1
|
Maltezou HC, Gamaletsou MN, Giannouchos TV, Koukou DM, Sourri F, Lemonakis N, Karapanou A, Zerva S, Lourida A, Panagopoulos P, Hatzigeorgiou D, Sipsas NV. Morbidity and absenteeism due to SARS-CoV-2 and seasonal influenza in health care personnel during the 2023 to 2024 season: A multicenter cohort study in Greece. Am J Infect Control 2025; 53:685-689. [PMID: 40158628 DOI: 10.1016/j.ajic.2025.03.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/02/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND To assess the morbidity and absenteeism due to SARS-CoV-2 infection or influenza among health care personnel (HCP) in Greece in 2023 to 2024. METHODS We followed 5,871 HCP from November 2023 to May 2024. A multivariable regression was used to estimate the association between length of absenteeism, HCP characteristics, and type of infection. RESULTS There were 759 episodes of absenteeism during the study period. The mean duration of absence per episode was 4.5days and the total duration of absence was 3,434days. COVID-19 was diagnosed in 507 (8.6%) HCP, asymptomatic SARS-CoV-2 infection in 10 (0.2%) HCP, and influenza in 88 (1.5%). COVID-19, influenza, and asymptomatic SARS-CoV-2 infection accounted for 66.8%, 11.6%, and 1.3% of episodes of absenteeism, respectively. Overall, SARS-CoV-2 infection and influenza accounted for 76.5% and 9.7% of total days missed, respectively. Presenteeism was recorded in 113 (14.9%) HCP. The multivariable regression model found that having SARS-CoV-2 infection and having at least 1 comorbidity were associated with a mean of 1.76 and 0.25 more days of work absence compared with those with no SARS-CoV-2 infection and no comorbidity, respectively (confidence intervals: 1.55-1.98 and 0.05-0.46, respectively). CONCLUSIONS COVID-19 remains the major driver of absenteeism among HCP.
Collapse
Affiliation(s)
- Helena C Maltezou
- Directorate for Research, Studies and Documentation, National Public Health Organization, Athens, Greece.
| | - Maria N Gamaletsou
- Pathophysiology Department, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros V Giannouchos
- Department of Health Policy & Organization, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dimitra-Maria Koukou
- First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Flora Sourri
- Department of Infection Control, 251 Hellenic Air Force General Hospital, Athens, Greece
| | - Nikolaos Lemonakis
- Infection Control Committee, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Amalia Karapanou
- Infection Control Committee, Laiko General Hospital, Athens, Greece
| | - Sofia Zerva
- Infection Control Committee, Laiko General Hospital, Athens, Greece
| | - Athanasia Lourida
- Infection Control Committee, Aghia Sofia Children's Hospital, Athens, Greece
| | - Periklis Panagopoulos
- Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolaos V Sipsas
- Pathophysiology Department, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Li Z, Hu P, Qu L, Yang M, Qiu M, Xie C, Yang H, Cao J, Yi L, Liu Z, Zou L, Lian H, Zeng H, Xu S, Hu P, Sun J, He J, Chen L, Yang Y, Li B, Sun L, Lu J. Molecular epidemiology and population immunity of SARS-CoV-2 in Guangdong (2022-2023) following a pivotal shift in the pandemic. Nat Commun 2024; 15:7033. [PMID: 39147778 PMCID: PMC11327343 DOI: 10.1038/s41467-024-51141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The SARS-CoV-2 Omicron variant sparked the largest wave of infections worldwide. Mainland China eased its strict COVID-19 measures in late 2022 and experienced two nationwide Omicron waves in 2023. Here, we investigated lineage distribution and virus evolution in Guangdong, China, 2022-2023 by comparing 5813 local viral genomes with the datasets from other regions of China and worldwide. Additionally, we conducted three large-scale serological surveys involving 1696 participants to measure their immune response to the BA.5 and XBB.1.9 before and after the corresponding waves. Our findings revealed the Omicron variants, mainly the BA.5.2.48 lineage, causing infections in over 90% of individuals across different age groups within a month. This rapid spread led to the establishment of widespread immunity, limiting the virus's ability to further adaptive mutation and dissemination. While similar immune responses to BA.5 were observed across all age groups after the initial wave, children aged 3 to 11 developed a stronger cross immune response to the XBB.1.9 strain, possibly explaining their lower infection rates in the following XBB.1 wave. Reinfection with Omicron XBB.1 variant triggered a more potent neutralizing immune response among older adults. These findings highlight the impact of age-specific immune responses on viral spread in potential future waves.
