1
|
Song H, Qiu SS, Zhao B, Liu X, Tseng YT, Wang L. A Machine Learning Approach for Behavioral Recognition of Stress Levels in Mice. Neurosci Bull 2024; 40:1950-1954. [PMID: 39227540 PMCID: PMC11625035 DOI: 10.1007/s12264-024-01291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Hao Song
- College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China
- Key Laboratory of Digital Medical Engineering of Hebei, Hebei University, Baoding, 071002, China
| | - Shirley Shimin Qiu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiuling Liu
- College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China.
- Key Laboratory of Digital Medical Engineering of Hebei, Hebei University, Baoding, 071002, China.
| | - Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Lane HY, Wang SH, Lin CH. Sex- and dose-dependent catalase increase and its clinical impact in a benzoate dose-finding, randomized, double-blind, placebo-controlled trial for Alzheimer's disease. Pharmacol Biochem Behav 2024; 245:173885. [PMID: 39384087 DOI: 10.1016/j.pbb.2024.173885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Sex differences in Alzheimer's disease (AD) are gaining increasing attention. Previously research has shown that sodium benzoate treatment can improve cognitive function in AD patients, particularly in the female patients; and 1000 mg/day of benzoate appears more efficacious than lower doses. Catalase is a crucial endogenous antioxidant; and deficiency of catalase is regarded to be related to the pathogenesis of AD. The current study aimed to explore the role of sex and benzoate dose in the change of catalase activity among benzoate-treated AD patients. METHODS This secondary analysis used data from a double-blind trial, in which 149 CE patients were randomized to receive placebo or one of three benzoate doses (500, 750, or 1000 mg/day) and measured with Alzheimer's disease assessment scale-cognitive subscale. Plasma catalase was assayed before and after treatment. RESULTS Benzoate treatment, particularly at 1000 mg/day, increased catalase among female patients, but not among male. The increases in the catalase activity among the benzoate-treated women were correlated with their cognitive improvements. In addition, higher baseline catalase activity was associated with more cognitive improvement after benzoate treatment among both female and male patients. CONCLUSIONS Supporting the oxidative stress theory and sex difference in AD, the finding suggest that sex (female) and benzoate dose co-determine catalase increase in benzoate-treated AD patients and the catalase increment contributes to cognitive improvement of benzoate-treated women. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03752463.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Fujikawa R, Yamada J, Maeda S, Iinuma KM, Moriyama G, Jinno S. Inhibition of reactive oxygen species production accompanying alternatively activated microglia by risperidone in a mouse ketamine model of schizophrenia. J Neurochem 2024; 168:2690-2709. [PMID: 38770640 DOI: 10.1111/jnc.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Recent studies have highlighted the potential involvement of reactive oxygen species (ROS) and microglia, a major source of ROS, in the pathophysiology of schizophrenia. In our study, we explored how the second-generation antipsychotic risperidone (RIS) affects ROS regulation and microglial activation in the hippocampus using a mouse ketamine (KET) model of schizophrenia. KET administration resulted in schizophrenia-like behaviors in male C57BL/6J mice, such as impaired prepulse inhibition (PPI) of the acoustic startle response and hyper-locomotion. These behaviors were mitigated by RIS. We found that the gene expression level of an enzyme responsible for ROS production (Nox2), which is primarily associated with activated microglia, was lower in KET/RIS-treated mice than in KET-treated mice. Conversely, the levels of antioxidant enzymes (Ho-1 and Gclc) were higher in KET/RIS-treated mice. The microglial density in the hippocampus was increased in KET-treated mice, which was counteracted by RIS. Hierarchical cluster analysis revealed three morphological subtypes of microglia. In control mice, most microglia were resting-ramified (type I, 89.7%). KET administration shifted the microglial composition to moderately ramified (type II, 44.4%) and hyper-ramified (type III, 25.0%). In KET/RIS-treated mice, type II decreased to 32.0%, while type III increased to 34.0%. An in vitro ROS assay showed that KET increased ROS production in dissociated hippocampal microglia, and this effect was mitigated by RIS. Furthermore, we discovered that a NOX2 inhibitor could counteract KET-induced behavioral deficits. These findings suggest that pharmacological inhibition of ROS production by RIS may play a crucial role in ameliorating schizophrenia-related symptoms. Moreover, modulating microglial activation to regulate ROS production has emerged as a novel avenue for developing innovative treatments for schizophrenia.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Li D, Pan Q, Xiao Y, Hu K. Advances in the study of phencyclidine-induced schizophrenia-like animal models and the underlying neural mechanisms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:65. [PMID: 39039065 PMCID: PMC11263595 DOI: 10.1038/s41537-024-00485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Schizophrenia (SZ) is a chronic, severe mental disorder with heterogeneous clinical manifestations and unknown etiology. Research on SZ has long been limited by the low reliability of and ambiguous pathogenesis in schizophrenia animal models. Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, rapidly induces both positive and negative symptoms of SZ as well as stable SZ-related cognitive impairment in rodents. However, the neural mechanism underlying PCP-induced SZ-like symptoms is not fully understood. Nondopaminergic pathophysiology, particularly excessive glutamate release induced by NMDAR hypofunction in the prefrontal cortex (PFC), may play a key role in the development of PCP-induced SZ-like symptoms. In this review, we summarize studies on the behavioral and metabolic effects of PCP and the cellular and circuitary targets of PCP in the PFC and hippocampus (HIP). PCP is thought to target the ventral HIP-PFC pathway more strongly than the PFC-VTA pathway and thalamocortical pathway. Systemic PCP administration might preferentially inhibit gamma-aminobutyric acid (GABA) neurons in the vHIP and in turn lead to hippocampal pyramidal cell disinhibition. Excitatory inputs from the HIP may trigger sustained, excessive and pathological PFC pyramidal neuron activation to mediate various SZ-like symptoms. In addition, astrocyte and microglial activation and oxidative stress in the cerebral cortex or hippocampus have been observed in PCP-induced models of SZ. These findings perfect the hypoglutamatergic hypothesis of schizophrenia. However, whether these effects direct the consequences of PCP administration and how about the relationships between these changes induced by PCP remain further elucidation through rigorous, causal and direct experimental evidence.
Collapse
Affiliation(s)
- Dabing Li
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China.
| | - Qiangwen Pan
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Yewei Xiao
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Kehui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing, 629000, China.
| |
Collapse
|
5
|
Hajizadeh Moghaddam A, Malekzadeh Estalkhi F, Khanjani Jelodar S, Ahmed Hasan T, Farhadi-Pahnedari S, Karimian M. Neuroprotective effects of alpha-pinene against behavioral deficits in ketamine-induced mice model of schizophrenia: Focusing on oxidative stress status. IBRO Neurosci Rep 2024; 16:182-189. [PMID: 38318342 PMCID: PMC10839590 DOI: 10.1016/j.ibneur.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 02/07/2024] Open
Abstract
Schizophrenia (SCZ) is a profound neurological disorder that affects approximately 1% of the global population. Alpha-pinene (α-pinene) is a natural and active monoterpene found in coniferous tree oil, primarily pine, with diverse pharmacological characteristics, including antioxidative, anxiolytic, and antidepressant properties. This research study delves into the neuroprotective effects of α-pinene on oxidative stress, memory deficits, and depressive and anxiety-like behaviors in a ketamine-induced mice model of SCZ using male mice. The mice were randomly divided into six groups: vehicle, control, positive control, ketamine, α-pinene at 50 mg/kg, and α-pinene at 100 mg/kg. Treatment of the ketamine-induced mice model of SCZ with α-pinene yielded significant improvements in depressive and anxiety-like behaviors and cognitive impairments. Furthermore, it significantly elevated glutathione (GSH) levels, total antioxidant capacity (TAC), dopamine levels, catalase (CAT), and superoxide dismutase (SOD) activities while markedly reducing malondialdehyde (MDA) levels. The current study establishes that α-pinene treatment effectively mitigates oxidative damage, cognitive deficits, and depressive and anxiogenic-like behaviors in the brains of ketamine-treated mice. Therefore, α-pinene treatment is an efficacious approach to forestall the neurobehavioral and neurobiochemical adverse effects of the ketamine-induced SCZ model of mice.
Collapse
Affiliation(s)
| | | | | | - Tabarek Ahmed Hasan
- Department of Animal Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
6
|
O'Donnell P, Buhl DL, Johannesen J, Lijffijt M. Neural Circuitry-Related Biomarkers for Drug Development in Psychiatry: An Industry Perspective. ADVANCES IN NEUROBIOLOGY 2024; 40:45-65. [PMID: 39562440 DOI: 10.1007/978-3-031-69491-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Drug development in psychiatry has been hampered by the lack of reliable ways to determine the neurobiological effects of the assets tested, difficulties in identifying patient subsets more amenable to benefit from a given asset, and issues with executing trials in a manner that would convincingly provide answers. An emerging idea in many companies is to validate tools to address changes in neural circuits by pharmacological tools as a key piece in quantifying the effects of our drugs. Here, we review past, present, and emerging approaches to capture the outcome of the modulation of brain circuits. The field is now ripe for implementing these approaches in drug development.
