1
|
Khoza T, Masenya A, Khanyile N, Thosago S. Alleviating Plant Density and Salinity Stress in Moringa oleifera Using Arbuscular Mycorrhizal Fungi: A Review. J Fungi (Basel) 2025; 11:328. [PMID: 40278148 PMCID: PMC12028634 DOI: 10.3390/jof11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Moringa oleifera (LAM) is a multipurpose tree species with extensive pharmacological and ethnomedicinal properties. Production of important medicinal plants is facing decline under changing climatic conditions, which brings along exacerbated abiotic stresses like salinity and intraspecific competition, particularly high planting densities. Increasing plant density is seen as a strategy to increase production; however, the intraspecific competition and a lack of arable land limit productivity. Salinity has been estimated to harm approximately six percent of the Earth's landmass. This leads to a loss of over 20% of agricultural output annually. These stressors can significantly curtail moringa's growth and yield potential. Literature designates that Arbuscular Mycorrhizal Fungi (AMF), ubiquitous soil microorganisms forming symbiotic associations with plant roots, offer a promising avenue for mitigating these stresses. This narrative review aims to investigate the utilization of AMF to alleviate the detrimental effects of salinity and high planting density on Moringa oleifera. The different adaptive strategies M. oleifera undergoes to mitigate both stressors are explored. The review found that AMF inoculation enhances plant tolerance to these stressors by improving nutrient acquisition, water relations, and activating stress response mechanisms. By facilitating improved nutrient and water absorption, AMF enhance root architecture, modulate ROS scavenging mechanisms, and promote optimal biomass allocation, ensuring better survival in high-density plantings. Furthermore, AMF-mediated stress alleviation is linked to enhanced physiological efficiency, including increased chlorophyll content, root-shoot biomass balance, and ion homeostasis. This review is important because it could provide insights into a sustainable, natural solution for improving the resilience of Moringa oleifera under adverse environmental conditions, with potential applications in global agriculture and food security. Future research should prioritize identifying and characterizing moringa-specific AMF species and evaluate the long-term efficacy, feasibility, and economic viability of AMF application in real-world moringa cultivation systems to fully harness the potential of AMF in moringa cultivation.
Collapse
Affiliation(s)
- Tshepiso Khoza
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| | - Absalom Masenya
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| | - Nokuthula Khanyile
- School of Chemical and Physical Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | - Standford Thosago
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| |
Collapse
|
2
|
Ahmed W, Wang Y, Ji W, Liu S, Zhou S, Pan J, Li Z, Wang F, Wang X. Unraveling the Mechanism of the Endophytic Bacterial Strain Pseudomonas oryzihabitans GDW1 in Enhancing Tomato Plant Growth Through Modulation of the Host Transcriptome and Bacteriome. Int J Mol Sci 2025; 26:1922. [PMID: 40076548 PMCID: PMC11900241 DOI: 10.3390/ijms26051922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Endophytic Pseudomonas species from agricultural crops have been extensively studied for their plant-growth-promoting (PGP) potential, but little is known about their PGP potential when isolated from perennial trees. This study investigated the plant-growth-promoting (PGP) potential of an endophyte, Pseudomonas oryzihabitans GDW1, isolated from a healthy pine tree by taking tomato as a host plant. We employed multiomics approaches (transcriptome and bacteriome analyses) to elucidate the underlying PGP mechanisms of GDW1. The results of greenhouse experiments revealed that the application of GDW1 significantly improved tomato plant growth, increasing shoot length, root length, fresh weight, and biomass accumulation by up to 44%, 38%, 54%, and 59%, respectively, compared with control. Transcriptomic analysis revealed 1158 differentially expressed genes significantly enriched in the plant hormone signaling (auxin, gibberellin, and cytokinin) and stress response (plant-pathogen interaction, MAPK signaling pathway-plant, and phenylpropanoid biosynthesis) pathways. Protein-protein interaction network analysis revealed nine hub genes (MAPK10, ARF19-1, SlCKX1, GA2ox2, PAL5, SlWRKY37, GH3.6, XTH3, and NML1) related to stress tolerance, hormone control, and plant defense. Analysis of the tomato root bacteriome through 16S rRNA gene amplicon sequencing revealed that GDW1 inoculation dramatically altered the root bacterial community structure, enhancing the diversity and abundance of beneficial taxa (Proteobacteria and Bacteroidota). Co-occurrence network analysis showed a complex bacterial network in treated plants, suggesting increasingly intricate microbial relationships and improved nutrient absorption. Additionally, FAPROTAX and PICRUSt2 functional prediction analyses suggested the role of GDW1 in nitrogen cycling, organic matter degradation, plant growth promotion, and stress resistance. In conclusion, this study provides novel insights into the symbiotic relationship between P. oryzihabitans GDW1 and tomato plants, highlighting its potential as a biofertilizer for sustainable agriculture and a means of reducing the reliance on agrochemicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xinrong Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (W.A.); (Y.W.); (W.J.); (S.L.); (S.Z.); (J.P.); (Z.L.); (F.W.)
