1
|
He Q, Yu Y, Qin Z, Duan Y, Liu H, Li W, Song X, Zhu G, Shang X, Guo W. COBRA-LIKE 9 modulates cotton cell wall development via regulating cellulose deposition. PLANT PHYSIOLOGY 2024; 197:kiae675. [PMID: 39704297 DOI: 10.1093/plphys/kiae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Plant cell walls are complex and dynamic cellular structures critical for plant growth, development, physiology, and adaptation. Cellulose is one of the most important components of the cell wall. However, how cellulose microfibrils deposit and assemble into crystalline cellulose remains elusive. The COBRA-LIKE plant-specific protein family plays a vital role in modulating the deposition and orientation of cellulose microfibril in plant cell walls. Here, we investigate the role of GhCOBL9 in cotton (Gossypium hirsutum) fiber development, an ideal model for studying cell elongation and cell wall thickening. The expression period of GhCOBL9 is consistent with the thickening stage of the secondary wall of cotton fibers. Overexpression of GhCOBL9 results in increased cellulose content in the cell wall and produces shorter, thicker, and stronger fibers, while RNA interference (RNAi)-mediated downregulation of GhCOBL9 leads to the opposite phenotypes, indicating its crucial role in cell wall development. Subcellular localization and binding activity assays reveal that GhCOBL9 targets the cell wall and binds to crystalline cellulose with high affinity. Transcriptomic analysis of GhCOBL9 transgenic lines uncovers expression alterations in genes related to cellulose and monosaccharide biosynthesis. Furthermore, we identify a fasciclin-like arabinogalactan protein 9 (GhFLA9) as an interacting partner of GhCOBL9 to modulate cell wall development. Additionally, the R2R3-MYB transcription factor GhMYB46-5 activates GhCOBL9 expression by binding to the MYB46-responsive cis-regulatory element in the GhCOBL9 promoter. These findings broaden our knowledge of COBL function in modulating plant cell wall development.
Collapse
Affiliation(s)
- Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiguang Qin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
| | - Yujia Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanqiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
| |
Collapse
|
2
|
Fu WW, Wang ZY, Liusui YH, Zhang X, Han AX, Zhong XY, Zhang JB, Guo YJ. Genome-wide analysis of the cotton COBRA-like gene family and functional characterization of GhCOBL22 in relation to drought tolerance. BMC PLANT BIOLOGY 2024; 24:1242. [PMID: 39716062 DOI: 10.1186/s12870-024-05965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The COBRA-like (COBL) gene family is a crucial glycosylphosphatidylinositol (GPI)-anchored proteins that participate in various biological processes in plants by regulating the arrangement of cell wall microfibrils. While the functions of COBL genes have been analyzed in several plant species, their roles in cotton's response to abiotic stress remain unexplored. RESULTS This study identified and characterized the COBL gene family in Gossypium hirsutum, revealing a total of 39 COBL family members classified into five subgroups. Transcriptome analysis indicated that the transcription levels of several GhCOBL genes were upregulated following PEG treatment, with GhCOBL22 being significantly induced. Further silencing of the GhCOBL22 gene through virus-induced gene silencing (VIGS) technology demonstrated that this gene's silencing reduced cotton's drought stress tolerance. Under drought stress conditions, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzymes, along with proline (PRO) content, were lower in GhCOBL22-silenced plants compared to control plants, while the accumulation of malondialdehyde (MDA) was significantly higher. Moreover, silencing the GhCOBL22 gene also led to reductions in the levels of cellulose, hemicellulose, and lignin content in cotton leaves. CONCLUSION A systematic survey of gene structure, motif composition, and evolutionary relationships of the COBL gene family was conducted in Gossypium hirsutum. Subsequent expression and functional studies indicated that GhCOBL22 plays a significant role in cotton's drought tolerance. These findings enhance our understanding of the biological functions of the COBL family and highlight the critical role of the GhCOBL22 gene in cotton's response to drought stress.