Collapse
Affiliation(s)
| | - Derek L Buhl
- Precision Medicine, Abbvie, Inc, Cambridge, MA, USA
| | | | | |
Collapse
|
7
|
Yazla E, Cetin I, Kayadibi H. Assessing the relationship between antipsychotic drug use and prolidase enzyme activity and oxidative stress in schizophrenia patients: a case-control study. Int Clin Psychopharmacol 2023; 38:394-401. [PMID: 37490605 DOI: 10.1097/yic.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND The relationship between proline, its association with oxidative stress, and its connection to schizophrenia is a subject that has not been sufficiently investigated. OBJECTIVE The aim of this study is to evaluate the possible effects of atypical and combined (typical and atypical) antipsychotic use on serum prolidase enzyme activity (SPEA) and serum oxidative stress parameters, and to assess the relationship between SPEA and oxidative stress in patients with schizophrenia. METHODS A total of 57 patients with schizophrenia, of which 34 were using atypical (AAPG) and 23 were using combined (typical and atypical) (CAPG) antipsychotic therapy, and 28 healthy volunteers (control group) were included in this case-control study. RESULTS SPEA levels of AAPG and CAPG were significantly lower than that of control group ( P = 0.003). The oxidative stress index (OSI) value of AAPG was significantly higher than the other two groups ( P = 0.001). SPEA (<1860 U/l) and OSI (≥0.54) could discriminate schizophrenia patients with antipsychotic therapy from control groups ( P = 0.001 and P = 0.007, respectively). Lower SPEA levels were associated with antipsychotic use ( P = 0.007). CONCLUSION The SPEA values of patients with schizophrenia on antipsychotics were significantly lower compared to controls. OSI values were significantly higher in atypical antipsychotic recipients compared to those on combined antipsychotics and healthy controls.
Collapse
Affiliation(s)
- Ece Yazla
- Department of Psychiatry, Hitit University Faculty of Medicine
| | - Ihsan Cetin
- Department of Medical Biochemistry, Hitit University Faculty of Medicine, Corum
| | - Huseyin Kayadibi
- Department of Biochemistry, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
8
|
Ju S, Shin Y, Han S, Kwon J, Choi TG, Kang I, Kim SS. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023; 15:4391. [PMID: 37892465 PMCID: PMC10610543 DOI: 10.3390/nu15204391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Lin CH, Li TM, Huang YJ, Chen SJ, Lane HY. Differential Impacts of Endogenous Antioxidants on Clinical Symptoms and Cognitive Function in Acute and Chronic Schizophrenia Patients. Int J Neuropsychopharmacol 2023; 26:576-583. [PMID: 37422918 PMCID: PMC10464923 DOI: 10.1093/ijnp/pyad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Impaired antioxidant defense is implicated in the pathophysiology of schizophrenia, and superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) are 3 first-line endogenous antioxidants. Various cognitive functions decline differently during the schizophrenia course. The characteristic roles of the 3 antioxidants in clinical and cognitive profiles in acute and chronic phases of schizophrenia require study. METHODS We recruited 311 patients with schizophrenia, including 92 acutely exacerbated patients who had been off antipsychotics for at least 2 weeks and 219 chronic patients who had been stable on medication for at least 2 months. Blood SOD, CAT, and GSH levels; clinical symptoms; and 9 cognitive test scores were measured. RESULTS Blood CAT levels were higher in the acute patients than in the chronic patients, whereas SOD and GSH levels were similar to one another. Higher CAT levels were correlated with less positive symptoms, better working memory and problem solving in the acute phase, and less negative symptoms, less general psychopathology, better global assessment of function, and better cognitive function (in speed of processing, attention, problem solving) in the chronic period. Higher SOD levels were correlated with better global assessment of function in the acute phase and better speed of processing, working memory, and verbal learning and memory in the chronic period. GSH influenced neither clinical nor cognitive manifestations. CONCLUSIONS This study showed that blood CAT affected different clinical and cognitive domains between acute and chronic stages of schizophrenia, SOD influenced cognitive functions in chronic state, but GSH affected none. Further studies are needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tin-May Li
- Department of Psychiatry and Center for Addiction and Mental Health, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Jhen Huang
- Department of Psychiatry and Center for Addiction and Mental Health, China Medical University Hospital, Taichung, Taiwan
| | - Shaw-Ji Chen
- Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry and Center for Addiction and Mental Health, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Gokulakrishnan K, Nikhil J, Viswanath B, Thirumoorthy C, Narasimhan S, Devarajan B, Joseph E, David AKD, Sharma S, Vasudevan K, Sreeraj VS, Holla B, Shivakumar V, Debnath M, Venkatasubramanian G, Varambally S. Comparison of gut microbiome profile in patients with schizophrenia and healthy controls - A plausible non-invasive biomarker? J Psychiatr Res 2023; 162:140-149. [PMID: 37156128 DOI: 10.1016/j.jpsychires.2023.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The human gut microbiome regulates brain function through the microbiome-gut-brain axis and is implicated in several neuropsychiatric disorders. However, the relationship between the gut microbiome and the pathogenesis of schizophrenia (SCZ) is poorly defined, and very few studies have examined the effect of antipsychotic treatment response. We aim to study the differences in the gut microbiota among drug-naïve (DN SCZ) and risperidone-treated SCZ patients (RISP SCZ), compared to healthy controls (HCs). We recruited a total of 60 participants, from the clinical services of a large neuropsychiatric hospital, which included DN SCZ, RISP SCZ and HCs (n = 20 each). Fecal samples were analyzed using 16s rRNA sequencing in this cross-sectional study. No significant differences were found in taxa richness (alpha diversity) but microbial composition differed between SCZ patients (both DN and RISP) and HCs (PERMANOVA, p = 0.02). Linear Discriminant Analysis Effect Size (LEfSe) and Random Forest model identified the top six genera, which significantly differed in abundance between the study groups. A specific genus-level microbial panel of Ruminococcus, UCG005, Clostridium_sensu_stricto_1 and Bifidobacterium could discriminate SCZ patients from HCs with an area under the curve (AUC) of 0.79, HCs vs DN SCZ (AUC: 0.68), HCs vs RISP SCZ (AUC: 0.93) and DN SCZ vs RISP SCZ (AUC: 0.87). Our study identified distinct microbial signatures that could aid in the differentiation of DN SCZ, RISP SCZ, and HCs. Our findings contribute to a better understanding of the role of the gut microbiome in SCZ pathophysiology and suggest potential targeted interventions.
Collapse
Affiliation(s)
- Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India.
| | - Joyappa Nikhil
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Chinnasamy Thirumoorthy
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Sandhya Narasimhan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Bharanidharan Devarajan
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Ebin Joseph
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Arul Kevin Daniel David
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Sapna Sharma
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Kavitha Vasudevan
- Department of Foods, Nutrition & Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Vanteemar S Sreeraj
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India; Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| |
Collapse
|
11
|
Huang LC, Lin SH, Tseng HH, Chen KC, Abdullah M, Yang YK. Altered glutamate level and its association with working memory among patients with treatment-resistant schizophrenia (TRS): a proton magnetic resonance spectroscopy study. Psychol Med 2023; 53:3220-3227. [PMID: 35197141 PMCID: PMC10244010 DOI: 10.1017/s003329172100533x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/08/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Treatment-resistant schizophrenia (TRS) and non-TRS may be associated with different dopaminergic and glutamatergic regulations. The concept of dysregulated glutamatergic concentrations in specific brain regions remains controversial. Herein, we aimed to assess (i) the distribution of the glutamatergic concentration in the brain, (ii) the association between working memory (WM) differences in TRS and non-TRS patients, and (iii) whether an alteration in the glutamate (Glu) level is associated with WM. METHODS The participants included 38 TRS patients, 35 non-TRS patients, and 19 healthy controls (HCs), all of whom underwent 1.5-Tesla proton magnetic resonance spectroscopy of anterior cingulate cortex (ACC) and medial prefrontal cortex (MPFC). The ratios of glutamatergic neurometabolites to N-acetylaspartate + N-acetyl aspartylglutamate (NAAx) were calculated. Cognitive function was assessed using the Wechsler Adult Intelligence Scales, 4th Edition, which included the working memory index (WMI). RESULT The TRS patients had a higher glutamate + glutamine (Glx)/NAAx ratio compared to the non-TRS patients and HCs in the ACC, but this was not significantly different in the MPFC. WM was negatively correlated with Glx/NAAx in the ACC among the non-TRS patients, but not in the TRS patients or HCs. CONCLUSIONS Our findings were consistent with most studies indicating that the glutamatergic concentration in the ACC plays important roles in the classification of TRS and cognition. Our results may provide potential evidence for predictors and treatment response biomarkers in TRS patients. Further research is needed to probe the value using the relationship between Glu and WM as a potential prognostic predictor of schizophrenia.