Collapse
Affiliation(s)
- Zhencui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Pei Hu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Lin Qu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Mingda Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Ming Qiu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Chunyan Xie
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Haiyi Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Jiadian Cao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Lina Yi
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huimin Lian
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiling Zeng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shaojian Xu
- Longhua District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Pengwei Hu
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jiufeng Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Jianfeng He
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Liang Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Ying Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Baisheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Limei Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Wang QB, Wang YL, Wang YF, Chen H, Chen W, Chen YQ. Impact of non-emergency surgical timing on postoperative recovery quality in mild or asymptomatic SARS-CoV-2 infected patients: a grouped cohort study. BMC Anesthesiol 2024; 24:225. [PMID: 38971737 PMCID: PMC11227204 DOI: 10.1186/s12871-024-02600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE To explore the relationship between the timing of non-emergency surgery in mild or asymptomatic SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infected individuals and the quality of postoperative recovery from the time of confirmed infection to the day of surgery. METHODS We retrospectively reviewed the medical records of 300 cases of mild or asymptomatic SARS-CoV-2 infected patients undergoing elective general anaesthesia surgery at Yijishan Hospital between January 9, 2023, and February 17, 2023. Based on the time from confirmed SARS-CoV-2 infection to the day of surgery, patients were divided into four groups: ≤2 weeks (Group A), 2-4 weeks (Group B), 4-6 weeks (Group C), and 6-8 weeks (Group D). The primary outcome measures included the Quality of Recovery-15 (QoR-15) scale scores at 3 days, 3 months, and 6 months postoperatively. Secondary outcome measures included postoperative mortality, ICU admission, pulmonary complications, postoperative length of hospital stay, extubation time, and time to leave the PACU. RESULTS Concerning the primary outcome measures, the QoR-15 scores at 3 days postoperatively in Group A were significantly lower compared to the other three groups (P < 0.05), while there were no statistically significant differences among the other three groups (P > 0.05). The QoR-15 scores at 3 and 6 months postoperatively showed no statistically significant differences among the four groups (P > 0.05). In terms of secondary outcome measures, Group A had a significantly prolonged hospital stay compared to the other three groups (P < 0.05), while other outcome measures showed no statistically significant differences (P > 0.05). CONCLUSION The timing of surgery in mild or asymptomatic SARS-CoV-2 infected patients does not affect long-term recovery quality but does impact short-term recovery quality, especially for elective general anaesthesia surgeries within 2 weeks of confirmed infection. Therefore, it is recommended to wait for a surgical timing of at least greater than 2 weeks to improve short-term recovery quality and enhance patient prognosis.
Collapse
Affiliation(s)
- Qiu-Bo Wang
- Department of Anaesthesiology, Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Yu-Long Wang
- Department of Anaesthesiology, Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China.
| | - Yue-Feng Wang
- Department of Anaesthesiology, Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Hua Chen
- Department of Anaesthesiology, Bozhou Traditional Chinese Medicine Hospital, Bozhou, 236800, China
| | - Wei Chen
- Department of Anaesthesiology, Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Yong-Quan Chen
- Department of Anaesthesiology, Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
4
|
Peng S, Huang H, Chen J, Ding X, Zhu X, Liu Y, Chen L, Lu Z. Impact of Anti-angiogenic Drugs on Severity of COVID-19 in Patients with Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2024; 23:15330338241248573. [PMID: 38656242 PMCID: PMC11044805 DOI: 10.1177/15330338241248573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Introduction: The 2019 coronavirus disease (COVID-19) pandemic has reshaped oncology practice, but the impact of anti-angiogenic drugs on the severity of COVID-19 in patients with non-small cell lung cancer (NSCLC) remains unclear. Patients and Methods: We carried out a retrospective study involving 166 consecutive patients with NSCLC who were positive for COVID-19, aiming to determine the effects of anti-angiogenic drugs on disease severity, as defined by severe/critical symptoms, intensive care unit (ICU) admission/intubation, and mortality outcomes. Risk factors were identified using univariate and multivariate logistic regression models. Results: Of the participants, 73 had been administered anti-angiogenic drugs (termed the anti-angiogenic therapy (AT) group), while 93 had not (non-AT group). Comparative analyses showed no significant disparity in the rates of severe/critical symptoms (21.9% vs 35.5%, P = 0.057), ICU admission/intubation (6.8% vs 7.5%, P = 0.867), or death (11.0% vs 9.7%, P = 0.787) between these two groups. However, elevated risk factors for worse outcomes included age ≥ 60 (odds ratio (OR): 2.52, 95% confidence interval (CI): 1.07-5.92), Eastern Cooperative Oncology Group performance status of 2 or higher (OR: 21.29, 95% CI: 4.98-91.01), chronic obstructive pulmonary disease (OR: 7.25, 95% CI: 1.65-31.81), hypertension (OR: 2.98, 95% CI: 1.20-7.39), and use of immunoglobulin (OR: 5.26, 95% CI: 1.06-26.25). Conclusion: Our data suggests that the use of anti-angiogenic drugs may not exacerbate COVID-19 severity in NSCLC patients, indicating their potential safe application even during the pandemic period.
