1
|
Tonnele H, Chen D, Morillo F, Garcia-Calleja J, Chitre AS, Johnson BB, Sanches TM, Bonder MJ, Gonzalez A, Kosciolek T, George AM, Han W, Holl K, Horvath A, Ishiwari K, King CP, Lamparelli AC, Martin CD, Martinez AG, Netzley AH, Tripi JA, Wang T, Bosch E, Doris PA, Stegle O, Chen H, Flagel SB, Meyer PJ, Richards JB, Robinson TE, Woods LCS, Polesskaya O, Knight R, Palmer AA, Baud A. Novel insights into the genetic architecture and mechanisms of host/microbiome interactions from a multi-cohort analysis of outbred laboratory rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644349. [PMID: 40166210 PMCID: PMC11957159 DOI: 10.1101/2025.03.20.644349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The intestinal microbiome influences health and disease. Its composition is affected by host genetics and environmental exposures. Understanding host genetic effects is critical but challenging in humans, due to the difficulty of detecting, mapping and interpreting them. To address this, we analysed host genetic effects in four cohorts of outbred laboratory rats exposed to distinct but controlled environments. We found that polygenic host genetic effects were consistent across environments. We identified three replicated microbiome-associated loci. One involved a sialyltransferase gene and Paraprevotella and we found a similar association, between ST6GAL1 and Paraprevotella, in a human cohort. Given Paraprevotella's known immunity-potentiating functions, this suggests ST6GAL1's effects on IgA nephropathy and COVID-19 breakthrough infections may be mediated by Paraprevotella. Moreover, we found evidence of indirect genetic effects on microbiome phenotypes, which substantially increased their total genetic variance. Finally, we identified a novel mechanism whereby indirect genetic effects can contribute to "missing heritability".
Collapse
Affiliation(s)
- Helene Tonnele
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Felipe Morillo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jorge Garcia-Calleja
- Institute of Evolutionary Biology (CSIC-UPF), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
| | - Wenyan Han
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aidan Horvath
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | | | | | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Alesa H Netzley
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, NY, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Elena Bosch
- Institute of Evolutionary Biology (CSIC-UPF), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Peter A Doris
- Center for Human Genetics, Institute of Molecular Medicine, McGovern Medical School, University of Texas at Houston, TX, USA
| | - Oliver Stegle
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, NY, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA8
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Terry E. Robinson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, La Jolla, CA, San Diego, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Amelie Baud
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Sharp BM, Leng S, Huang J, Jones C, Williams RW, Chen H. Inbred rat heredity and sex affect oral oxycodone self-administration and augmented intake in long sessions: correlations with anxiety and novelty-seeking. PLoS One 2025; 20:e0314777. [PMID: 40063602 PMCID: PMC11892884 DOI: 10.1371/journal.pone.0314777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 03/19/2025] Open
Abstract
Oxycodone abuse frequently begins with prescription oral oxycodone, yet vulnerability factors (e.g. sex, genetics) determining abuse are largely undefined. We evaluated genetic vulnerability in a rat model of oral oxycodone self-administration (SA): increasing oxycodone concentration/session (0.025-0.1mg/ml; 1-, 4-, and 16-h) followed by extinction and reinstatement. Active licks and oxycodone intake were greater in females than males during 4-h and 16-h sessions (p < 0.001). Both sexes increased intake between 4-h and 16-h sessions (p < 2e-16), but a subset of strains augmented intake at 16-h (p = 0.0005). Heritability (h2) of active licks during 4-h sessions at increasing oxycodone dose ranged from 0.30 to 0.53. Under a progressive ratio (PR) schedule, breakpoints were strain-dependent (p < 2e-16). Cued reinstatement was greater in females (p < 0.001). Naive rats were assessed using elevated plus maze (EPM), open field (OF), and novel object interaction (NOI) tests. We correlated these behaviors with 28 parameters of oxycodone SA. Anxiety-defining EPM traits were most associated with SA in both sexes, whereas OF and NOI traits were more associated with SA in males. Sex and heredity are major determinants of motivation to take and seek oxycodone; intake augments dramatically during extended access in specific strains; and anxiety correlates with multiple SA parameters across strains.
