collapse
|