| |
Collapse
|
3
|
Boorboori MR, Lackóová L. Arbuscular mycorrhizal fungi and salinity stress mitigation in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1504970. [PMID: 39898265 PMCID: PMC11782229 DOI: 10.3389/fpls.2024.1504970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025]
Abstract
In recent decades, climate change has caused a decrease in rainfall, increasing sea levels, temperatures rising, and as a result, an expansion in salt marshes across the globe. An increase in water and soil salinity has led to a decline in the cultivated areas in different areas, and consequently, a substantial decrease in crop production. Therefore, it has forced scientists to find cheap, effective and environmentally friendly methods to minimize salinity's impact on crops. One of the best strategies is to use beneficial soil microbes, including arbuscular mycorrhizal fungi, in order to increase plant tolerance to salt. The findings of this review showed that salinity can severely impact the morphological, physiological, and biochemical structures of plants, lowering their productivity. Although plants have natural capabilities to deal with salinity, these capacities are limited depending on plant type, and variety, as well as salinity levels, and other environmental factors. Furthermore, result of the present review indicates that arbuscular mycorrhizal fungi have a significant effect on increasing plant resistance in saline soils by improving the soil structure, as well as stimulating various plant factors including photosynthesis, antioxidant defense system, secondary metabolites, absorption of water and nutrients.
Collapse
Affiliation(s)
- Mohammad Reza Boorboori
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, Anhui, China
| | - Lenka Lackóová
- Faculty of Horticulture and Landscape Engineering, Institute of Landscape Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
4
|
Zeng W, Xiang D, Li X, Gao Q, Chen Y, Wang K, Qian Y, Wang L, Li J, Mi Q, Huang H, Xu L, Zhao M, Zhang Y, Xiang H. Effects of combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizosphere bacteria on seedling growth and rhizosphere microecology. Front Microbiol 2025; 15:1475485. [PMID: 39867496 PMCID: PMC11758927 DOI: 10.3389/fmicb.2024.1475485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi (Funneliformis mosseae) and two PGPR (Bacillus sp., Pseudomonas sp.) on the growth of tobacco seedlings, together with high-throughput sequencing technology to reveal associated rhizosphere microecological mechanisms. All inoculation treatments significantly increased the aboveground dry weight; root dry weight; seedling nitrogen, phosphorus, and potassium uptake; plant height; stem thickness; maximum leaf area; chlorophyll content; total root length, surface area, and volume; and average root diameter. The highest values for these indices were observed in the combined treatment of F. mosseae and Pseudomonas sp. SG29 (A_SG29). Furthermore, the A_SG29 treatment yielded the highest diversity indexes and largest percentages of significantly enriched bacterial taxa, and significantly promoted the colonization of AMF in tobacco roots and Pseudomonas in rhizosphere soil. Differential metabolic-pathway predictions using PICRUSt2 showed that the A_SG29 treatment significantly increased the metabolic pathway richness of tobacco rhizosphere microorganisms, and significantly up-regulated some metabolic pathways that may benefit plant growth. Co-inoculation with F. mosseae and Pseudomonas sp. SG29 promoted tobacco-seedling growth by significantly improving rhizosphere microbial communities' structure and function. In summary, the combined inoculation of AMF and SG29 promotes tobacco seedling growth, optimizes the rhizosphere microbial community's structure and function, and serves as a sustainable microbial co-cultivation method for tobacco seedling production.
Collapse
Affiliation(s)
- Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Dan Xiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Xuemei Li
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Yudong Chen
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Kunmiao Wang
- Yunnan Academy of Tobacco Science, Kunming, China
| | | | - Luoping Wang
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Jing Li
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Qili Mi
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Haitao Huang
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Li Xu
- Yunnan Academy of Tobacco Science, Kunming, China
| | - Mingfang Zhao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Yingzhen Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
5
|
Nie W, He Q, Guo H, Zhang W, Ma L, Li J, Wen D. Arbuscular Mycorrhizal Fungi: Boosting Crop Resilience to Environmental Stresses. Microorganisms 2024; 12:2448. [PMID: 39770651 PMCID: PMC11677594 DOI: 10.3390/microorganisms12122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs. At the heart of mitigating these challenges, Arbuscular Mycorrhizal Fungi (AM fungi) form a crucial symbiotic relationship with most terrestrial plants, significantly enhancing their stress resilience. AM fungi improve nutrient uptake, particularly that of nitrogen and phosphorus, through their extensive mycelial networks. Additionally, they enhance soil structure, increase water use efficiency, and strengthen antioxidant defense mechanisms, particularly in environments stressed by drought, salinity, extreme temperatures, heavy metal contamination, and flooding. Beyond mitigating abiotic stress, AM fungi bolster plant defenses against pathogens and pests by competing for colonization sites and enhancing plant immune responses. They also facilitate plant adaptation to extreme environmental conditions by altering root morphology, modulating gene expression, and promoting the accumulation of osmotic adjustment compounds. This review discusses the role of AM fungi in enhancing plant growth and performance under environmental stress.