Collapse
Affiliation(s)
- Wan-Wan Fu
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Zi-Yu Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Yun-Hao Liusui
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Xin Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Ai-Xia Han
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Xing-Yue Zhong
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China
| | - Jing-Bo Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China.
| | - Yan-Jun Guo
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China.
| |
Collapse
|
3
|
Zhao W, Zeng D, Zhao C, Han D, Li S, Wen M, Liang X, Zhang X, Liu Z, Ali S, Jiang Z. Identification of QTLs and Key Genes Enhancing Lodging Resistance in Soybean Through Chemical and Physical Trait Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3470. [PMID: 39771167 PMCID: PMC11728735 DOI: 10.3390/plants13243470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Lodging of soybean (Glycine max (L.) Merril.) significantly reduces seed yield and quality, particularly in high-yielding environments. This phenomenon occurs when stems weaken under the weight of the plants, complicating harvesting. This study investigated the relationship between soybean stem chemical composition, physical traits, and lodging resistance to improve yield and resilience. We found that as plant density increased, stem hardness decreased, and the elasticity increased, heightening the risk of lodging. Conversely, high temperature (28 °C) boosted lignin, cellulose and pectin content in the stem cell walls, enhancing the lodging resistance. Additionally, after excluding differences in phylogenetic relationships through cluster analysis, we mapped environment-stable genes linked to lodging resistance and identified new QTLs on Chr3 and Chr16. Candidate genes associated with these QTLs were confirmed using qRT-PCR and hormone treatments across diverse soybean varieties. It was found that the expression of stem tip genes was closely related to stem node diameter. These findings provide a theoretical foundation for breeding high-yielding soybean varieties with improved lodging resistance, and advance efforts to develop resilient soybean cultivars.
Collapse
Affiliation(s)
- Wanying Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (D.Z.); (C.Z.); (S.L.); (M.W.); (X.L.)
| | - Depeng Zeng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (D.Z.); (C.Z.); (S.L.); (M.W.); (X.L.)
| | - Caitong Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (D.Z.); (C.Z.); (S.L.); (M.W.); (X.L.)
| | - Dezhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China;
| | - Shuo Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (D.Z.); (C.Z.); (S.L.); (M.W.); (X.L.)
| | - Mingxing Wen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (D.Z.); (C.Z.); (S.L.); (M.W.); (X.L.)
| | - Xuefeng Liang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (D.Z.); (C.Z.); (S.L.); (M.W.); (X.L.)
| | - Xianfeng Zhang
- The Training Center of the Undergraduate, Northeast Agricultural University, Harbin 150030, China;
| | - Zhihua Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China;
| | - Shahid Ali
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Zhenfeng Jiang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (D.Z.); (C.Z.); (S.L.); (M.W.); (X.L.)
| |
Collapse
|
4
|
Xue JY, McNair G, Watanabe Y, Kaplen MV, Guevara-Rozo S, Schuetz M, Schneider R, Mansfield SD, Samuels AL. COBRA-LIKE4 modulates cellulose synthase velocity and facilitates cellulose deposition in the secondary cell wall. PLANT PHYSIOLOGY 2024; 196:2531-2548. [PMID: 39230913 PMCID: PMC11852337 DOI: 10.1093/plphys/kiae469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Cellulose is a critical component of secondary cell walls (CWs) and woody tissues of plants. Cellulose synthase (CESA) complexes (CSCs) produce cellulose as they move within the plasma membrane, extruding glucan chains into the CW that coalesce and often crystallize into cellulose fibrils. Here we examine COBRA-LIKE4 (COBL4), a GPI-anchored protein on the outer leaflet of the plasma membrane that is required for normal cellulose deposition in secondary CWs. Characterization of the Arabidopsis (Arabidopsis thaliana) cobl4 mutant alleles called irregular xylem6, irx6-2 and irx6-3, showed reduced α-cellulose content and lower crystallinity, supporting a role for COBL4 in maintaining cellulose quantity and quality. In live-cell imaging, mNeon Green-tagged CESA7 moved in the plasma membrane at higher speeds in the irx6-2 background compared to wild-type. To test conservation of COBL4 function between herbaceous and woody plants, poplar (Populus trichocarpa) COBL4 homologs PtCOBL4a and PtCOBL4b were transformed into, and rescued, the Arabidopsis irx6 mutants. Using the Arabidopsis secondary CW-inducible VND7-GR system to study poplar COBL4 dynamics, YFP-tagged PtCOBL4a localized to the plasma membrane in regions of high cellulose deposition in secondary CW bands. As predicted for a lipid-linked protein, COBL4 was more mobile in the plane of the plasma membrane than CESA7 or a control plasma membrane marker. Following programmed cell death, COBL4 anchored to the secondary CW bands. These data support a role for COBL4 as a modulator of cellulose organization in the secondary CW, influencing cellulose production, and CSC velocity at the plasma membrane.