Collapse
Affiliation(s)
- Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, Chia-Yi Branch, Taichung Veteran General Hospital, Chia-Yi, Taiwan
- Department of Counseling, National Chia-Yi University, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Muhammad Abdullah
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| |
Collapse
|
12
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
13
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
14
|
Yuan Z, Liu H, Zhang X, He Y, Gu S, Mo D, Wang S, Huang Z, Wu K, Zhou R, Zhong Q, Huang Y, Cao B, Chen H, Wu X. Role of uric acid as a biomarker of cognitive function in schizophrenia during maintenance period. Front Psychiatry 2023; 14:1123127. [PMID: 37032942 PMCID: PMC10073439 DOI: 10.3389/fpsyt.2023.1123127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Background Previous studies involving uric acid (UA) in some specialized disease populations have found that high UA is associated with enhanced patient function. The mechanism to explain this association may be that UA, an important antioxidant, exerts neuroprotective effects. Patients with schizophrenia (SCZ) have severe oxidative stress abnormalities, and cognitive impairment is a major obstacle to their rehabilitation. Only few studies have been conducted on UA and cognitive impairment in SCZ. This study aims to clarify the relationship between UA and cognitive impairment and explore whether UA could be used as a potential biological marker of cognition in SCZ during maintenance period. Methods A total of 752 cases of SCZ during maintenance period from Baiyun Jingkang Hospital were included. Cognition was measured using the Mini-Mental State Examination scale. UA was measured using the Plus method. The participants were grouped on the basis of UA to evaluate the association of cognition with low-normal (3.50-5.07 mg/dL for men, 2.50-4.19 mg/dL for women), middle-normal (5.07-6.39 mg/dL for men, 4.19-5.18 mg/dL for women), high-normal (6.39-7.00 mg/dL for men, 5.18-6.00 mg/dL for women), and high (>7.00 mg/dL for men, >6.00 mg/dL for women) levels of UA. Multiple logistic regression and linear regression models and restricted cubic spline (RCS) were utilized to evaluate the relationship. Results Uric acid was positively associated with cognitive function. Subgroup analyses showed that high UA was associated with enhanced cognition in participants with low anticholinergic cognitive burden (ACB). Conclusion Uric acid may be used as a simple objective biological indicator to assess cognition in SCZ during maintenance period.
Collapse
Affiliation(s)
- Zelin Yuan
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Huamin Liu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Xiaochun Zhang
- Department of Psychiatry, Baiyun Jingkang Hospital, Guangzhou, Guangdong, China
| | - Yong He
- Department of Psychiatry, Baiyun Jingkang Hospital, Guangzhou, Guangdong, China
| | - Shanyuan Gu
- Department of Psychiatry, Baiyun Jingkang Hospital, Guangzhou, Guangdong, China
| | - Dan Mo
- Department of Psychiatry, Baiyun Jingkang Hospital, Guangzhou, Guangdong, China
| | - Shaoli Wang
- Department of Psychiatry, Baiyun Jingkang Hospital, Guangzhou, Guangdong, China
| | - Zhiwei Huang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Keyi Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Rui Zhou
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Qi Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Yining Huang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Bifei Cao
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Haowen Chen
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Diseases), Guangzhou, China
- *Correspondence: Xianbo Wu, ; orcid.org/0000-0002-2706-9599
| |
Collapse
|
15
|
Yang M, Wang C, Zhao G, Kong D, Liu L, Yuan S, Chen W, Feng C, Li Z. Comparative Analysis of the Pre- and Post-Medication Effects of Antipsychotic Agents on the Blood-Based Oxidative Stress Biomarkers in Patients with Schizophrenia: A Meta-Analysis. Curr Neuropharmacol 2023; 21:340-352. [PMID: 35794775 PMCID: PMC10190148 DOI: 10.2174/1570159x20666220706101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Studies have shown that oxidative stress (OS) is related to the pathophysiology of schizophrenia (SCZ), but whether antipsychotics can induce OS has not been investigated well. Moreover, antipsychotics have differential effects on the OS level modulation, i.e., different types of antipsychotics have different effects on the cellular antioxidants or pro-oxidants. METHODS We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and investigated the OS indicators including both enzymatic and nonenzymatic markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), glutathione (GSH), vitamin C, etc., of SCZ patients at baseline and follow-up of mono-medication. RESULTS Twenty studies met the inclusion criteria, with a total of 1162 patients enrolled at baseline, and 1105 patients completed the follow-up. OS markers were changed after a period of antipsychotic treatment in SCZ patients. The GPx activity and MDA level decreased in the whole blood (P<0.05), also the serum MDA level decreased (P<0.05). For the first-episode SCZ patients, the activity of GPx and the level of MDA decreased, while the level of vitamin C increased (all P<0.05). The levels of MDA in patients receiving atypical antipsychotics decreased (P<0.05), while the level of GSH in patients with typical antipsychotics decreased (P=0.05). CONCLUSION Antipsychotic medication may cause changes in the levels of OS markers in different blood samples of SCZ patients. However, the available studies might not be sufficient to reveal the underlying facts accurately due to the poor quality of experimental designs in the published literature.
Collapse
Affiliation(s)
- Mi Yang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Chunzhi Wang
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Guocheng Zhao
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Di Kong
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Liju Liu
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shuai Yuan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Wei Chen
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Can Feng
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Psychiatry, Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
16
|
Kuo CY, Lin CH, Lane HY. Targeting D-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research. CNS Drugs 2022; 36:1143-1153. [PMID: 36194364 DOI: 10.1007/s40263-022-00959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
In the brain, D-amino acid oxidase (DAAO) is a peroxisomal flavoenzyme. Through oxidative deamination by DAAO, D-serine, the main coagonist of synaptic N-methyl-D-aspartate receptors (NMDARs), is degraded into α-keto acids and ammonia; flavin adenine dinucleotide (FAD) is simultaneously reduced to dihydroflavine-adenine dinucleotide (FADH2), which is subsequently reoxidized to FAD, with hydrogen peroxide produced as a byproduct. NMDAR hypofunction is implicated in the pathogenesis of schizophrenia. In previous studies, compared with control subjects, patients with schizophrenia had lower D-serine levels in peripheral blood and cerebrospinal fluid but higher DAAO expression and activity in the brain. Inhibiting DAAO activity and slowing D-serine degradation by using DAAO inhibitors to enhance NMDAR function may be a new strategy for use in the treatment of schizophrenia. The aim of this leading article is to review the current research in DAAO inhibitors.
Collapse
Affiliation(s)
- Chien-Yi Kuo
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC.
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City, 83301, Taiwan, ROC.
- School of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan, ROC.
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC.
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC.
- Department of Psychology, College of Medical and Health Sciences, Asia University, No. 500, Lioufeng Rd., Wufeng Dist., Taichung City, 413305, Taiwan, ROC.
| |
Collapse
|
17
|
Decreased Activity of Erythrocyte Catalase and Glutathione Peroxidase in Patients with Schizophrenia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101491. [PMID: 36295651 PMCID: PMC9609318 DOI: 10.3390/medicina58101491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Catalase and glutathione peroxidase (GPx) are important antioxidant enzymes that break down hydrogen peroxide (H2O2) in order to control its intracellular concentration, thus enabling its physiological role and preventing toxic effects. A lack or disruption of their function leads to the accumulation of hydrogen peroxide and the occurrence of oxidative stress. Accumulating studies have shown that the activities of key antioxidant enzymes are impaired in patients with schizophrenia. Since the published results are contradictory, and our previous studies found significantly higher erythrocyte superoxide dismutase (SOD) activity in patients with schizophrenia, the aim of this study was to determine the activity of enzymes that degrade hydrogen peroxide in the same group of patients, as well as to examine their dependence on clinical symptoms, therapy, and parameters associated with this disease. Materials and Methods: Catalase and GPx activities were determined in the erythrocytes of 68 inpatients with schizophrenia and 59 age- and gender-matched healthy controls. The clinical assessment of patients was performed by using the Positive and Negative Syndrome Scale (PANSS). The catalase activity was measured by the kinetic spectrophotometric method, while the GPx activity was determined by the commercially available Ransel test. Results: Erythrocyte catalase and GPx activities were significantly lower (p < 0.001 and p < 0.01, respectively) in subjects with schizophrenia than they were in healthy individuals. Lower catalase activity does not depend on heredity, disease onset, the number of episodes, or disease duration, while GPx activity showed significant changes in patients who had more than one episode and in those who had been suffering from the disease for over a year. Significantly lower catalase activity was noted in the PANSS(+/−) group in comparison with the PANSS(+) and PANSS(−) groups. The lowest catalase activity was found in subjects who were simultaneously treated with first- and second-generation antipsychotics; this was significantly lower than it was in those who received only one class of antipsychotics. Conclusion: These results indicate the presence of oxidative stress in the first years of clinically manifested schizophrenia and its dependence on the number of psychotic episodes, illness duration, predominant symptomatology, and antipsychotic medication.