Collapse
Affiliation(s)
- Wenjing Nie
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Qinghai He
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Hongen Guo
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Wenjun Zhang
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lan Ma
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Junlin Li
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Dan Wen
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Fruit Research Institute, Tai’an 271000, China
| |
Collapse
|
6
|
Delaeter M, Magnin-Robert M, Randoux B, Lounès-Hadj Sahraoui A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms 2024; 12:1281. [PMID: 39065050 PMCID: PMC11278648 DOI: 10.3390/microorganisms12071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are soil microorganisms living in symbiosis with most terrestrial plants. They are known to improve plant tolerance to numerous abiotic and biotic stresses through the systemic induction of resistance mechanisms. With the aim of developing more sustainable agriculture, reducing the use of chemical inputs is becoming a major concern. After providing an overview on AMF history, phylogeny, development cycle and symbiosis benefits, the current review aims to explore the potential of AMF as biostimulants and/or biocontrol agents. Nowadays, AMF inoculums are already increasingly used as biostimulants, improving mineral nutrient plant acquisition. However, their role as a promising tool in the biocontrol market, as an alternative to chemical phytosanitary products, is underexplored and underdiscussed. Thus, in the current review, we will address the mechanisms of mycorrhized plant resistance to biotic stresses induced by AMF, and highlight the various factors in favor of inoculum application, but also the challenges that remain to be overcome.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, 50 Rue Ferdinand Buisson, 62228 Calais, France
| |
Collapse
|
7
|
de Carvalho Neta SJ, Araújo VLVP, Fracetto FJC, da Silva CCG, de Souza ER, Silva WR, Lumini E, Fracetto GGM. Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress. Microbiol Res 2024; 284:127708. [PMID: 38599021 DOI: 10.1016/j.micres.2024.127708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Climate change intensifies soil salinization and jeopardizes the development of crops worldwide. The accumulation of salts in plant tissue activates the defense system and triggers ethylene production thus restricting cell division. We hypothesize that the inoculation of plant growth-promoting bacteria (PGPB) producing ACC (1-aminocyclopropane-1-carboxylate) deaminase favors the development of arbuscular mycorrhizal fungi (AMF), promoting the growth of maize plants under saline stress. We investigated the efficacy of individual inoculation of PGPB, which produce ACC deaminase, as well as the co-inoculation of PGPB with Rhizophagus clarus on maize plant growth subjected to saline stress. The isolates were acquired from the bulk and rhizospheric soil of Mimosa bimucronata (DC.) Kuntze in a temporary pond located in Pernambuco State, Brazil. In the first greenhouse experiment, 10 halophilic PGPB were inoculated into maize at 0, 40 and 80 mM of NaCl, and in the second experiment, the PGPB that showed the best performance were co-inoculated with R. clarus in maize under the same conditions as in the first experiment. Individual PGPB inoculation benefited the number of leaves, stem diameter, root and shoot dry mass, and the photosynthetic pigments. Inoculation with PGPB 28-10 Pseudarthrobacter enclensis, 24-1 P. enclensis and 52 P. chlorophenolicus increased the chlorophyll a content by 138%, 171%, and 324% at 0, 40 and 80 mM NaCl, respectively, comparing to the non-inoculated control. We also highlight that the inoculation of PGPB 28-10, 28-7 Arthrobacter sp. and 52 increased the content of chlorophyll b by 72%, 98%, and 280% and carotenoids by 82%, 98%, and 290% at 0, 40 and 80 mM of NaCl, respectively. Co-inoculation with PGPB 28-7, 46-1 Leclercia tamurae, 70 Artrobacter sp., and 79-1 Micrococcus endophyticus significantly increased the rate of mycorrhizal colonization by roughly 50%. Furthermore, co-inoculation promoted a decrease in the accumulation of Na and K extracted from plant tissue, with an increase in salt concentration, from 40 mM to 80 mM, also favoring the establishment and development of R. clarus. In addition, co-inoculation of these PGPB with R. clarus promoted maize growth and increased plant biomass through osmoregulation and protection of the photosynthetic apparatus. The tripartite symbiosis (plant-fungus-bacterium) is likely to reprogram metabolic pathways that improve maize growth and crop yield, suggesting that the AMF-PGPB consortium can minimize damages caused by saline stress.
Collapse
Affiliation(s)
| | - Victor Lucas Vieira Prudêncio Araújo
- "Luiz de Queiroz" College of Agriculture (ESALQ), University of Sao Paulo, Department of Soil Science and Plant Nutrition, Piracicaba, São Paulo, Brazil
| | | | | | | | - William Ramos Silva
- Federal Rural University of Pernambuco, Department of Agronomy, Recife, Pernambuco, Brazil
| | - Erica Lumini
- Institute for Sustainable Plant Protection - Turin UOS, National Research Council, Torino, Italy
| | | |
Collapse
|
8
|
Negi R, Sharma B, Kumar S, Chaubey KK, Kaur T, Devi R, Yadav A, Kour D, Yadav AN. Plant endophytes: unveiling hidden applications toward agro-environment sustainability. Folia Microbiol (Praha) 2024; 69:181-206. [PMID: 37747637 DOI: 10.1007/s12223-023-01092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.
Collapse
Affiliation(s)
- Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Rubee Devi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ashok Yadav
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
9
|
Wang Q, He D, Zhang X, Cheng Y, Sun Y, Zhu J. Insight into bacterial and archaeal community structure of Suaeda altissima and Suaeda dendroides rhizosphere in response to different salinity level. Microbiol Spectr 2024; 12:e0164923. [PMID: 38038455 PMCID: PMC10783136 DOI: 10.1128/spectrum.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/08/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Suaeda play an important ecological role in reclamation and improvement of agricultural saline soil due to strong salt tolerance. At present, research on Suaeda salt tolerance mainly focuses on the physiological and molecular regulation. However, the important role played by microbial communities in the high-salinity tolerance of Suaeda is poorly studied. Our findings have important implications for understanding the distribution patterns and the driving mechanisms of different Suaeda species and soil salinity levels. In addition, we explored the key microorganisms that played an important ecological role in Suaeda rhizosphere. We provide a basis for biological improvement and ecological restoration of salinity-affected areas.