Collapse
Affiliation(s)
- Jan Y Xue
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Grant McNair
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Madison V Kaplen
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sydne Guevara-Rozo
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rene Schneider
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Shawn D Mansfield
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Wood Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Yin L, Ma L, Jiang X, Zhang Y, Wei Y, Cao Y, Yao L, Guo J. Positional differences in the micro- and ultra-structural variations of ray parenchyma cells during the transformation from sapwood to heartwood. FRONTIERS IN PLANT SCIENCE 2024; 15:1431818. [PMID: 39290738 PMCID: PMC11405218 DOI: 10.3389/fpls.2024.1431818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Ray parenchyma cells are involved in the initiation of heartwood formation. The position within a ray influences the timing of ray parenchyma cell differentiation and function; however, there is little information concerning the positional influence on the cellular changes of ray parenchyma cells from sapwood and heartwood. In this study, radial variations in morphology, size, and ultrastructure of ray parenchyma cells were studied by combined transmission electron microscopy and optical microscopy. Results showed that cellular traits of ray parenchyma cells in Populus tomentosa were all affected by both radial position in the secondary xylem and position within a ray. Specifically, radial variations in cellular traits were more evident in isolation cells, which were not adjacent to vessel elements. Both cell length and cell width/length ratio of isolation cells were bigger than contact cells, which contacted adjacent vessel elements via pits. Moreover, the secondary wall thickening and lignification of contact cells developed in the current-year xylem, much earlier than isolation cells. Secondary walls in contact cells were in a polylamellate structure with a protective layer on the inner side. No alteration in the ultrastructure of contact cells occurred in the sapwood-heartwood transition zone, except that most contact cells died. By contrast, in the transition zone, isolation cells still lived. A thin secondary wall began to deposit on the thick primary wall of isolation cells, with two isotropic layers on the inner side of the primary wall and secondary wall respectively being characteristic. Meanwhile, starch grains in isolation cells were depleted, and dark polyphenolic droplets lost their spherical shape and flowed together. Furthermore, the intercellular spaces of isolation cells became densified in the transition zone. Overall, cellular changes suggested that the positional information of ray parenchyma cells appeared to be an important factor in the transformation from sapwood to heartwood. Unlike contact cells, isolation cells were more elongated, specialized in radial transport, had a delayed formation of secondary walls, and were involved in the synthesis of heartwood substances. Our result promotes the elucidation of the involvement of xylem rays in heartwood formation.
Collapse
Affiliation(s)
- Lijuan Yin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China
| | - Lingyu Ma
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Xiaomei Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Yonggang Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Yupei Wei
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Lihong Yao
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China
| | - Juan Guo
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
6
|
Keret R, Drew DM, Hills PN. Xylem cell size regulation is a key adaptive response to water deficit in Eucalyptus grandis. TREE PHYSIOLOGY 2024; 44:tpae068. [PMID: 38896029 PMCID: PMC11247191 DOI: 10.1093/treephys/tpae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Future climatic scenarios forecast increasingly frequent droughts that will pose substantial consequences on tree mortality. In light of this, drought-tolerant eucalypts have been propagated; however, the severity of these conditions will invoke adaptive responses, impacting the commercially valuable wood properties. To determine what mechanisms govern the wood anatomical adaptive response, highly controlled drought experiments were conducted in Eucalyptus grandis W. Hill ex Maiden, with the tree physiology and transcriptome closely monitored. In response to water deficit, E. grandis displays an isohydric stomatal response to conserve water and enable stem growth to continue, albeit at a reduced rate. Maintaining gaseous exchange is likely a critical short-term response that drives the formation of hydraulically safer xylem. For instance, the development of significantly smaller fibers and vessels was found to increase cellular density, thereby promoting drought tolerance through improved functional redundancy, as well as implosion and cavitation resistance. The transcriptome was explored to identify the molecular mechanisms responsible for controlling xylem cell size during prolonged water deficit. Downregulation of genes associated with cell wall remodeling and the biosynthesis of cellulose, hemicellulose and pectin appeared to coincide with a reduction in cellular enlargement during drought. Furthermore, transcript levels of NAC and MYB transcription factors, vital for cell wall component biosynthesis, were reduced, while those linked to lignification increased. The upregulation of EgCAD and various peroxidases under water deficit did not correlate with an increased lignin composition. However, with the elevated cellular density, a higher lignin content per xylem cross-sectional area was observed, potentially enhancing hydraulic safety. These results support the requirement for higher density, drought-adapted wood as a long-term adaptive response in E. grandis, which is largely influenced by the isohydric stomatal response coupled with cellular expansion-related molecular processes.