Collapse
Affiliation(s)
- Sujuan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jinhong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xinjing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yangyang Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhihui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
5
|
Hussein MA, Borik RM, Nafie MS, Abo-Salem HM, Boshra SA, Mohamed ZN. Structure Activity Relationship and Molecular Docking of Some Quinazolines Bearing Sulfamerazine Moiety as New 3CLpro, cPLA2, sPLA2 Inhibitors. Molecules 2023; 28:6052. [PMID: 37630304 PMCID: PMC10460087 DOI: 10.3390/molecules28166052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The current work was conducted to synthesize several novel anti-inflammatory quinazolines having sulfamerazine moieties as new 3CLpro, cPLA2, and sPLA2 inhibitors. The thioureido derivative 3 was formed when compound 2 was treated with sulfamerazine. Also, compound 3 was reacted with NH2-NH2 in ethanol to produce the N-aminoquinazoline derivative. Additionally, derivative 4 was reacted with 4-hydroxy-3-methoxybenzaldehyde, ethyl chloroacetate, and/or diethyl oxalate to produce quinazoline derivatives 5, 6, and 12, respectively. The results of the pharmacological study indicated that the synthesized 4-6 and 12 derivatives showed good 3CLpro, cPLA2, and sPLA2 inhibitory activity. The IC50 values of the target compounds 4-6, and 12 against the SARS-CoV-2 main protease were 2.012, 3.68, 1.18, and 5.47 µM, respectively, whereas those of baicalein and ivermectin were 1.72 and 42.39 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against sPLA2 were 2.84, 2.73, 1.016, and 4.45 µM, respectively, whereas those of baicalein and ivermectin were 0.89 and 109.6 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against cPLA2 were 1.44, 2.08, 0.5, and 2.39 µM, respectively, whereas those of baicalein and ivermectin were 3.88 and 138.0 µM, respectively. Also, incubation of lung cells with LPS plus derivatives 4-6, and 12 caused a significant decrease in levels of sPLA2, cPLA2, IL-8, TNF-α, and NO. The inhibitory activity of the synthesized compounds was more pronounced compared to baicalein and ivermectin. In contrast to ivermectin and baicalein, bioinformatics investigations were carried out to establish the possible binding interactions between the newly synthesized compounds 2-6 and 12 and the active site of 3CLpro. Docking simulations were utilized to identify the binding affinity and binding mode of compounds 2-6 and 12 with the active sites of 3CLpro, sPLA2, and cPLA2 enzymes. Our findings demonstrated that all compounds had outstanding binding affinities, especially with the key amino acids of the target enzymes. These findings imply that compound 6 is a potential lead for the development of more effective SARS-CoV-2 Mpro inhibitors and anti-COVID-19 quinazoline derivative-based drugs. Compound 6 was shown to have more antiviral activity than baicalein and against 3CLpro. Furthermore, the IC50 value of ivermectin against the SARS-CoV-2 main protease was revealed to be 42.39 µM, indicating that it has low effectiveness.
Collapse
Affiliation(s)
- Mohammed Abdalla Hussein
- Biotechnology Department, Faculty of Applied Heath Science Technology, October 6 University, Giza 28125, Egypt;
| | - Rita M. Borik
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia;
| | - Mohamed S. Nafie
- Chemistry Department (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. Abo-Salem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza 28125, Egypt;
| | - Sylvia A. Boshra
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 28125, Egypt
| | - Zahraa N. Mohamed
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, Giza 28125, Egypt;
| |
Collapse
|
6
|
Ivachtchenko AV, Ivashchenko AA, Shkil DO, Ivashchenko IA. Aprotinin-Drug against Respiratory Diseases. Int J Mol Sci 2023; 24:11173. [PMID: 37446350 PMCID: PMC10342444 DOI: 10.3390/ijms241311173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical "magic shotgun". Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections. However, due to incompetent interpretation of several clinical trials followed by incredible controversy in the literature, the usage of APR was nearly stopped for a decade worldwide. In 2015-2020, after re-analysis of these clinical trials' data the restrictions in APR usage were lifted worldwide. This review discusses antiviral mechanisms of APR action and summarizes current knowledge and prospective regarding the use of APR treatment for diseases caused by RNA-containing viruses, including influenza and SARS-CoV-2 viruses, or as a part of combination antiviral treatment.
Collapse
Affiliation(s)
- Alexandre V. Ivachtchenko
- ChemDiv Inc., San Diego, CA 92130, USA; (A.A.I.); (I.A.I.)