Collapse
Affiliation(s)
- Qiqi Wang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Dalun He
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Xinrui Zhang
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yongxiang Cheng
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanfei Sun
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| | - Jianbo Zhu
- College of Life Sciences/Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
10
|
Zahra ST, Tariq M, Abdullah M, Zafar M, Yasmeen T, Shahid MS, Zaki HEM, Ali A. Probing the potential of salinity-tolerant endophytic bacteria to improve the growth of mungbean [ Vigna radiata (L.) Wilczek]. Front Microbiol 2023; 14:1149004. [PMID: 38111636 PMCID: PMC10725929 DOI: 10.3389/fmicb.2023.1149004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Soil salinity is one of the major limiting factors in plant growth regulation. Salinity-tolerant endophytic bacteria (STEB) can be used to alleviate the negative effects of salinity and promote plant growth. In this study, thirteen endophytic bacteria were isolated from mungbean roots and tested for NaCl salt-tolerance up to 4%. Six bacterial isolates, TMB2, TMB3, TMB5, TMB6, TMB7 and TMB9, demonstrated the ability to tolerate salt. Plant growth-promoting properties such as phosphate solubilization, indole-3-acetic acid (IAA) production, nitrogen fixation, zinc solubilization, biofilm formation and hydrolytic enzyme production were tested in vitro under saline conditions. Eight bacterial isolates indicated phosphate solubilization potential ranging from 5.8-17.7 μg mL-1, wherein TMB6 was found most efficient. Ten bacterial isolates exhibited IAA production ranging from 0.3-2.1 μg mL-1, where TMB7 indicated the highest potential. All the bacterial isolates except TMB13 exhibited nitrogenase activity. Three isolates, TMB6, TMB7 and TMB9, were able to solubilize zinc on tris-minimal media. All isolates were capable of forming biofilm except TMB12 and TMB13. Only TMB2, TMB6 and TMB7 exhibited cellulase activity, while TMB2 and TMB7 exhibited pectinase production. Based on in vitro testing, six efficient STEB were selected and subjected to the further studies. 16S rRNA gene sequencing of efficient STEB revealed the maximum similarity between TMB2 and Rhizobium pusense, TMB3 and Agrobacterium leguminum, TMB5 and Achromobacter denitrificans, TMB6 and Pseudomonas extremorientalis, TMB7 and Bradyrhizobium japonicum and TMB9 and Serratia quinivorans. This is the first international report on the existence of A. leguminum, A. denitrificans, P. extremorientalis and S. quinivorans inside the roots of mungbean. Under controlled-conditions, inoculation of P. extremorientalis TMB6, B. japonicum TMB7 and S. quinivorans TMB9 exhibited maximum potential to increase plant growth parameters; specifically plant dry weight was increased by up to 52%, 61% and 45%, respectively. Inoculation of B. japonicum TMB7 displayed the highest potential to increase plant proline, glycine betaine and total soluble proteins contents by 77%, 78% and 64%, respectively, compared to control under saline conditions. It is suggested that the efficient STEB could be used as biofertilizers for mungbean crop productivity under saline conditions after field-testing.
Collapse
Affiliation(s)
- Syeda Tahseen Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Marriam Zafar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur, Oman
| | - Amanat Ali
- Nuclear Institute of Agriculture (NIA), Tandojam, Pakistan
| |
Collapse
|
11
|
Upadhyay SK, Rajput VD, Kumari A, Espinosa-Saiz D, Menendez E, Minkina T, Dwivedi P, Mandzhieva S. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9321-9344. [PMID: 36413266 DOI: 10.1007/s10653-022-01433-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Daniel Espinosa-Saiz
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
| | - Esther Menendez
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
12
|
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy SPP. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3102. [PMID: 37687353 PMCID: PMC10489935 DOI: 10.3390/plants12173102] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of nearly all land-dwelling plants, increasing growth and productivity, especially during abiotic stress. AMF improves plant development by improving nutrient acquisition, such as phosphorus, water, and mineral uptake. AMF improves plant tolerance and resilience to abiotic stressors such as drought, salt, and heavy metal toxicity. These benefits come from the arbuscular mycorrhizal interface, which lets fungal and plant partners exchange nutrients, signalling molecules, and protective chemical compounds. Plants' antioxidant defence systems, osmotic adjustment, and hormone regulation are also affected by AMF infestation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress conditions. As a result of its positive effects on soil structure, nutrient cycling, and carbon sequestration, AMF contributes to the maintenance of resilient ecosystems. The effects of AMFs on plant growth and ecological stability are species- and environment-specific. AMF's growth-regulating, productivity-enhancing role in abiotic stress alleviation under abiotic stress is reviewed. More research is needed to understand the molecular mechanisms that drive AMF-plant interactions and their responses to abiotic stresses. AMF triggers plants' morphological, physiological, and molecular responses to abiotic stress. Water and nutrient acquisition, plant development, and abiotic stress tolerance are improved by arbuscular mycorrhizal symbiosis. In plants, AMF colonization modulates antioxidant defense mechanisms, osmotic adjustment, and hormonal regulation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress circumstances. AMF-mediated effects are also enhanced by essential oils (EOs), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA), and phosphorus (P). Understanding how AMF increases plant adaptation and reduces abiotic stress will help sustain agriculture, ecosystem management, and climate change mitigation. Arbuscular mycorrhizal fungi (AMF) have gained prominence in agriculture due to their multifaceted roles in promoting plant health and productivity. This review delves into how AMF influences plant growth and nutrient absorption, especially under challenging environmental conditions. We further explore the extent to which AMF bolsters plant resilience and growth during stress.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Asma Munir