Collapse
Affiliation(s)
- Rafael Keret
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
- Department of Forestry and Wood Sciences, Stellenbosch University, Bosman St, Stellenbosch 7599, South Africa
| | - David M Drew
- Department of Forestry and Wood Sciences, Stellenbosch University, Bosman St, Stellenbosch 7599, South Africa
| | - Paul N Hills
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
7
|
Manjunath KK, Krishna H, Devate NB, Sunilkumar VP, Patil SP, Chauhan D, Singh S, Kumar S, Jain N, Singh GP, Singh PK. QTL mapping: insights into genomic regions governing component traits of yield under combined heat and drought stress in wheat. Front Genet 2024; 14:1282240. [PMID: 38269367 PMCID: PMC10805833 DOI: 10.3389/fgene.2023.1282240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Drought and heat frequently co-occur during crop growth leading to devastating yield loss. The knowledge of the genetic loci governing component traits of yield under combined drought and heat stress is essential for enhancing the climate resilience. The present study employed a mapping population of 180 recombinant inbred lines (RILs) derived from a cross between GW322 and KAUZ to identify quantitative trait loci (QTLs) governing the component traits of yield under heat and combined stress conditions. Phenotypic evaluation was conducted across two consecutive crop seasons (2021-2022 and 2022-2023) under late sown irrigation (LSIR) and late sown restricted irrigation (LSRI) conditions at the Indian Council of Agricultural Research Institute-Indian Agricultural Research Institute (ICAR-IARI), New Delhi. Various physiological and agronomic traits of importance were measured. Genotyping was carried out with 35K SNP Axiom breeder's genotyping array. The linkage map spanned a length of 6769.45 cM, ranging from 2.28 cM/marker in 1A to 14.21 cM/marker in 5D. A total of 35 QTLs were identified across 14 chromosomes with 6B containing the highest (seven) number of QTLs. Out of 35 QTLs, 16 were major QTLs explaining the phenotypic variance greater than 10%. The study identified eight stable QTLs along with two hotspots on chromosomes 6B and 5B. Five QTLs associated with traits thousand-grain weight (TGW), normalized difference vegetation index (NDVI), and plant height (PH) were successfully validated. Candidate genes encoding antioxidant enzymes, transcription factors, and growth-related proteins were identified in the QTL regions. In silico expression analysis highlighted higher expression of transcripts TraesCS2D02G021000.1, TraesCS2D02G031000, TraesCS6A02G247900, and TraesCS6B02G421700 under stress conditions. These findings contribute to a deeper understanding of the genetic architecture underlying combined heat and drought tolerance in wheat, providing valuable insights for wheat improvement strategies under changing climatic conditions.
Collapse
Affiliation(s)
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sahana Police Patil
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Divya Chauhan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Hussain Q, Ye T, Shang C, Li S, Khan A, Nkoh JN, Mustafa AEZMA, Elshikh MS. NRAMP gene family in Kandelia obovata: genome-wide identification, expression analysis, and response to five different copper stress conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1318383. [PMID: 38239217 PMCID: PMC10794735 DOI: 10.3389/fpls.2023.1318383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Natural resistance-associated macrophage proteins (NRAMPs) are a class of metal transporters found in plants that exhibit diverse functions across different species. Transporter proteins facilitate the absorption, distribution, and sequestration of metallic elements within various plant tissues. Despite the extensive identification of NRAMP family genes in various species, a full analysis of these genes in tree species is still necessary. Genome-wide identification and bioinformatics analysis were performed to understand the roles of NRAMP genes in copper (CuCl2) stress in Kandelia obovata (Ko). In Arachis hypogaea L., Populus trichocarpa, Vitis vinifera, Phaseolus vulgaris L., Camellia sinensis, Spirodela polyrhiza, Glycine max L. and Solanum lycopersicum, a genome-wide study of the NRAMP gene family was performed earlier. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and CuCl2 were all investigated in this research. In order to comprehend the notable functions of the NRAMP gene family in Kandelia obovata, a comprehensive investigation was conducted at the genomic level. This study successfully found five NRAMP genes, encompassing one gene pair resulting from whole-genome duplication and a gene that had undergone segmental duplication. The examination of chromosomal position revealed an unequal distribution of the KoNRAMP genes across chromosomes 1, 2, 5, 7, and 18. The KoNRAMPs can be classified into three subgroups (I, II, and SLC) based on phylogeny and synteny analyses, similar to Solanum lycopersicum. Examining cis-regulatory elements in the promoters revealed five hormone-correlated responsive elements and four stress-related responsive elements. The genomic architecture and properties of 10 highly conserved motifs are similar among members of the NRAMP gene family. The conducted investigations demonstrated that the expression levels of all five genes exhibited alterations in response to different levels of CuCl2 stress. The results of this study offer crucial insights into the roles of KoNRAMPs in the response of Kandelia obovata to CuCl2 stress.