Collapse
|
18
|
Lane HY, Lin CH. Diagnosing Alzheimer's Disease Specifically and Sensitively With pLG72 and Cystine/Glutamate Antiporter SLC7A11 AS Blood Biomarkers. Int J Neuropsychopharmacol 2022; 26:1-8. [PMID: 35986919 PMCID: PMC9850657 DOI: 10.1093/ijnp/pyac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Reliable blood biomarkers for Alzheimer's disease (AD) have been lacking. The D-amino acids oxidase modulator (named pLG72) modulates glutamate N-methyl-D-aspartate receptor activity. The cystine/glutamate antiporter contains a SLC7A11 subunit, which mediates glutamate release. This study aimed to determine the accuracy of pLG72 protein and SLC7A11 mRNA in diagnosing AD. METHODS This study enrolled 130 healthy controls and 109 unmatched AD patients; among them, 40 controls and 70 patients were selected to match by age. We measured their pLG72 protein in plasma and SLC7A11 mRNA in white blood cells. RESULTS AD patients had markedly higher pLG72 levels and SLC7A11 mRNA ΔCT values than healthy controls (in both unmatched and matched cohorts; all 4 P values <.001). The receiver operating characteristics analysis in the unmatched cohorts demonstrated that the pLG72 level had a high specificity (0.900) at the optimal cutoff value of 2.3285, the ΔCT of SLC7A11 mRNA displayed an excellent sensitivity (0.954) at the cutoff of 12.185, and the combined value of pLG72 and SLC7A11 ΔCT determined a favorable area under the curve (AUC) (0.882) at the cutoff of 21.721. The AUC of the combined value surpassed that of either biomarker. The specificity, sensitivity, and AUC of the matched cohort were like those of the unmatched cohort. CONCLUSIONS The findings suggest that pLG72 protein and SLC7A11 mRNA can distinguish AD patients from healthy controls with excellent specificity and sensitivity, respectively. The combination of pLG72 and SLC7A11 yields better AUC than either, suggesting the superiority of simultaneously measuring both biomarkers in identifying AD patients.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Correspondence: Chieh-Hsin Lin, MD, PhD, Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Da-Pi Rd, Kaohsiung 833, Taiwan ()
| |
Collapse
|
19
|
Chronic N-Acetylcysteine Treatment Prevents Amphetamine-Induced Hyperactivity in Heterozygous Disc1 Mutant Mice, a Putative Prodromal Schizophrenia Animal Model. Int J Mol Sci 2022; 23:ijms23169419. [PMID: 36012679 PMCID: PMC9408838 DOI: 10.3390/ijms23169419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Symptoms of schizophrenia (SZ) typically emerge during adolescence to young adulthood, which gives a window before full-blown psychosis for early intervention. Strategies for preventing the conversion from the prodromal phase to the psychotic phase are warranted. Heterozygous (Het) Disc1 mutant mice are considered a prodromal model of SZ, suitable for studying psychotic conversion. We evaluated the preventive effect of chronic N-acetylcysteine (NAC) administration, covering the prenatal era to adulthood, on the reaction following the Amph challenge, which mimics the outbreak or conversion of psychosis, in adult Het Disc1 mice. Biochemical and morphological features were examined in the striatum of NAC-treated mice. Chronic NAC treatment normalized the Amph-induced activity in the Het Disc1 mice. Furthermore, the striatal phenotypes of Het Disc1 mice were rescued by NAC including dopamine receptors, the expression of GSK3s, MSN dendritic impairments, and striatal PV density. The current study demonstrated a potent preventive effect of chronic NAC treatment in Disc1 Het mice on the acute Amph test, which mimics the outbreak of psychosis. Our findings not only support the benefit of NAC as a dietary supplement for SZ prodromes, but also advance our knowledge of striatal dopamine receptors, PV neurons, and GSK3 signaling pathways as therapeutic targets for treating or preventing the pathogenesis of mental disorders.
Collapse
|
20
|
Liu H, Yu R, Gao Y, Li X, Guan X, Thomas K, Xiu M, Zhang X. Antioxidant Enzymes and Weight Gain in Drug-naive First-episode Schizophrenia Patients Treated with Risperidone for 12 Weeks: A Prospective Longitudinal Study. Curr Neuropharmacol 2022; 20:1774-1782. [PMID: 34544343 PMCID: PMC9881063 DOI: 10.2174/1570159x19666210920090547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Oxidative stress plays an important role in weight gain induced by antipsychotics in schizophrenia (SCZ). However, little is known about how antioxidant enzymes are involved in weight gain caused by risperidone monotherapy in antipsychotics-naïve first-episode (ANFE) patients with SCZ. Therefore, the main purpose of this study was to investigate the effects of risperidone on several antioxidant enzymes in patients with ANFE SCZ and the relationship between weight gain and changes in antioxidant enzyme activities. OBJECTIVE The activities of plasma superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as the levels of malondialdehyde (MDA) were measured in 225 ANFE patients and 125 healthy controls. METHODS Patients were treated with risperidone monotherapy for 12 weeks. Clinical symptoms, antioxidant enzyme activities, and MDA levels were measured at baseline and during follow-up. RESULTS Compared with healthy controls, the patients showed higher activities of SOD and CAT but lower MDA levels and GPx activity. At baseline, the CAT activity was associated with body weight or BMI. Further, based on a 7% weight increase from baseline to follow-up, we found 75 patients in the weight gain (WG) group and 150 patients in the non-WG group. Comparing SOD, CAT, GPx activities and MDA levels between the WG group and the non-WG group at baseline and during the 12-week follow-up, it was found that after treatment, the SOD activity in the WG group increased while the MDA level decreased in the non-WG group. Moreover, baseline SOD and GPx activities were predictors of weight gain at 12-week follow-up. CONCLUSION These results suggest that the antioxidant defense system may have predictive value for the weight gain of ANFE SCZ patients after risperidone treatment.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Rui Yu
- Qingdao Mental Health Center, Qingdao University, Qingdao, China;
| | - Yanan Gao
- Qingdao Mental Health Center, Qingdao University, Qingdao, China;
| | - Xirong Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xiaoni Guan
- Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China;
| | - Kosten Thomas
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston,Texas;
| | - Meihong Xiu
- Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; ,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Tel: (86-10) 64879520; E-mail: ; Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; Tel: (86-10) 83024429; E-mail:
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Tel: (86-10) 64879520; E-mail: ; Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; Tel: (86-10) 83024429; E-mail:
| |
Collapse
|
21
|
Kramar B, Pirc Marolt T, Monsalve M, Šuput D, Milisav I. Antipsychotic Drug Aripiprazole Protects Liver Cells from Oxidative Stress. Int J Mol Sci 2022; 23:ijms23158292. [PMID: 35955425 PMCID: PMC9368927 DOI: 10.3390/ijms23158292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Antipsychotics used to treat schizophrenia can cause drug-induced liver injury (DILI), according to the Roussel Uclaf Causality Assessment Method. The role of oxidative stress in triggering injury in these DILI cases is unknown. We repeatedly administrated two second-generation antipsychotics, aripiprazole and olanzapine, at laboratory alert levels to study underlying mechanisms in stress prevention upon acute oxidative stress. The drugs were administered continuously for up to 8 weeks. For this, hepatoma Fao cells, which are suitable for metabolic studies, were used, as the primary hepatocytes survive in the culture only for about 1 week. Four stress responses—the oxidative stress response, the DNA damage response and the unfolded protein responses in the endoplasmic reticulum and mitochondria—were examined in H2O2-treated cells by antioxidant enzyme activity measurements, gene expression and protein quantification. Oxidant conditions increased the activity of antioxidant enzymes and upregulated genes and proteins associated with oxidative stress response in aripiprazole-treated cells. While the genes associated with DNA damage response, Gadd45 and p21, were upregulated in both aripiprazole- and olanzapine-treated cells, only aripiprazole treatment was associated with upregulation in response to even more H2O2, which also coincided with better survival. Endoplasmic reticulum stress-induced Chop was also upregulated; however, neither endoplasmic reticulum nor mitochondrial unfolded protein response was activated. We conclude that only aripiprazole, but not olanzapine, protects liver cells against oxidative stress. This finding could be relevant for schizophrenia patients with high-oxidative-stress-risk lifestyles and needs to be validated in vivo.
Collapse
Affiliation(s)
- Barbara Kramar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Tinkara Pirc Marolt
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain;
| | - Dušan Šuput
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
22
|
Newman SD, Schnakenberg Martin AM, Raymond D, Cheng H, Wilson L, Barnes S, O’Donnell BF. The relationship between cannabis use and taurine: A MRS and metabolomics study. PLoS One 2022; 17:e0269280. [PMID: 35653401 PMCID: PMC9162360 DOI: 10.1371/journal.pone.0269280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Taurine is an essential amino acid. It has been shown to be neuroprotective including protecting against the neurotoxic effects of glutamate. The goal of the current study was to examine the relationship between CB use and taurine measured in brain using magnetic resonance spectroscopy (MRS), and peripherally from a urine sample. Two experiments are presented. The first is a reanalysis of published data that examined taurine and glutamate in the dorsal anterior cingulate of a CB user group and non-user group using MRS. The second experiment, in a separate CB user group, used metabolomics analysis to measure taurine levels in urine. Because body composition has been associated with the pharmacokinetics of cannabis and taurine levels, a moderation model was examined with body composition included as the covariate. The MRS study found taurine levels were correlated with glutamate in both groups and taurine was correlated with frequency of CB use in the CB user group. The moderation model demonstrated significant effects of CB use and BMI; the interaction was marginally significant with lower BMI individuals showing a positive relationship between CB use and taurine. A similar finding was observed for the urine analysis. Both CB use and weight, as well as the interaction were significant. In this case, individuals with higher weight showed an association between CB use and taurine levels. This study shows the feasibility and potential importance of examining the relationship between taurine and CB use as it may shed light on a mechanism that underlies the neuroprotective effects of CB.