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Chandni Khizar
- Institute of Molecular Biology and Biochemistry, University of the Lahore, Lahore 51000, Pakistan;
| | | |
Collapse
|
13
|
Li J, Guo X, Cai D, Xu Y, Wang Y. Bacillus amyloliquefaciens 11B91 inoculation enhances the growth of quinoa ( Chenopodium quinoa Willd.) under salt stress. PeerJ 2023; 11:e15925. [PMID: 37641595 PMCID: PMC10460562 DOI: 10.7717/peerj.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a highly nutritious food product with a comprehensive development prospect. Here, we discussed the effect of Bacillus amyloliquefaciens 11B91 on the growth, development and salt tolerance (salt concentrations: 0, 150, 300 mmol·L-1) of quinoa and highlighted a positive role for the application of plant growth-promoting rhizobacteria bacteria in quinoa. In this artical, the growth-promoting effect of Bacillus amyloliquefaciens 11B91 on quinoa (Longli No.1) and the changes in biomass, chlorophyll content, root activity and total phosphorus content under salt stress were measured. The results revealed that plants inoculated with 11B91 exhibited increased maximum shoot fresh weight (73.95%), root fresh weight (75.36%), root dry weight (136%), chlorophyll a (65.32%) contents and chlorophyll b (58.5%) contents, root activity (54.44%) and total phosphorus content (16.66%). Additionally, plants inoculated with 11B91 under salt stress plants showed significantly improved, fresh weight (107%), dry weight (133%), chlorophyll a (162%) contents and chlorophyll b (76.37%) contents, root activity (33.07%), and total phosphorus content (42.73%).
Collapse
Affiliation(s)
- Jing Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaonong Guo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Deyu Cai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ying Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yaling Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
14
|
Hanifah NASB, Ghadamgahi F, Ghosh S, Ortiz R, Whisson SC, Vetukuri RR, Kalyandurg PB. Comparative transcriptome profiling provides insights into the growth promotion activity of Pseudomonas fluorescens strain SLU99 in tomato and potato plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1141692. [PMID: 37534284 PMCID: PMC10393259 DOI: 10.3389/fpls.2023.1141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 08/04/2023]
Abstract
The use of biocontrol agents with plant growth-promoting activity has emerged as an approach to support sustainable agriculture. During our field evaluation of potato plants treated with biocontrol rhizobacteria, four bacteria were associated with increased plant height. Using two important solanaceous crop plants, tomato and potato, we carried out a comparative analysis of the growth-promoting activity of the four bacterial strains: Pseudomonas fluorescens SLU99, Serratia plymuthica S412, S. rubidaea AV10, and S. rubidaea EV23. Greenhouse and in vitro experiments showed that P. fluorescens SLU99 promoted plant height, biomass accumulation, and yield of potato and tomato plants, while EV23 promoted growth in potato but not in tomato plants. SLU99 induced the expression of plant hormone-related genes in potato and tomato, especially those involved in maintaining homeostasis of auxin, cytokinin, gibberellic acid and ethylene. Our results reveal potential mechanisms underlying the growth promotion and biocontrol effects of these rhizobacteria and suggest which strains may be best deployed for sustainably improving crop yield.
Collapse
Affiliation(s)
- Nurul Atilia Shafienaz binti Hanifah
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- Agrobiodiversity and Environment Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Selangor, Malaysia
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Stephen C. Whisson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
15
|
Suriani NL, Suprapta DN, Suarsana IN, Reddy MS, Gunawan S, Herlambang S, Resiani NMD, Pratiwi E, Sabullah MK, Alfarraj S, Ansari MJ. Piper caninum extract and Brevibacillus agri mixture suppresses rice leaf spot pathogen; Nigrospora oryzae and improves the production of red rice (Oryza sativa L). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Under the guise of enhancing productivity, using pesticides and artificial fertilizers in agriculture affects both the environment and living things. High chemical residues in food and the environment disrupt the health of consumers. One of the solutions that can bring about a reduction in the use of pesticides and chemicals is switching to organic fertilizers. The application of biopesticides originating from biological sources such as plant extracts and the use of microbes is gaining global acceptance. Therefore, this study aimed to obtain the best biopesticides and biostimulants that could suppress the leaf spot pathogen, Nigrospora oryzae, and increase the growth and yield of Bali red rice. The study contained four treatments, namely untreated control (F0), Piper caninum leaf extract (F1), Brevibacillus agri (F2), and fermented P. caninum leaf extract plus B. agri (F3). The treatments were arranged in a randomized complete block design, and each treatment was replicated three times. The parameters measured were the number of tillers per plant, number of leafs per plant, chlorophyll content, number of grains per panicle, grain weight, and grain yield. Furthermore, antimicrobial and antioxidants were assayed using SEM. GC-MS. At the end of the experiment, the disease index of the leaf spot was measured. The results showed that F3 significantly suppressed leaf spots caused by N. oryzae compared to other treatments, including untreated control in red rice. Additionally, the F3 significantly increased the number of productive tillers, number of grains per panicle, and grain yield compared to all other treatments. The F3 enhanced the crop yield at 6.19 tons/ha, an increase of 50% compared to the untreated control. The SEM.GC-MS results showed the presence of 2.3 butanediol, tetra-decanoic acid, butanoic acid, ethyl ester, benzene propanal, 3-(1,1-dimethylethyl)-a-methyl, a-N-Normethadol in treated plants with P. canicum plus B. agri.