Collapse
Affiliation(s)
- Quaid Hussain
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ting Ye
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Chenjing Shang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Sihui Li
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Asadullah Khan
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | | | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Hussain Q, Ye T, Shang C, Li S, Nkoh JN, Li W, Hu Z. Genome-Wide Identification, Characterization, and Expression Analysis of the Copper-Containing Amine Oxidase Gene Family in Mangrove Kandelia obovata. Int J Mol Sci 2023; 24:17312. [PMID: 38139139 PMCID: PMC10743698 DOI: 10.3390/ijms242417312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Copper-containing amine oxidases (CuAOs) are known to have significant involvement in the process of polyamine catabolism, as well as serving crucial functions in plant development and response to abiotic stress. A genome-wide investigation of the CuAO protein family was previously carried out in sweet orange (Citrus sinensis) and sweet cherry (Prunus avium L.). Six CuAO (KoCuAO1-KoCuAO6) genes were discovered for the first time in the Kandelia obovata (Ko) genome through a genome-wide analysis conducted to better understand the key roles of the CuAO gene family in Kandelia obovata. This study encompassed an investigation into various aspects of gene analysis, including gene characterization and identification, subcellular localization, chromosomal distributions, phylogenetic tree analysis, gene structure analysis, motif analysis, duplication analysis, cis-regulatory element identification, domain and 3D structural variation analysis, as well as expression profiling in leaves under five different treatments of copper (CuCl2). Phylogenetic analysis suggests that these KoCuAOs, like sweet cherry, may be subdivided into three subgroups. Examining the chromosomal location revealed an unequal distribution of the KoCuAO genes across four out of the 18 chromosomes in Kandelia obovata. Six KoCuAO genes have coding regions with 106 and 159 amino acids and exons with 4 and 12 amino acids. Additionally, we discovered that the 2.5 kb upstream promoter region of the KoCuAOs predicted many cis elements linked to phytohormones and stress responses. According to the expression investigations, CuCl2 treatments caused up- and downregulation of all six genes. In conclusion, our work provides a comprehensive overview of the expression pattern and functional variety of the Kandelia obovata CuAO gene family, which will facilitate future functional characterization of each KoCuAO gene.
Collapse
Affiliation(s)
- Quaid Hussain
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Z.H.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Z.H.)
| | - Chenjing Shang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Z.H.)
| | - Sihui Li
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Z.H.)
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Z.H.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Z.H.)
| |
Collapse
|
10
|
Hussain Q, Ye T, Li S, Nkoh JN, Zhou Q, Shang C. Genome-Wide Identification and Expression Analysis of the Copper Transporter ( COPT/ Ctr) Gene Family in Kandelia obovata, a Typical Mangrove Plant. Int J Mol Sci 2023; 24:15579. [PMID: 37958561 PMCID: PMC10648262 DOI: 10.3390/ijms242115579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The copper transporter (COPT/Ctr) gene family plays a critical part in maintaining the balance of the metal, and many diverse species depend on COPT to move copper (Cu) across the cell membrane. In Arabidopsis thaliana, Oryza sativa, Medicago sativa, Zea mays, Populus trichocarpa, Vitis vinifera, and Solanum lycopersicum, a genome-wide study of the COPT protein family was performed. To understand the major roles of the COPT gene family in Kandelia obovata (Ko), a genome-wide study identified four COPT genes in the Kandelia obovata genome for the first time. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and Cu were all investigated in this research. Structural and sequence investigations show that most KoCOPTs have three transmembrane domains (TMDs). According to phylogenetic research, these KoCOPTs might be divided into two subgroups, just like Populus trichocarpa. KoCOPT gene segmental duplications and positive selection pressure were discovered by universal analysis. According to gene structure and motif analysis, most KoCOPT genes showed consistent exon-intron and motif organization within the same group. In addition, we found five hormones and four stress- and seven light-responsive cis-elements in the KoCOPTs promoters. The expression studies revealed that all four genes changed their expression levels in response to copper (CuCl2) treatments. In summary, our study offers a thorough overview of the Kandelia obovata COPT gene family's expression pattern and functional diversity, making it easier to characterize each KoCOPT gene's function in the future.
Collapse
Affiliation(s)
- Quaid Hussain
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
| | - Sihui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
| | - Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiao Zhou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
| |
Collapse
|