Collapse
Affiliation(s)
- Sharlene D. Newman
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, United States of America
- * E-mail:
| | - Ashley M. Schnakenberg Martin
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Psychology Service, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - David Raymond
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
23
|
Capellán R, Moreno-Fernández M, Orihuel J, Roura-Martínez D, Ucha M, Ambrosio E, Higuera-Matas A. Ex vivo 1H-MRS brain metabolic profiling in a two-hit model of neurodevelopmental disorders: Prenatal immune activation and peripubertal stress. Schizophr Res 2022; 243:232-240. [PMID: 31787482 DOI: 10.1016/j.schres.2019.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/28/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023]
Abstract
Prenatal infections are environmental risk factors for neurodevelopmental disorders. In addition, traumatic experiences during adolescence in individuals exposed to infections during gestation could increase the risk of schizophrenia. It is of the most crucial importance to discover potential markers of the disease in its early stages or before its onset, so that therapeutic strategies may be implemented. In the present study, we combined a proposed two-hit model of schizophrenia-related symptoms with proton magnetic resonance spectroscopy (1H-MRS) to discover potential biomarkers. To this end, we i.p. injected 100 μg/kg/ml of lipopolysaccharide (LPS) or saline on gestational days 15 and 16 to pregnant rats. Their male offspring were then subjected to five episodes of stress or handling on alternate days during postnatal days (PND) 28-38. Once the animals reached adulthood (PND70), we evaluated prepulse inhibition (PPI). At PND90, we performed an ex vivo 1H-MRS study in the cortex and striatum. While we did not detect alterations in PPI at the age tested, we found neurochemical disturbances induced by LPS, stress or (more interestingly) their interaction. LPS decreased glucose levels in the cortex and striatum and altered glutamate, glutamine and N-acetylaspartate levels. Glutamate and glutamine levels in the left (but not right) striatum were differentially affected by prenatal LPS exposure in a manner that depended on stress experiences. These results suggest that alterations in the glutamate cycle in the striatum could be used as early markers of developmental disorders.
Collapse
Affiliation(s)
- Roberto Capellán
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Mario Moreno-Fernández
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Javier Orihuel
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain.
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain.
| |
Collapse
|
24
|
Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23052810. [PMID: 35269952 PMCID: PMC8910888 DOI: 10.3390/ijms23052810] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
25
|
Menon V, Balasubramanian I, Rajkumar R. Association between markers of oxidative stress and cognitive functioning in schizophrenia. ANNALS OF INDIAN PSYCHIATRY 2022. [DOI: 10.4103/aip.aip_174_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
26
|
Marques-Teixeira J, Amorim G, Pires AC. Results from PSIPROSPER: A multicenter retrospective study to analyze the impact of treatment with paliperidone palmitate 1-month on clinical outcomes and hospital resource utilization in adult patients with schizophrenia in Portugal. Front Psychiatry 2022; 13:992256. [PMID: 36386977 PMCID: PMC9663469 DOI: 10.3389/fpsyt.2022.992256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Schizophrenia is a chronic psychiatric disorder with a significant impact worldwide. The early onset and its relapsing nature pose a significant challenge to patients and caregivers. The PSIPROSPER study aimed to characterize the real-world context of schizophrenia treatment in Portugal and to measure the impact of including paliperidone palmitate 1-month formulation (PP1M) in the clinical outcomes (relapses and hospitalizations) and healthcare resource utilization, in a context in which payment scheme in Portugal allows for patients to receive free antipsychotics if prescribed at public hospitals. METHODS This was a multicenter, retrospective, observational study. Male and female adults with a diagnosis of schizophrenia who initiated treatment with PP1M after a minimum of 12 months on an Oral Antipsychotic (OAP), and with complete medical charts, were consecutively included. A mirror-image design over 24 months allowed the comparison of outcomes before and after the PP1M introduction. RESULTS Out of the 51 patients included, 80.4% were male, with a mean age of 34 (±9.8) years. Around 92% of patients were being treated with PP1M at inclusion. Lack of adherence to previous OAP was the main driver for PP1M initiation. Only 9.8% of patients were hospitalized during the PP1M period vs. 64.7% during the OAP period (p < 0.0001). The mean number of hospitalizations (0.1) was significantly lower during the PP1M period (p < 0.0001). Type of treatment was the only variable found to be significant in predicting a lower hospitalization rate and a lower risk of hospitalization. Relapses were significantly lower (p < 0.0001) in PP1M (21.6%) vs. OAP (83.7%). Similarly, the mean change in the number of relapses (p < 0.0001) showed significantly better outcomes in PP1M. CONCLUSION This study supports PP1M as part of schizophrenia treatment in Portugal. Given the lower number of relapses and hospitalizations observed in schizophrenia patients treated with PP1M when compared to OAP-treated patients, this real-world study seems to provide further evidence to support the use of PP1M to treat this condition, in line with previous research. In the context of scarce public resources, these benefits should be carefully considered by healthcare decision-makers to ensure optimal value-based treatment strategies.
Collapse
|
27
|
Chiang TI, Yu YH, Lin CH, Lane HY. Novel Biomarkers of Alzheimer's Disease: Based Upon N-methyl-D-aspartate Receptor Hypoactivation and Oxidative Stress. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:423-433. [PMID: 34294612 PMCID: PMC8316669 DOI: 10.9758/cpn.2021.19.3.423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022]
Abstract
Early detection and prevention of Alzheimer’s disease (AD) is important. The current treatment for early AD is acetylcholine esterase inhibitors (AChEIs); however, the efficacy is poor. Besides, AChEI did not show efficacy in mild cognitive impairment (MCI). Beta-amyloid (Aβ) deposits have been regarded to be highly related to the pathogenesis of AD. However, many clinical trials aiming at the clearance of Aβ deposits failed to improve the cognitive decline of AD, even at its early phase. There should be other important mechanisms unproven in the course of AD and MCI. Feasible biomarkers for the diagnosis and treatment response of AD are lacking to date. The N-methyl-D-aspartate receptor (NMDAR) activation plays an important role in learning and memory. On the other hand, oxidative stress has been regarded to contribute to aging with the assumption that free radicals damage cell constituents and connective tissues. Our recent study found that an NMDAR enhancer, sodium benzoate (the pivotal inhibitor of D-amino acid oxidase [DAAO]), improved the cognitive and global function of patients with early-phase AD. Further, we found that peripheral DAAO levels were higher in patients with MCI and AD than healthy controls. We also found that sodium benzoate was able to change the activity of antioxidant. These pieces of evidence suggest that the NMDAR function is associated with anti-oxidation, and have potential to be biomarkers for the diagnosis and treatment response of AD.
Collapse
Affiliation(s)
- Ting-I Chiang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Hsiang Yu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
28
|
Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front Psychiatry 2021; 12:703452. [PMID: 34366935 PMCID: PMC8339376 DOI: 10.3389/fpsyt.2021.703452] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is associated with increased levels of oxidative stress, as reflected by an increase in the concentrations of damaging reactive species and a reduction in anti-oxidant defences to combat them. Evidence has suggested that whilst not the likely primary cause of schizophrenia, increased oxidative stress may contribute to declining course and poor outcomes associated with schizophrenia. Here we discuss how oxidative stress may be implicated in the aetiology of schizophrenia and examine how current understanding relates associations with symptoms, potentially via lipid peroxidation induced neuronal damage. We argue that oxidative stress may be a good target for future pharmacotherapy in schizophrenia and suggest a multi-step model of illness progression with oxidative stress involved at each stage.
Collapse
Affiliation(s)
- Alex J. Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack C. Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F. Liddle
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
29
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
30
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
31
|
Goh XX, Tang PY, Tee SF. 8-Hydroxy-2'-Deoxyguanosine and Reactive Oxygen Species as Biomarkers of Oxidative Stress in Mental Illnesses: A Meta-Analysis. Psychiatry Investig 2021; 18:603-618. [PMID: 34340273 PMCID: PMC8328836 DOI: 10.30773/pi.2020.0417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Mental illnesses may be caused by genetic and environmental factors. Recent studies reported that mental illnesses were accompanied by higher oxidative stress level. However, the results were inconsistent. Thus, present meta-analysis aimed to analyse the association between oxidative DNA damage indicated by 8-hydroxy-2'-deoxyguanosine (8-OHdG) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which has been widely used as biomarker of oxidative stress, and mental illnesses, including schizophrenia, bipolar disorder and depression. As oxidative DNA damage is caused by reactive oxygen species (ROS), systematic review and meta-analysis were also conducted to analyse the relationship between ROS and these three mental illnesses. METHODS Studies from 1964 to 2020 (for oxidative DNA damage) and from 1907 to 2021 (for ROS) in Pubmed and Scopus databases were selected and analysed using Comprehensive Meta-Analysis version 2 respectively. Data were subjected to meta-analysis for examining the effect sizes of the results. Publication bias assessments, heterogeneity assessments and subgroup analyses based on biological specimens, patient status, illness duration and medication history were also conducted. RESULTS This meta-analysis revealed that oxidative DNA damage was significantly higher in patients with schizophrenia and bipolar disorder based on random-effects models whereas in depressed patients, the level was not significant. Since heterogeneity was present, results based on random-effects model was preferred. Our results also showed that oxidative DNA damage level was significantly higher in lymphocyte and urine of patients with schizophrenia and bipolar disorder respectively. Besides, larger effect size was observed in inpatients and those with longer illness duration and medication history. Significant higher ROS was also observed in schizophrenic patients but not in depressive patients. CONCLUSION The present meta-analysis found that oxidative DNA damage was significantly higher in schizophrenia and bipolar disorder but not in depression. The significant association between deoxyguanosines and mental illnesses suggested the possibility of using 8-OHdG or 8-oxodG as biomarker in measurement of oxidative DNA damage and oxidative stress. Higher ROS level indicated the involvement of oxidative stress in schizophrenia. The information from this study may provide better understanding on pathophysiology of mental illnesses.