Collapse
Affiliation(s)
- Burt M. Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Shuangying Leng
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jun Huang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Caroline Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
3
|
Kuhn BN, Cannella N, Chitre AS, Nguyen KMH, Cohen K, Chen D, Peng B, Ziegler KS, Lin B, Johnson BB, Missfeldt Sanches T, Crow AD, Lunerti V, Gupta A, Dereschewitz E, Soverchia L, Hopkins JL, Roberts AT, Ubaldi M, Abdulmalek S, Kinen A, Hardiman G, Chung D, Polesskaya O, Solberg Woods LC, Ciccocioppo R, Kalivas PW, Palmer AA. Genome-wide association study reveals multiple loci for nociception and opioid consumption behaviors associated with heroin vulnerability in outbred rats. Mol Psychiatry 2025:10.1038/s41380-025-02922-4. [PMID: 40000848 DOI: 10.1038/s41380-025-02922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing to vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1, a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1, Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.
Collapse
Affiliation(s)
- Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Nazzareno Cannella
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Khai-Minh H Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Katarina Cohen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Beverly Peng
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kendra S Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Ayteria D Crow
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Veronica Lunerti
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Arkobrato Gupta
- The Interdisciplinary Ph.D. Program in Biostatistics, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Eric Dereschewitz
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Soverchia
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Jordan L Hopkins
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Analyse T Roberts
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Massimo Ubaldi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Sarah Abdulmalek
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Analia Kinen
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Gary Hardiman
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Dongjun Chung
- The Interdisciplinary Ph.D. Program in Biostatistics, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Chen D, Chitre AS, Nguyen KMH, Cohen KA, Peng BF, Ziegler KS, Okamoto F, Lin B, Johnson BB, Sanches TM, Cheng R, Polesskaya O, Palmer AA. A cost-effective, high-throughput, highly accurate genotyping method for outbred populations. G3 (BETHESDA, MD.) 2025; 15:jkae291. [PMID: 39670731 PMCID: PMC11797033 DOI: 10.1093/g3journal/jkae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Affordable sequencing and genotyping methods are essential for large-scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, nonhuman model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping by sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping by sequencing and more recently generated by low-coverage whole-genome sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21× coverage) and low-coverage whole-genome sequencing data from 8,760 heterogeneous stock rats (mean 0.27× coverage), we can impute 7.32 million biallelic single-nucleotide polymorphisms with a concordance rate > 99.76% compared to high-coverage (mean 33.26× coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping by sequencing or low-coverage whole-genome sequencing for accurate genotyping and demonstrate techniques that may also be useful for other genetic studies in nonhuman subjects.
Collapse
Affiliation(s)
- Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Khai-Minh H Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Katerina A Cohen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Beverly F Peng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kendra S Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Faith Okamoto
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin B Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Thiago M Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Mowlaei ME, Li C, Jamialahmadi O, Dias R, Chen J, Jamialahmadi B, Rebbeck TR, Carnevale V, Kumar S, Shi X. STICI: Split-Transformer with integrated convolutions for genotype imputation. Nat Commun 2025; 16:1218. [PMID: 39890780 PMCID: PMC11785734 DOI: 10.1038/s41467-025-56273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025] Open
Abstract
Despite advances in sequencing technologies, genome-scale datasets often contain missing bases and genomic segments, hindering downstream analyses. Genotype imputation addresses this issue and has been a cornerstone pre-processing step in genetic and genomic studies. Although various methods have been widely adopted for genotype imputation, it remains challenging to impute certain genomic regions and large structural variants. Here, we present a transformer-based framework, named STICI, for accurate genotype imputation. STICI models automatically learn genome-wide patterns of linkage disequilibrium, evidenced by much higher imputation accuracy in regions with highly linked variants. Our imputation results on the human 1000 Genomes Project and non-human genomes show that STICI can achieve high imputation accuracy comparable to the state-of-the-art genotype imputation methods, with the additional capability to impute multi-allelic variants and various types of genetic variants. STICI can be trained for any collection of genomes automatically using self-supervision. Moreover, STICI shows excellent performance without needing any special presuppositions about the underlying patterns in collections of non-human genomes, pointing to adaptability and applications of STICI to impute missing genotypes in any species.