Collapse
|
16
|
Fernandes I, Paulo OS, Marques I, Sarjkar I, Sen A, Graça I, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Salt Stress Tolerance in Casuarina glauca: Insights from the Branchlets Transcriptome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2942. [PMID: 36365395 PMCID: PMC9658546 DOI: 10.3390/plants11212942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.
Collapse
Affiliation(s)
- Isabel Fernandes
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Indrani Sarjkar
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Arnab Sen
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Inês Graça
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - José C. Ramalho
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| |
Collapse
|
17
|
Jabborova D, Davranov K, Jabbarov Z, Bhowmik SN, Ercisli S, Danish S, Singh S, Desouky SE, Elazzazy AM, Nasif O, Datta R. Dual Inoculation of Plant Growth-Promoting Bacillus endophyticus and Funneliformis mosseae Improves Plant Growth and Soil Properties in Ginger. ACS OMEGA 2022; 7:34779-34788. [PMID: 36211029 PMCID: PMC9535732 DOI: 10.1021/acsomega.2c02353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Co-inoculation with beneficial microbes has been suggested as a useful practice for the enhancement of plant growth, nutrient uptake, and soil nutrients. For the first time in Uzbekistan the role of plant-growth-promoting Bacillus endophyticus IGPEB 33 and arbuscular mycorrhizal fungi (AMF) on plant growth, the physiological properties of ginger (Zingiber officinale), and soil enzymatic activities was studied. Moreover, the coinoculation of B. endophyticus IGPEB 33 and AMF treatment significantly increased the plant height by 81%, leaf number by 70%, leaf length by 82%, and leaf width by 40% compared to the control. B. endophyticus IGPEB 33 individually increased plant height significantly by 51%, leaf number by 56%, leaf length by 67%, and leaf width by 27% as compared to the control treatment. Compared to the control, B. endophyticus IGPEB 33 and AMF individually significantly increased chlorophyll a by 81-58%, chlorophyll b by 68-37%, total chlorophyll by 74-53%, and carotenoid content by 67-55%. However, combination of B. endophyticus IGPEB 33 and AMF significantly increased chlorophyll a by 86%, chlorophyll b by 72%, total chlorophyll by 82%, and carotenoid content by 83% compared to the control. Additionally, plant-growth-promoting B. endophyticus IGPEB 33 and AMF inoculation improved soil nutrients and soil enzyme activities compared to the all treatments. Co-inoculation with plant-growth-promoting B. endophyticus and AMF could be an alternative for the production of ginger that is more beneficial to soil nutrient deficiencies. We suggest that a combination of plant-growth-promoting B. endophyticus and AMF inoculation could be a more sustainable and eco-friendly approach in a nutrient-deficient soil.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute
of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Kibray 111208, Uzbekistan
- Faculty
of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Kakhramon Davranov
- Institute
of Microbiology of the Academy of Sciences of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Zafarjon Jabbarov
- Faculty
of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Subrata Nath Bhowmik
- Division
of Microbiology, ICAR-Indian Agricultural
Research Institute, Pusa,
New Delhi 110012, India
| | - Sezai Ercisli
- Department
of Horticulture, Agricultural Faculty, Ataturk
University, Erzurum 252240, Turkey
| | - Subhan Danish
- Department
of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Sachidanand Singh
- Department
of Biotechnology, Smt. S. S. Patel Nootan
Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
| | - Said E. Desouky
- Department
of Botany and Microbiology, Faculty of Science,
Al-azhar University, 11884 Nasr, Cairo, Egypt
| | - Ahmed M. Elazzazy
- Department
of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Omaima Nasif
- King Saud
University, Department of Physiology, College of Medicine and King
Khalid University Hospital, King Saud University, Medical City, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
18
|
Branco S, Schauster A, Liao HL, Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. THE NEW PHYTOLOGIST 2022; 235:2158-2175. [PMID: 35713988 DOI: 10.1111/nph.18308] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Stress is ubiquitous and disrupts homeostasis, leading to damage, decreased fitness, and even death. Like other organisms, mycorrhizal fungi evolved mechanisms for stress tolerance that allow them to persist or even thrive under environmental stress. Such mechanisms can also protect their obligate plant partners, contributing to their health and survival under hostile conditions. Here we review the effects of stress and mechanisms of stress response in mycorrhizal fungi. We cover molecular and cellular aspects of stress and how stress impacts individual fitness, physiology, growth, reproduction, and interactions with plant partners, along with how some fungi evolved to tolerate hostile environmental conditions. We also address how stress and stress tolerance can lead to adaptation and have cascading effects on population- and community-level diversity. We argue that mycorrhizal fungal stress tolerance can strongly shape not only fungal and plant physiology, but also their ecology and evolution. We conclude by pointing out knowledge gaps and important future research directions required for both fully understanding stress tolerance in the mycorrhizal context and addressing ongoing environmental change.