Collapse
Affiliation(s)
- Xue Xin Goh
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| |
Collapse
|
32
|
Nanda R, Effendy E, Amin MM. The Difference in Negative Scale Score Measured with Positive and Negative Syndrome Scale in Schizophrenic Male Patient Treated with Risperidone in Addition to Vitamin E and Treated with Risperidone Alone at Prof. Dr. M. Ildrem Mental Hospital Medan. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES: The objectives of the study were to investigate the difference in negative scale score in schizophrenic male patients that received vitamin E-fortified risperidone and those receiving risperidone treatments alone.
METHODS: This study was a pre- and post-test experimental design which compared two groups; a group of men with schizophrenia who were given risperidone treatment with added Vitamin E and another group of men with schizophrenia who were given only risperidone treatment. The study was conducted at the outpatient clinic of Prof.dr. M. Ildrem Mental Hospital Medan, North Sumatra within August to November 2019. The study has been approved by the Research Ethics Committee of the Faculty of Medicine, North Sumatera University. The instrument used to assess negative scale on the subjects is PANSS.
RESULTS: We found that statistical analysis using corrected Mann–Whitney U-test obtained p < 0.001 (p < 0.05).
CONCLUSIONS: There was a strongly significant difference in negative scale Positive and Negative Syndrome Scale (PANSS) scores on 4th and 8th weeks in the group which received risperidone treatment with additional Vitamin E compared to the other group that received risperidone alone.
Collapse
|
33
|
Li XR, Xiu MH, Guan XN, Wang YC, Wang J, Leung E, Zhang XY. Altered Antioxidant Defenses in Drug-Naive First Episode Patients with Schizophrenia Are Associated with Poor Treatment Response to Risperidone: 12-Week Results from a Prospective Longitudinal Study. Neurotherapeutics 2021; 18:1316-1324. [PMID: 33791970 PMCID: PMC8423973 DOI: 10.1007/s13311-021-01036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal redox regulation is thought to contribute to schizophrenia (SCZ). Accumulating studies have shown that the plasma antioxidant enzyme activity is closely associated with the course and outcome in antipsychotics-naïve first-episode (ANFE) patients with SCZ. The main purpose of this study was to investigate the effect of risperidone on oxidative stress markers in ANFE patients and the relationship between risperidone response and changes in oxidative stress markers. Plasma activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) enzyme, total antioxidant status (TAS), and malondialdehyde (MDA) levels were measured in 354 ANFE patients and 152 healthy controls. The clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). Patients received risperidone monotherapy for 12 weeks and oxidative stress markers and PANSS were measured at baseline and at follow-up. Compared with healthy controls, the patients exhibited higher activities of SOD, CAT, and TAS levels, but lower MDA levels and GPx activity. A comparison between 168 responders and 50 non-responders at baseline and 12-week follow-up showed that GPx activity decreased in both groups after treatment. Moreover, GPx activity decreased less in responders and was higher in responders than in non-responders at follow-up. These results demonstrate that the redox regulatory system and antioxidant defense enzymes may have predictive value for the response of ANFE patients to risperidone treatment.
Collapse
Affiliation(s)
- Xi Rong Li
- Department of Sleep Medicine, Shandong Mental Health Center, Jinan, China
| | - Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China.
| | - Xiao Ni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Yue Chan Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Jun Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, 100096, China
| | - Edison Leung
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
34
|
Loss CM, Teodoro L, Rodrigues GD, Moreira LR, Peres FF, Zuardi AW, Crippa JA, Hallak JEC, Abílio VC. Is Cannabidiol During Neurodevelopment a Promising Therapy for Schizophrenia and Autism Spectrum Disorders? Front Pharmacol 2021; 11:635763. [PMID: 33613289 PMCID: PMC7890086 DOI: 10.3389/fphar.2020.635763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia and autism spectrum disorders (ASD) are psychiatric neurodevelopmental disorders that cause high levels of functional disabilities. Also, the currently available therapies for these disorders are limited. Therefore, the search for treatments that could be beneficial for the altered course of the neurodevelopment associated with these disorders is paramount. Preclinical and clinical evidence points to cannabidiol (CBD) as a promising strategy. In this review, we discuss clinical and preclinical studies on schizophrenia and ASD investigating the behavioral, molecular, and functional effects of chronic treatment with CBD (and with cannabidivarin for ASD) during neurodevelopment. In summary, the results point to CBD's beneficial potential for the progression of these disorders supporting further investigations to strengthen its use.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Lucas Teodoro
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Doná Rodrigues
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Roberto Moreira
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fiel Peres
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Antonio Waldo Zuardi
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Costhek Abílio
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| |
Collapse
|
35
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
36
|
Todorović Vukotić N, Đorđević J, Pejić S, Đorđević N, Pajović SB. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol 2021; 95:767-789. [PMID: 33398419 PMCID: PMC7781826 DOI: 10.1007/s00204-020-02963-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a serious health burden. It has diverse clinical presentations that can escalate to acute liver failure. The worldwide increase in the use of psychotropic drugs, their long-term use on a daily basis, common comorbidities of psychiatric and metabolic disorders, and polypharmacy in psychiatric patients increase the incidence of psychotropics-induced DILI. During the last 2 decades, hepatotoxicity of various antidepressants (ADs) and antipsychotics (APs) received much attention. Comprehensive review and discussion of accumulated literature data concerning this issue are performed in this study, as hepatotoxic effects of most commonly prescribed ADs and APs are classified, described, and discussed. The review focuses on ADs and APs characterized by the risk of causing liver damage and highlights the ones found to cause life-threatening or severe DILI cases. In parallel, an overview of hepatic oxidative stress, inflammation, and steatosis underlying DILI is provided, followed by extensive review and discussion of the pathophysiology of AD- and AP-induced DILI revealed in case reports, and animal and in vitro studies. The consequences of some ADs and APs ability to affect drug-metabolizing enzymes and therefore provoke drug–drug interactions are also addressed. Continuous collecting of data on drugs, mechanisms, and risk factors for DILI, as well as critical data reviewing, is crucial for easier DILI diagnosis and more efficient risk assessment of AD- and AP-induced DILI. Higher awareness of ADs and APs hepatotoxicity is the prerequisite for their safe use and optimal dosing.
Collapse
Affiliation(s)
- Nevena Todorović Vukotić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.
| | - Jelena Đorđević
- Institute of Physiology and Biochemistry "Ivan Đaja", Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Neda Đorđević
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Snežana B Pajović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.,Faculty of Medicine, University of Niš, 81 Blvd. Dr. Zorana Đinđića, 18000, Niš, Serbia
| |
Collapse
|
37
|
Massaoudi Y, Anissi J, Lefter R, Lobiuc A, Sendide K, Ciobica A, Hassouni ME. Protective Effects of Two Halophilic Crude Extracts from Pseudomonas zhaodongensis and Bacillus stratosphericus against Memory Deficits and Anxiety- and Depression-Like Behaviors in Methionine-Induced Schizophrenia in Mice Focusing on Oxidative Stress Status. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8852418. [PMID: 33299461 PMCID: PMC7707988 DOI: 10.1155/2020/8852418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/03/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022]
Abstract
Recently, the implication of oxidative stress in behavioral-like disorders has received a lot of attention. Many studies were interested in searching for new natural compounds with protective effects on behavioral-like disorders by focusing on oxidative stress as the main causal factor. Here, we assess the potential effect of cell-free extracts from halophilic bacteria on memory, anxiety, and depression-related behaviors in mice, as well as on cognitive deficits, negative symptoms, and some oxidative stress biomarkers in methionine-induced mice models of schizophrenia. Firstly, crude extracts of bacteria isolated from the Dead Sea were screened for their effects on memory and anxiety- and depression-like behaviors through Y-maze, elevated plus maze, and forced swimming test, respectively, using two doses 60 mg/kg and 120 mg/kg. Then, 120 mg/kg of two bacterial crude extracts, from two strains designated SL22 and BM20 and identified as Bacillus stratosphericus and Pseudomonas zhaodongensis, respectively, with significant contents of phenolic and flavonoid-like compounds, were selected for the assessment of cognitive and negative symptom improvement, as well as for their effects on oxidative stress status in methionine-induced mice models of schizophrenia using six groups (controls, methionine, crude extracts solely, and combinations of crude extracts and methionine). Results showed that the administration of the crude extracts caused a significant increase in the spontaneous alternations in the Y-maze task, the time spent in open arms of the elevated plus maze, and a decrease in immobility time in the forced swimming test in comparison with the control group. Furthermore, the administration of bacterial extracts seemed to diminish disorders related to cognitive and negative symptoms of schizophrenia and to improve the oxidative state in the temporal lobes, in comparison with the methionine group. Our findings suggest substantial antioxidant and anti-neuropsychiatric effects of the crude extracts prepared from Pseudomonas zhaodongensis strain BM20 and Bacillus stratosphericus strain SL22 and that further studies are needed to purify and to determine the active fraction from the extracts.