Collapse
Affiliation(s)
- Mohammad Erfan Mowlaei
- Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Chong Li
- Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Junjie Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Benyamin Jamialahmadi
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Timothy Richard Rebbeck
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Vincenzo Carnevale
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
| | - Sudhir Kumar
- Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Xinghua Shi
- Computer & Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA.
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Kuhn BN, Cannella NN, Chitre A, Nguyen KMH, Cohen K, Chen D, Peng B, Ziegler KS, Lin B, Johnson B, Missfeldt Sanchez T, Crow AD, Lunerti V, Gupta A, Dereschewitz E, Soverchia L, Hopkins JL, Roberts AT, Ubaldi M, Abdulmalek S, Kinen A, Hardiman G, Chung D, Polesskaya O, Solberg-Woods L, Ciccocioppo R, Kalivas P, Palmer AA. Genome-wide association study reveals multiple loci for nociception and opioid consumption behaviors associated with heroin vulnerability in outbred rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582340. [PMID: 38712202 PMCID: PMC11071306 DOI: 10.1101/2024.02.27.582340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1, a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1, Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.
Collapse
|
7
|
Lara MK, Chitre AS, Chen D, Johnson BB, Nguyen K, Cohen KA, Muckadam SA, Lin B, Ziegler S, Beeson A, Sanches TM, Solberg Woods LC, Polesskaya O, Palmer AA, Mitchell SH. Genome-wide association study of delay discounting in Heterogeneous Stock rats. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12909. [PMID: 39119916 PMCID: PMC11310854 DOI: 10.1111/gbb.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders and multiple co-occurring psychopathologies. Human and animal genetic studies have established that delay discounting is heritable, but only a few associated genes have been identified. We aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogeneous Stock (HS) rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female HS rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at various delays. Preference switch points were calculated and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter k of both functions were used as delay discounting measures. GWAS for AUC, exponential k, and one indifference point identified significant loci on chromosomes 20 and 14. The gene Slc35f1, which encodes a member of the solute carrier family, was the sole gene within the chromosome 20 locus. That locus also contained an eQTL for Slc35f1, suggesting that heritable differences in the expression might be responsible for the association with behavior. Adgrl3, which encodes a latrophilin subfamily G-protein coupled receptor, was the sole gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.
Collapse
Affiliation(s)
- Montana Kay Lara
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Apurva S. Chitre
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Denghui Chen
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Benjamin B. Johnson
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Khai‐Minh Nguyen
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Katarina A. Cohen
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Sakina A. Muckadam
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Bonnie Lin
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Shae Ziegler
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Angela Beeson
- Department of Internal Medicine, Wake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Thiago M. Sanches
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Oksana Polesskaya
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Abraham A. Palmer
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Institute for Genomic MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Suzanne H. Mitchell
- Department of Behavioral Neuroscience, Psychiatry, the Oregon Institute of Occupational Health SciencesOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
8
|
Chen D, Chitre AS, Nguyen KMH, Cohen K, Peng B, Ziegler KS, Okamoto F, Lin B, Johnson BB, Sanches TM, Cheng R, Polesskaya O, Palmer AA. A Cost-effective, High-throughput, Highly Accurate Genotyping Method for Outbred Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603984. [PMID: 39071405 PMCID: PMC11275765 DOI: 10.1101/2024.07.17.603984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Affordable sequencing and genotyping methods are essential for large scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, non-human model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping-by-sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping-by-sequencing and more recently generated by low-coverage whole-genome-sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21x coverage) and low-coverage whole-genome-sequencing data from 8,760 heterogeneous stock rats (mean 0.27x coverage), we can impute 7.32 million bi-allelic single-nucleotide polymorphisms with a concordance rate >99.76% compared to high-coverage (mean 33.26x coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping-by-sequencing or low-coverage whole-genome-sequencing for accurate genotyping, and demonstrate techniques that may also be useful for other genetic studies in non-human subjects.