Collapse
Affiliation(s)
- Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Annie Schauster
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
19
|
Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. CHEMOSPHERE 2022; 303:134954. [PMID: 35595111 DOI: 10.1016/j.chemosphere.2022.134954] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 05/02/2023]
Abstract
Soil is considered as a vital natural resource equivalent to air and water which supports growth of the plants and provides habitats to microorganisms. Changes in soil properties, productivity, and, inevitably contamination/stress are the result of urbanisation, industrialization, and long-term use of synthetic fertiliser. Therefore, in the recent scenario, reclamation of contaminated/stressed soils has become a potential challenge. Several customized, such as, physical, chemical, and biological technologies have been deployed so far to restore contaminated land. Among them, microbial-assisted phytoremediation is considered as an economical and greener approach. In recent decades, soil microbes have successfully been used to improve plants' ability to tolerate biotic and abiotic stress and strengthen their phytoremediation capacity. Therefore, in this context, the current review work critically explored the microbial assisted phytoremediation mechanisms to restore different types of stressed soil. The role of plant growth-promoting rhizobacteria (PGPR) and their potential mechanisms that foster plants' growth and also enhance phytoremediation capacity are focussed. Finally, this review has emphasized on the application of advanced tools and techniques to effectively characterize potent soil microbial communities and their significance in boosting the phytoremediation process of stressed soils along with prospects for future research.
Collapse
Affiliation(s)
- Poonam Bhanse
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Israel A, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods 2022; 11:2591. [PMID: 36076777 PMCID: PMC9455813 DOI: 10.3390/foods11172591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal and aromatic plants (MAPs) have been used worldwide for thousands of years and play a critical role in traditional medicines, cosmetics, and food industries. In recent years, the cultivation of MAPs has become of great interest worldwide due to the increased demand for natural products, in particular essential oils (EOs). Climate change has exacerbated the effects of abiotic stresses on the growth, productivity, and quality of MAPs. Hence, there is a need for eco-friendly agricultural strategies to enhance plant growth and productivity. Among the adaptive strategies used by MAPs to cope with the adverse effects of abiotic stresses including water stress, salinity, pollution, etc., their association with beneficial microorganisms such as arbuscular mycorrhizal fungi (AMF) can improve MAPs' tolerance to these stresses. The current review (1) summarizes the effect of major abiotic stresses on MAPs' growth and yield, and the composition of EOs distilled from MAP species; (2) reports the mechanisms through which AMF root colonization can trigger the response of MAPs to abiotic stresses at morphological, physiological, and molecular levels; (3) discusses the contribution and synergistic effects of AMF and other amendments (e.g., plant growth-promoting bacteria, organic or inorganic amendments) on MAPs' growth and yield, and the composition of distilled EOs in stressed environments. In conclusion, several perspectives are suggested to promote future investigations.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, F-62228 Calais, France
| |
Collapse
|
21
|
Bano A, Waqar A, Khan A, Tariq H. Phytostimulants in sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consistent use of synthetic fertilizers and chemicals in traditional agriculture has not only compromised the fragile agroecosystems but has also adversely affected human, aquatic, and terrestrial life. The use of phytostimulants is an alternative eco-friendly approach that eliminates ecosystem disruption while maintaining agricultural productivity. Phytostimulants include living entities and materials, such as microorganisms and nanomaterials, which when applied to plants or to the rhizosphere, stimulate plant growth and induce tolerance to plants against biotic and abiotic stresses. In this review, we focus on plant growth-promoting rhizobacteria (PGPR), beneficial fungi, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting fungi (PGPF), actinomycetes, cyanobacteria, azolla, and lichens, and their potential benefits in the crop improvement, and mitigation of abiotic and biotic stresses either alone or in combination. PGPR, AMF, and PGPF are plant beneficial microbes that can release phytohormones, such as indole acetic acid (IAA), gibberellic acid (GA), and cytokinins, promoting plant growth and improving soil health, and in addition, they also produce many secondary metabolites, antibiotics, and antioxidant compounds and help to combat biotic and abiotic stresses. Their ability to act as phytostimulator and a supplement of inorganic fertilizers is considered promising in practicing sustainable agriculture and organic farming. Glomalin is a proteinaceous product, produced by AMF, involved in soil aggregation and elevation of soil water holding capacity under stressed and unstressed conditions. The negative effects of continuous cropping can be mitigated by AMF biofertilization. The synergistic effects of PGPR and PGPF may be more effective. The mechanisms of control exercised by PGPF either direct or indirect to suppress plant diseases viz. by competing for space and nutrients, mycoparasitism, antibiosis, mycovirus-mediated cross-protection, and induced systemic resistance (ISR) have been discussed. The emerging role of cyanobacterial metabolites and the implication of nanofertilizers have been highlighted in sustainable agriculture.