Collapse
Affiliation(s)
- Yousra Massaoudi
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
| | - Jaouad Anissi
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
- School of Engineering BIOMEDTECH, Euro-Mediterranean University of Fez, Rond-point Bensouda, Route de Meknès BP 51, Fez, Morocco
| | - Radu Lefter
- Romanian Academy, Iasi Branch, Center of Biomedical Research, B dul Carol I, 8, 700506 Iasi, Romania
| | - Andrei Lobiuc
- CERNESIM Research Centre, L2, Alexandru Ioan Cuza University, 700505 Carol I Bd., Iasi, Romania
- Human Health and Development Department, Stefan Cel Mare University, 720229 Universitatii Str., Suceava, Romania
| | - Khalid Sendide
- Laboratory of Biotechnology, School of Science and Engineering, Al Akhawayn University in Ifrane, P.O. Box 104, Ifrane, Morocco
| | - Alin Ciobica
- Department of Research, Alexandru Ioan Cuza University of Iasi, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania
| | - Mohammed El Hassouni
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
| |
Collapse
|
38
|
Yin J, Lu Y, Yu S, Dai Z, Zhang F, Yuan J. Exploring the mRNA expression level of RELN in peripheral blood of schizophrenia patients before and after antipsychotic treatment. Hereditas 2020; 157:43. [PMID: 33158463 PMCID: PMC7648395 DOI: 10.1186/s41065-020-00158-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
Background The Reelin (RELN) gene encodes the protein reelin, which is a large extracellular matrix glycoprotein that plays a key role in brain development. Additionally, this protein may be involved in memory formation, neurotransmission, and synaptic plasticity, which have been shown to be disrupted in schizophrenia (SCZ). A decreasing trend in the expression of RELN mRNA in the brain and peripheral blood of SCZ patients has been observed. There is a need to determine whether changes in RELN mRNA expression in SCZ patients are the result of long-term antipsychotic treatment rather than the etiological characteristics of schizophrenia. The expression levels of RELN mRNA in the peripheral blood of 48 healthy controls and 30 SCZ patients before and after 12-weeks of treatment were measured using quantitative real-time PCR. Results The expression levels of RELN mRNA in the SCZ group were significantly lower than that of healthy controls; however, after 12-weeks of antipsychotic treatment, RELN mRNA levels were significantly increased in the SCZ group. Conclusion The up-regulation of RELN mRNA expression was current in SCZ patients after antipsychotic treatment, suggesting that the changes in RELN mRNA expression were related to the effect of the antipsychotic treatment.
Collapse
Affiliation(s)
- Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China
| | - Yana Lu
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Shui Yu
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China
| | - Zhanzhan Dai
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, Jiangsu Province, P.R. China.
| | - Jianmin Yuan
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, 156 Qianrong Road, Wuxi, 214151, Jiangsu Province, P.R. China.
| |
Collapse
|
39
|
Madireddy S, Madireddy S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci 2020; 10:brainsci10100742. [PMID: 33081261 PMCID: PMC7603028 DOI: 10.3390/brainsci10100742] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The biochemical integrity of the brain is paramount to the function of the central nervous system, and oxidative stress is a key contributor to cerebral biochemical impairment. Oxidative stress, which occurs when an imbalance arises between the production of reactive oxygen species (ROS) and the efficacy of the antioxidant defense mechanism, is believed to play a role in the pathophysiology of various brain disorders. One such disorder, schizophrenia, not only causes lifelong disability but also induces severe emotional distress; however, because of its onset in early adolescence or adulthood and its progressive development, consuming natural antioxidant products may help regulate the pathogenesis of schizophrenia. Therefore, elucidating the functions of ROS and dietary antioxidants in the pathogenesis of schizophrenia could help formulate improved therapeutic strategies for its prevention and treatment. This review focuses specifically on the roles of ROS and oxidative damage in the pathophysiology of schizophrenia, as well as the effects of nutrition, antipsychotic use, cognitive therapies, and quality of life on patients with schizophrenia. By improving our understanding of the effects of various nutrients on schizophrenia, it may become possible to develop nutritional strategies and supplements to treat the disorder, alleviate its symptoms, and facilitate long-term recovery.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence: ; Tel.: +1-408-9214162
| | - Sahithi Madireddy
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;
| |
Collapse
|
40
|
Oltra JAE. Improving Therapeutic Interventions of Schizophrenia with Advances in Stem Cell Technology. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:352-361. [PMID: 32702214 PMCID: PMC7383010 DOI: 10.9758/cpn.2020.18.3.352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
Abstract
Although historic documents posit schizophrenia to the beginnings of mankind, its diagnosis remains poorly defined, currently relying on unspecific clinical symptoms; and controversies still maintain its origin under intense debate. This review aimed at quantitatively assessing the preferential forefronts of clinical trials towards the treatment of schizophrenia from inception till present, according to clinicaltrials.gov database registry. Towards that end study status and study phase classifications were used as criteria for progress in the field. Study groups by sex and age together with countries and organisms involved in the studies were used as indicators of the populations studied and as evidence of main promoter institutions, in both, pharmacological and drug-free protocols. The findings clearly show a decline of active clinical research with small synthetic compounds and limited numbers of novel initiatives, mostly based on drug-free alternatives with expected reduced secondary effects. A paucity of sex- and age-oriented designs is detected, and it is proposed that future clinical trials should set their basis on data obtained from patient-derived induced pluripotent stem cells, brain organoid systems and human brain circuitry platforms. Only individual precision medical approaches may turn effective for the treatment of this complex and highly incapacitating disease.
Collapse
Affiliation(s)
- José Andrés Espejo Oltra
- School of Experimental Sciences, Valencia Catholic University Saint Vincent Martyr, Valencia, Spain
| |
Collapse
|
41
|
Huang LC, Lin SH, Tseng HH, Chen KC, Yang YK. The integrated model of glutamate and dopamine hypothesis for schizophrenia: Prediction and personalized medicine for prevent potential treatment-resistant patients. Med Hypotheses 2020; 143:110159. [PMID: 32795840 DOI: 10.1016/j.mehy.2020.110159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/20/2022]
Abstract
Treatment-resistant schizophrenia (TRS) is one of the subgroups of schizophrenia of which little is known with regard to its optimal mechanism. Treatment response, either as full remission of symptoms or prediction by biomarker, is important in psychiatry. We have proposed a model that integrates dopaminergic and glutamatergic systems with the biological interactions of TRS patients. We hypothesize that the subgroups of schizophrenia may be determined by glutamatergic and dopaminergic concentrations prior to medical treatment. This hypothesis implies that higher glutamatergic concentration in the brain with normalized or decreased dopamine synthesis capacity may explain aspects of TRS as observed in clinical medical practice, neuroimaging measurements, and brain stimulations. According to this hypothesis, the ability to prescribe a proper medication combination, to predict the outcome in first-episode psychosis, and personalized medicine for chronic schizophrenia patients can be applied into practice. This represents an initial step in explaining psychosis due to the valence of two neurotransmitters. Future studies are needed to examine the validity of this mechanism.
Collapse
Affiliation(s)
- Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Chia-Yi Branch, Taichung Veteran General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan; Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
42
|
Lin E, Lin CH, Hung CC, Lane HY. An Ensemble Approach to Predict Schizophrenia Using Protein Data in the N-methyl-D-Aspartate Receptor (NMDAR) and Tryptophan Catabolic Pathways. Front Bioeng Biotechnol 2020; 8:569. [PMID: 32582679 PMCID: PMC7287032 DOI: 10.3389/fbioe.2020.00569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
In the wake of recent advances in artificial intelligence research, precision psychiatry using machine learning techniques represents a new paradigm. The D-amino acid oxidase (DAO) protein and its interaction partner, the D-amino acid oxidase activator (DAOA, also known as G72) protein, have been implicated as two key proteins in the N-methyl-D-aspartate receptor (NMDAR) pathway for schizophrenia. Another potential biomarker in regard to the etiology of schizophrenia is melatonin in the tryptophan catabolic pathway. To develop an ensemble boosting framework with random undersampling for determining disease status of schizophrenia, we established a prediction approach resulting from the analysis of genomic and demographic variables such as DAO levels, G72 levels, melatonin levels, age, and gender of 355 schizophrenia patients and 86 unrelated healthy individuals in the Taiwanese population. We compared our ensemble boosting framework with other state-of-the-art algorithms such as support vector machine, multilayer feedforward neural networks, logistic regression, random forests, naive Bayes, and C4.5 decision tree. The analysis revealed that the ensemble boosting model with random undersampling [area under the receiver operating characteristic curve (AUC) = 0.9242 ± 0.0652; sensitivity = 0.8580 ± 0.0770; specificity = 0.8594 ± 0.0760] performed maximally among predictive models to infer the complicated relationship between schizophrenia disease status and biomarkers. In addition, we identified a causal link between DAO and G72 protein levels in influencing schizophrenia disease status. The study indicates that the ensemble boosting framework with random undersampling may provide a suitable method to establish a tool for distinguishing schizophrenia patients from healthy controls using molecules in the NMDAR and tryptophan catabolic pathways.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA, United States
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, United States
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Chieh Hung
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
43
|
Montemagni C, Bellino S, Bracale N, Bozzatello P, Rocca P. Models Predicting Psychosis in Patients With High Clinical Risk: A Systematic Review. Front Psychiatry 2020; 11:223. [PMID: 32265763 PMCID: PMC7105709 DOI: 10.3389/fpsyt.2020.00223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/06/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The present study reviews predictive models used to improve prediction of psychosis onset in individuals at clinical high risk for psychosis (CHR), using clinical, biological, neurocognitive, environmental, and combinations of predictors. METHODS A systematic literature search on PubMed was carried out (from 1998 through 2019) to find all studies that developed or validated a model predicting the transition to psychosis in CHR subjects. RESULTS We found 1,406 records. Thirty-eight of them met the inclusion criteria; 11 studies using clinical predictive models, seven studies using biological models, five studies using neurocognitive models, five studies using environmental models, and 18 studies using combinations of predictive models across different domains. While the highest positive predictive value (PPV) in clinical, biological, neurocognitive, and combined predictive models were relatively high (all above 83), the highest PPV across environmental predictive models was modest (63%). Moreover, none of the combined models showed a superiority when compared with more parsimonious models (using only neurocognitive, clinical, biological, or environmental factors). CONCLUSIONS The use of predictive models may allow high prognostic accuracy for psychosis prediction in CHR individuals. However, only ten studies had performed an internal validation of their models. Among the models with the highest PPVs, only the biological and neurocognitive but not the combined models underwent validation. Further validation of predicted models is needed to ensure external validity.