Collapse
Affiliation(s)
- Denghui Chen
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Apurva S. Chitre
- Bioinformatics and System Biology Program, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Khai-Minh H. Nguyen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Katarina Cohen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Beverly Peng
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Kendra S. Ziegler
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Faith Okamoto
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Benjamin B. Johnson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Thiago M. Sanches
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| |
Collapse
|
9
|
Sharp BM, Leng S, Huang J, Jones C, Chen H. Inbred rat heredity and sex affect oral oxycodone self-administration and augmented intake in long sessions: correlations with anxiety and novelty-seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.26.568753. [PMID: 38076806 PMCID: PMC10705287 DOI: 10.1101/2023.11.26.568753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Oxycodone abuse begins with prescription oral oxycodone, yet vulnerability factors determining abuse are largely undefined. We evaluated genetic vulnerability in a rat model of oral oxycodone self-administration (SA): increasing oxycodone concentration/session (0.025-0.1mg/ml; 1,4,16-h) followed by extinction and reinstatement. Active licks and oxycodone intake were greater in females than males during 4-h and 16-h sessions (p< 0.001). Each sex increased intake during 16-h vs 4-h sessions (p<2e-16), but a subset of strains dramatically augmented intake at 16-h (p=0.0005). Heritability (h 2) of active licks/4-h at increasing oxycodone dose ranged from 0.30-0.53. Under a progressive ratio schedule, breakpoints were strain-dependent (p<2e-16). Cued reinstatement was greater in females (p<0.001). Naive rats were assessed by elevated plus maze (EPM), open field (OF) and novel object interaction (NOI). We correlated these behaviors with 28 parameters of oxycodone SA. Anxiety-defining EPM traits were most associated with SA in both sexes, whereas more OF and NOI traits were SA-associated in males. Sex and heredity are major determinants of motivation to take and seek oxycodone; intake augments dramatically during extended access in specific strains; and pleiotropic genes affect anxiety and multiple SA parameters.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shuangying Leng
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jun Huang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Caroline Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
10
|
Jiang YZ, Hu LY, Chen MS, Wang XJ, Tan CN, Xue PP, Yu T, He XY, Xiang LX, Xiao YN, Li XL, Ran Q, Li ZJ, Chen L. GATA binding protein 2 mediated ankyrin repeat domain containing 26 high expression in myeloid-derived cell lines. World J Stem Cells 2024; 16:538-550. [PMID: 38817334 PMCID: PMC11135246 DOI: 10.4252/wjsc.v16.i5.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.
Collapse
Affiliation(s)
- Yang-Zhou Jiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Lan-Yue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Mao-Shan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Jie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Cheng-Ning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Pei-Pei Xue
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Teng Yu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Yan He
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Li-Xin Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Yan-Ni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Liang Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Zhong-Jun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China.