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | | - Dmitrii O. Shkil
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | |
Collapse
|
7
|
Lai P, Xu S, Xue JH, Zhang HZ, Zhong YM, Liao YL. Current hotspot and study trend of innate immunity in COVID-19: a bibliometric analysis from 2020 to 2022. Front Immunol 2023; 14:1135334. [PMID: 37234160 PMCID: PMC10206249 DOI: 10.3389/fimmu.2023.1135334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Background Since the coronavirus disease 2019 (COVID-19) has spread throughout the world, many studies on innate immunity in COVID-19 have been published, and great progress has been achieved, while bibliometric analysis on hotspots and research trends in this field remains lacking. Methods On 17 November 2022, articles and reviews on innate immunity in COVID-19 were recruited from the Web of Science Core Collection (WoSCC) database after papers irrelevant to COVID-19 were further excluded. The number of annual publications and the average citations per paper were analyzed by Microsoft Excel. Bibliometric analysis and visualization of the most prolific contributors and hotspots in the field were performed by VOSviewer and CiteSpace software. Results There were 1,280 publications that met the search strategy on innate immunity in COVID-19 and were published from 1 January 2020 to 31 October 2022. Nine hundred thirteen articles and reviews were included in the final analysis. The USA had the highest number of publications (Np) at 276 and number of citations without self-citations (Nc) at 7,085, as well as an H-index of 42, which contributed 30.23% of the total publications, followed by China (Np: 135, Nc: 4,798, and H-index: 23) with 14.79% contribution. Regarding Np for authors, Netea, Mihai G. (Np: 7) from the Netherlands was the most productive author, followed by Joosten, Leo A. B. (Np: 6) and Lu, Kuo-Cheng (Np: 6). The Udice French Research Universities had the most publications (Np: 31, Nc: 2,071, H-index: 13), with an average citation number (ACN) at 67. The journal Frontiers in Immunology possessed the most publications (Np: 89, Nc: 1,097, ACN: 12.52). "Evasion" (strength 1.76, 2021-2022), "neutralizing antibody" (strength 1.76, 2021-2022), "messenger RNA" (strength 1.76, 2021-2022), "mitochondrial DNA" (strength 1.51, 2021-2022), "respiratory infection" (strength 1.51, 2021-2022), and "toll-like receptors" (strength 1.51, 2021-2022) were the emerging keywords in this field. Conclusion The study on innate immunity in COVID-19 is a hot topic. The USA was the most productive and influential country in this field, followed by China. The journal with the most publications was Frontiers in Immunology. "Messenger RNA," "mitochondrial DNA," and "toll-like receptors" are the current hotspots and potential targets in future research.
Collapse
Affiliation(s)
- Ping Lai
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Shuquan Xu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Jin-hua Xue
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Hong-zhou Zhang
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Yi-ming Zhong
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yong-ling Liao
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Peng H, Xiang T, Xu F, Jiang Y, Zhong L, Peng Y, Le A, Zhang W, Liu Y. Redistribution and Activation of CD16brightCD56dim NK Cell Subset to Fight against Omicron Subvariant BA.2 after COVID-19 Vaccination. Microorganisms 2023; 11:microorganisms11040940. [PMID: 37110363 PMCID: PMC10145754 DOI: 10.3390/microorganisms11040940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
With the alarming surge in COVID-19 cases globally, vaccination must be prioritised to achieve herd immunity. Immune dysfunction is detected in the majority of patients with COVID-19; however, it remains unclear whether the immune responses elicited by COVID-19 vaccination function against the Omicron subvariant BA.2. Of the 508 enrolled patients infected with Omicron BA.2, 102 were unvaccinated controls, and 406 were vaccinated. Despite the presence of clinical symptoms in both groups, vaccination led to a significant decline in nausea or vomiting, abdominal pain, headache, pulmonary infection, and overall clinical symptoms and a moderate rise in body temperature. The individuals infected with Omicron BA.2 were also characterised by a mild increase in both serum pro- and anti-inflammatory cytokine levels after vaccination. There were no significant differences or trend changes between T- and B-lymphocyte subsets; however, a significant expansion of NK lymphocytes in COVID-19-vaccinated patients was observed. Moreover, the most effective CD16brightCD56dim subsets of NK cells showed increased functional capacities, as evidenced by a significantly greater IFN-γ secretion and a stronger cytotoxic potential in the patients infected with Omicron BA.2 after vaccination. Collectively, these results suggest that COVID-19 vaccination interventions promote the redistribution and activation of CD16brightCD56dim NK cell subsets against viral infections and that they could facilitate the clinical management of patients infected with Omicron BA.2.
Collapse
Affiliation(s)
- Huiyun Peng
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang 330200, China
| | - Tianxin Xiang
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang 330200, China
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fei Xu
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang 330200, China
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yuhuan Jiang
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lipeng Zhong
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanqi Peng
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Aiping Le
- Department of Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang 330200, China
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Liu
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang 330200, China
| |
Collapse
|