Collapse
Affiliation(s)
| | | | | | | | - Paola Rocca
- Department of Neuroscience, School of Medicine, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Wei C, Sun Y, Chen N, Chen S, Xiu M, Zhang X. Interaction of oxidative stress and BDNF on executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology 2020; 111:104473. [PMID: 31655452 DOI: 10.1016/j.psyneuen.2019.104473] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 01/10/2023]
Abstract
Executive dysfunction is increasingly recognized as one of the widely observed dimensions of cognitive impairments in the course of schizophrenia (SCZ). However, the potential molecular pathological mechanisms remain elusive. Previous studies have demonstrated that decreased brain-derived neurotrophic factor (BDNF) and oxidative damage may be associated with the psychopathology and cognitive impairment of SCZ. The present study aims to assess whether the interaction between BDNF and oxidative damage is involved in the disruption of executive function (EF) in patients with chronic SCZ. Serum BDNF and plasma oxidative stress markers were measured in 189 patients and 60 control subjects. EFs were evaluated by Wisconsin card sorting tests (WCST), Stroop word/color test (Stroop), and verbal fluency tests (VFT). The results showed that patients performed worse in the VFT, WCST and Stroop tests than healthy subjects. Moreover, patients had lower activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) and lower BDNF levels, but higher malondialdehyde (MDA) levels than healthy controls. In patients, BDNF was negatively correlated with SOD (p < 0.01). For patients, catalase (CAT) activity was negatively associated with WCST error score (p = 0.02) and BDNF was positively correlated to VFT score (p = 0.02). However, all these correlations between biomarkers and EF domains did not pass Bonferroni corrections. Finally, multiple regression analyses identified BDNF × SOD activity and BDNF × MDA as influencing factors for VFT score in patients (both p < 0.05). Our results highlight the complex interplay between OS parameters and BDNF in the pathophysiology of EF impairment in SCZ, consistent with its neurodevelopmental hypothesis.
Collapse
Affiliation(s)
- ChangWei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nan Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - MeiHong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China.
| | - XiangYang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Jiang JB, Cao Y, An NY, Yang Q, Cui LB. Magnetic Resonance Imaging-Based Connectomics in First-Episode Schizophrenia: From Preclinical Study to Clinical Translation. Front Psychiatry 2020; 11:565056. [PMID: 33061921 PMCID: PMC7518111 DOI: 10.3389/fpsyt.2020.565056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jin-Bo Jiang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yang Cao
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ning-Yu An
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qun Yang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Tan Y, Fujita Y, Qu Y, Chang L, Pu Y, Wang S, Wang X, Hashimoto K. Phencyclidine-induced cognitive deficits in mice are ameliorated by subsequent repeated intermittent administration of (R)-ketamine, but not (S)-ketamine: Role of BDNF-TrkB signaling. Pharmacol Biochem Behav 2019; 188:172839. [PMID: 31866390 DOI: 10.1016/j.pbb.2019.172839] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/25/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) antagonists including phencyclidine (PCP) and ketamine produce cognitive deficits in rodents and humans. We previously reported that (R)-ketamine produced the beneficial effects compared to (S)-ketamine in several animal models including depression. Here we compared the effects of two enantiomers of ketamine on cognitive deficits in mice after repeated administration of PCP. PCP (10 mg/kg/day for 10 days)-induced cognitive deficits were ameliorated by subsequent repeated intermittent administration of (R)-ketamine (10 mg/kg/day, twice weekly for 2-weeks), but not (S)-ketamine. Western blot analysis showed decreased levels of brain-derived neurotrophic factor (BDNF) and decreased ratio of phosphorylated-TrkB (p-TrkB) to TrkB in the prefrontal cortex (PFC) and hippocampus of PCP-treated mice. Furthermore, PCP-induced reduction of BDNF and p-TrkB/TrkB ratio in the PFC and hippocampus of PCP-treated mice was ameliorated by subsequent intermittent administration of (R)-ketamine. Interestingly, the beneficial effects of (R)-ketamine were blocked by pretreatment with TrkB inhibitor ANA-12. These findings suggest that (R)-ketamine could ameliorate PCP-induced cognitive deficits via activation of BDNF-TrkB signaling in the brain. Therefore, (R)-ketamine could be a potential therapeutic drug for cognitive impairment in patients with schizophrenia.
Collapse
Affiliation(s)
- Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
47
|
Lin CH, Yang S, Huang YJ, Lane HY. Polymorphism in the LASP1 gene promoter region alters cognitive functions of patients with schizophrenia. Sci Rep 2019; 9:18840. [PMID: 31827227 PMCID: PMC6906281 DOI: 10.1038/s41598-019-55414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022] Open
Abstract
Schizophrenia's pathogenesis remains elusive. Cognitive dysfunction is the endophenotype and outcome predictor of schizophrenia. The LIM and SH3 domain protein (LASP1) protein, a component of CNS synapses and dendritic spines, has been related to the N-methyl-D-aspartate receptor (NMDAR) dysfunction hypothesis and schizophrenia. A single-nucleotide polymorphism (rs979607) in the LASP1 gene promoter region has been also implicated in schizophrenia susceptibility. The aim of this study was to investigate the role of the LASP1 rs979607 polymorphism in the cognitive functions of patients with schizophrenia. Two hundred and ninety-one Han Taiwanese patients with schizophrenia were recruited. Ten cognitive tests and two clinical rating scales were assessed. The scores of cognitive tests were standardized to T-scores. The genotyping of the LASP1 rs979607 polymorphism was performed using TaqMan assay. Among the 291 patients, 85 were C/C homozygotes of rs979607, 141 C/T heterozygotes, and 65 T/T homozygotes, which fitted the Hardy-Weinberg equilibrium. After adjusting age, gender, and education with general linear model, the C/C homozygotes performed better than C/T heterozygotes in overall composite score (p = 0.023), Category Fluency test (representing processing speed and semantic memory) (p = 0.045), and Wechsler Memory Scale (WMS)-III backward Spatial Span test (p = 0.025), albeit without correction for multiple comparisons for the latter two individual tests. To the best of our knowledge, this is the first study suggesting that the genetic variation of LASP1 may be associated with global cognitive function, category verbal fluency, and spatial working memory of patients with schizophrenia. The finding also lends support to the NMDAR dysfunction hypothesis of schizophrenia. More studies with longitudinal designs are warranted.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Sheng Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Jhen Huang
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan.
- Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
48
|
Czarny P, Bialek K, Ziolkowska S, Strycharz J, Sliwinski T. DNA damage and repair in neuropsychiatric disorders. What do we know and what are the future perspectives? Mutagenesis 2019; 35:79-106. [DOI: 10.1093/mutage/gez035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractOver the past two decades, extensive research has been done to elucidate the molecular etiology and pathophysiology of neuropsychiatric disorders. In majority of them, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), bipolar disorder (BD), schizophrenia and major depressive disorder, increased oxidative and nitrosative stress was found. This stress is known to induce oxidative damage to biomolecules, including DNA. Accordingly, increased mitochondrial and nuclear DNA, as well as RNA damage, were observed in patients suffering from these diseases. However, recent findings indicate that the patients are characterised by impaired DNA repair pathways, which may suggest that these DNA lesions could be also a result of their insufficient repair. In the current systematic, critical review, we aim to sum up, using available literature, the knowledge about the involvement of nuclear and mitochondrial DNA damage and repair, as well as about damage to RNA in pathoetiology of neuropsychiatric disorders, i.e., AD, PD, ALS, BD, schizophrenia and major depressive disorder, as well as the usefulness of the discussed factors as being diagnostic markers and targets for new therapies. Moreover, we also underline the new directions to which future studies should head to elucidate these phenomena.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Ziolkowska
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|