| |
Collapse
|
11
|
de Jong TV, Pan Y, Rastas P, Munro D, Tutaj M, Akil H, Benner C, Chen D, Chitre AS, Chow W, Colonna V, Dalgard CL, Demos WM, Doris PA, Garrison E, Geurts AM, Gunturkun HM, Guryev V, Hourlier T, Howe K, Huang J, Kalbfleisch T, Kim P, Li L, Mahaffey S, Martin FJ, Mohammadi P, Ozel AB, Polesskaya O, Pravenec M, Prins P, Sebat J, Smith JR, Solberg Woods LC, Tabakoff B, Tracey A, Uliano-Silva M, Villani F, Wang H, Sharp BM, Telese F, Jiang Z, Saba L, Wang X, Murphy TD, Palmer AA, Kwitek AE, Dwinell MR, Williams RW, Li JZ, Chen H. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. CELL GENOMICS 2024; 4:100527. [PMID: 38537634 PMCID: PMC11019364 DOI: 10.1016/j.xgen.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
Collapse
Affiliation(s)
- Tristan V de Jong
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yanchao Pan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Chris Benner
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy; Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wendy M Demos
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter A Doris
- The Brown Foundation Institute of Molecular Medicine, Center for Human Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hakan M Gunturkun
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Guryev
- Genome Structure and Ageing, University of Groningen, UMC, Groningen, the Netherlands
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Jun Huang
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ted Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Louisville, KY, USA
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ling Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Pejman Mohammadi
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jennifer R Smith
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hongyang Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Burt M Sharp
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
12
|
Lara MK, Chitre AS, Chen D, Johnson BB, Nguyen KM, Cohen KA, Muckadam SA, Lin B, Ziegler S, Beeson A, Sanches T, Solberg Woods LC, Polesskaya O, Palmer AA, Mitchell SH. Genome-wide association study of delay discounting in Heterogenous Stock rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.570851. [PMID: 38168347 PMCID: PMC10760013 DOI: 10.1101/2023.12.12.570851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders, as well as multiple co-occurring psychopathologies. Genetic studies in humans and animal models have established that delay discounting is a heritable trait, but only a few specific genes have been associated with delay discounting. Here, we aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogenous Stock rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at variable delays. Preference switch points were calculated for each rat and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter k of both functions were used as delay discounting measures. GWAS for AUC, exponential k, and indifference points for a short delay identified significant loci on chromosomes 20 and 14. The gene Slc35f1, which encodes a member of the solute carrier family of nucleoside sugar transporters, was the only gene within the chromosome 20 locus. That locus also contained an eQTL for Slc35f1, suggesting that heritable differences in the expression of that gene might be responsible for the association with behavior. The gene Adgrl3, which encodes a member of the latrophilin family of G-protein coupled receptors, was the only gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.
Collapse
Affiliation(s)
- Montana Kay Lara
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Benjamin B. Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Katarina A. Cohen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sakina A. Muckadam
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shae Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Angela Beeson
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thiago Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Suzanne H. Mitchell
- Departments of Behavioral Neuroscience, Psychiatry, the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239 USA
| |
Collapse
|
13
|
de Jong TV, Pan Y, Rastas P, Munro D, Tutaj M, Akil H, Benner C, Chen D, Chitre AS, Chow W, Colonna V, Dalgard CL, Demos WM, Doris PA, Garrison E, Geurts AM, Gunturkun HM, Guryev V, Hourlier T, Howe K, Huang J, Kalbfleisch T, Kim P, Li L, Mahaffey S, Martin FJ, Mohammadi P, Ozel AB, Polesskaya O, Pravenec M, Prins P, Sebat J, Smith JR, Solberg Woods LC, Tabakoff B, Tracey A, Uliano-Silva M, Villani F, Wang H, Sharp BM, Telese F, Jiang Z, Saba L, Wang X, Murphy TD, Palmer AA, Kwitek AE, Dwinell MR, Williams RW, Li JZ, Chen H. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536694. [PMID: 37214860 PMCID: PMC10197727 DOI: 10.1101/2023.04.13.536694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
Collapse
Affiliation(s)
- Tristan V de Jong
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yanchao Pan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Chris Benner
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics; The American Genome Center, Uniformed Services University of the Health Sciences, Washington DC, USA
| | - Wendy M Demos
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter A Doris
- The Brown Foundation Institute of Molecular Medicine, Center For Human Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hakan M Gunturkun
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Guryev
- Genome Structure and Ageing, University of Groningen, UMC Groningen, The Netherlands
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Jun Huang
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ted Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Louisville, KY, USA
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ling Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Pejman Mohammadi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jennifer R Smith
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hongyang Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Burt M Sharp
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
14
|
Wright SN, Leger BS, Rosenthal SB, Liu SN, Jia T, Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Garcia Martinez A, George A, Gileta AF, Han W, Netzley AH, King CP, Lamparelli A, Martin C, St Pierre CL, Wang T, Bimschleger H, Richards J, Ishiwari K, Chen H, Flagel SB, Meyer P, Robinson TE, Solberg Woods LC, Kreisberg JF, Ideker T, Palmer AA. Genome-wide association studies of human and rat BMI converge on synapse, epigenome, and hormone signaling networks. Cell Rep 2023; 42:112873. [PMID: 37527041 PMCID: PMC10546330 DOI: 10.1016/j.celrep.2023.112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in different species may not identify orthologous genes. Here, we demonstrate that cross-species translation of GWASs can be greatly improved by an analysis of co-localization within molecular networks. Using body mass index (BMI) as an example, we show that the genes associated with BMI in humans lack significant agreement with those identified in rats. However, the networks interconnecting these genes show substantial overlap, highlighting common mechanisms including synaptic signaling, epigenetic modification, and hormonal regulation. Genetic perturbations within these networks cause abnormal BMI phenotypes in mice, too, supporting their broad conservation across mammals. Other mechanisms appear species specific, including carbohydrate biosynthesis (humans) and glycerolipid metabolism (rodents). Finally, network co-localization also identifies cross-species convergence for height/body length. This study advances a general paradigm for determining whether and how phenotypes measured in model species recapitulate human biology.
Collapse
Affiliation(s)
- Sarah N Wright
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Brittany S Leger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Program in Biomedical Sciences, University of California San Diego, La Jolla, CA 93093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tongqiu Jia
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anthony George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Alexander F Gileta
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Wenyan Han
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Alesa H Netzley
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Connor Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hannah Bimschleger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Jerry Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14203, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shelly B Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Anholt RRH, Mackay TFC. The genetic architecture of behavioral canalization. Trends Genet 2023; 39:602-608. [PMID: 36878820 PMCID: PMC11856520 DOI: 10.1016/j.tig.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Behaviors are components of fitness and contribute to adaptive evolution. Behaviors represent the interactions of an organism with its environment, yet innate behaviors display robustness in the face of environmental change, which we refer to as 'behavioral canalization'. We hypothesize that positive selection of hub genes of genetic networks stabilizes the genetic architecture for innate behaviors by reducing variation in the expression of interconnected network genes. Robustness of these stabilized networks would be protected from deleterious mutations by purifying selection or suppressing epistasis. We propose that, together with newly emerging favorable mutations, epistatically suppressed mutations can generate a reservoir of cryptic genetic variation that could give rise to decanalization when genetic backgrounds or environmental conditions change to allow behavioral adaptation.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | - Trudy F C Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
16
|
Wagner VA, Holl KL, Clark KC, Reho JJ, Dwinell MR, Lehmler HJ, Raff H, Grobe JL, Kwitek AE. Genetic background in the rat affects endocrine and metabolic outcomes of bisphenol F exposure. Toxicol Sci 2023; 194:84-100. [PMID: 37191987 PMCID: PMC10306406 DOI: 10.1093/toxsci/kfad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Environmental bisphenol compounds like bisphenol F (BPF) are endocrine-disrupting chemicals (EDCs) affecting adipose and classical endocrine systems. Genetic factors that influence EDC exposure outcomes are poorly understood and are unaccounted variables that may contribute to the large range of reported outcomes in the human population. We previously demonstrated that BPF exposure increased body growth and adiposity in male N/NIH heterogeneous stock (HS) rats, a genetically heterogeneous outbred population. We hypothesize that the founder strains of the HS rat exhibit EDC effects that were strain- and sex-dependent. Weanling littermate pairs of male and female ACI, BN, BUF, F344, M520, and WKY rats randomly received either vehicle (0.1% EtOH) or 1.125 mg BPF/l in 0.1% EtOH for 10 weeks in drinking water. Body weight and fluid intake were measured weekly, metabolic parameters were assessed, and blood and tissues were collected. BPF increased thyroid weight in ACI males, thymus and kidney weight in BUF females, adrenal weight in WKY males, and possibly increased pituitary weight in BN males. BUF females also developed a disruption in activity and metabolic rate with BPF exposure. These sex- and strain-specific exposure outcomes illustrate that HS rat founders possess diverse bisphenol-exposure risk alleles and suggest that BPF exposure may intensify inherent organ system dysfunction existing in the HS rat founders. We propose that the HS rat will be an invaluable model for dissecting gene EDC interactions on health.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Katie L Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Karen C Clark
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52246, USA
| | - Hershel Raff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin 53233, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|