Collapse
|
22
|
Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops. Int J Mol Sci 2022; 23:ijms23137036. [PMID: 35806037 PMCID: PMC9266936 DOI: 10.3390/ijms23137036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Saline soils are a major challenge in agriculture, and salinization is increasing worldwide due to climate change and destructive agricultural practices. Excessive amounts of salt in soils cause imbalances in ion distribution, physiological dehydration, and oxidative stress in plants. Breeding and genetic engineering methods to improve plant salt tolerance and the better use of saline soils are being explored; however, these approaches can take decades to accomplish. A shorter-term approach to improve plant salt tolerance is to be inoculated with bacteria with high salt tolerance or adjusting the balance of bacteria in the rhizosphere, including endosymbiotic bacteria (living in roots or forming a symbiont) and exosymbiotic bacteria (living on roots). Rhizosphere bacteria promote plant growth and alleviate salt stress by providing minerals (such as nitrogen, phosphate, and potassium) and hormones (including auxin, cytokinin, and abscisic acid) or by reducing ethylene production. Plant growth-promoting rhizosphere bacteria are a promising tool to restore agricultural lands and improve plant growth in saline soils. In this review, we summarize the mechanisms of plant growth-promoting bacteria under salt stress and their applications for improving plant salt tolerance to provide a theoretical basis for further use in agricultural systems.
Collapse
|
23
|
Biologicals and their plant stress tolerance ability. Symbiosis 2022. [DOI: 10.1007/s13199-022-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Begum N, Wang L, Ahmad H, Akhtar K, Roy R, Khan MI, Zhao T. Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco Under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism. MICROBIAL ECOLOGY 2022; 83:971-988. [PMID: 34309697 DOI: 10.1007/s00248-021-01815-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco (Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant's growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system.
Collapse
Affiliation(s)
- Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio-resources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Rana Roy
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Muhammad Ishfaq Khan
- Department of Weed Science, the University of Agriculture Peshawar, Peshawar, 25130, Pakistan
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, Ndiaye A, Badji A, Ngom K. Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:723892. [PMID: 37746193 PMCID: PMC10512336 DOI: 10.3389/ffunb.2022.723892] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/19/2022] [Indexed: 09/26/2023]
Abstract
Many of the world's soils are experiencing degradation at an alarming rate. Climate change and some agricultural management practices, such as tillage and excessive use of chemicals, have all contributed to the degradation of soil fertility. Arbuscular Mycorrhizal Fungi (AMFs) contribute to the improvement of soil fertility. Here, a short review focusing on the role of AMF in improving soil fertility is presented. The aim of this review was to explore the role of AMF in improving the chemical, physical, and biological properties of the soil. We highlight some beneficial effects of AMF on soil carbon sequestration, nutrient contents, microbial activities, and soil structure. AMF has a positive impact on the soil by producing organic acids and glomalin, which protect from soil erosion, chelate heavy metals, improve carbon sequestration, and stabilize soil macro-aggregation. AMF also recruits bacteria that produce alkaline phosphatase, a mineralization soil enzyme associated with organic phosphorus availability. Moreover, AMFs influence the composition, diversity, and activity of microbial communities in the soil through mechanisms of antagonism or cooperation. All of these AMF activities contribute to improve soil fertility. Knowledge gaps are identified and discussed in the context of future research in this review. This will help us better understand AMF, stimulate further research, and help in sustaining the soil fertility.
Collapse
Affiliation(s)
- Abdoulaye Fofana Fall
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
- Fungi Biotechnology Laboratory, Plant Biology Department, Cheikh Anta Diop University of Dakar (UCAD), Dakar, Senegal
| | - Grace Nakabonge
- College of Agriculture and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Joseph Ssekandi
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| | - Hassna Founoune-Mboup
- ISRA_LNRPV, Laboratoire National de Recherches sur les Productions Végétales (LNRPV), Dakar, Senegal
| | - Samuel Obeng Apori
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Abibatou Ndiaye
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| | - Arfang Badji
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Khady Ngom
- African Center of Excellence in Agroecology and Livelihood Systems, Faculty of Agriculture, Uganda Martyrs University, Nkozi, Uganda
| |
Collapse
|
26
|
Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. PLANTS 2021; 10:plants10081533. [PMID: 34451578 PMCID: PMC8400793 DOI: 10.3390/plants10081533] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/09/2023]
Abstract
An increasing need for a more sustainable agriculturally-productive system is required in order to preserve soil fertility and reduce soil biodiversity loss. Microbial biostimulants are innovative technologies able to ensure agricultural yield with high nutritional values, overcoming the negative effects derived from environmental changes. The aim of this review was to provide an overview on the research related to plant growth promoting microorganisms (PGPMs) used alone, in consortium, or in combination with organic matrices such as plant biostimulants (PBs). Moreover, the effectiveness and the role of microbial biostimulants as a biological tool to improve fruit quality and limit soil degradation is discussed. Finally, the increased use of these products requires the achievement of an accurate selection of beneficial microorganisms and consortia, and the ability to prepare for future agriculture challenges. Hence, the implementation of the microorganism positive list provided by EU (2019/1009), is desirable.
Collapse
Affiliation(s)
- Adele M. Castiglione
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Green Has Italia S.P.A, 12043 Canale, Italy;
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
| | | | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Correspondence: ; Tel.: +39-0116706361
| | - Andrea Ertani
- Department of Agricultural Forest and Food Sciences, University of Torino, 10095 Turin, Italy;
| |
Collapse
|
27
|
Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms. Microorganisms 2021; 9:microorganisms9071491. [PMID: 34361927 PMCID: PMC8307984 DOI: 10.3390/microorganisms9071491] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
Collapse
|
28
|
Agbodjato NA, Adoko MY, Babalola OO, Amogou O, Badé FT, Noumavo PA, Adjanohoun A, Baba-Moussa L. Efficacy of Biostimulants Formulated With Pseudomonas putida and Clay, Peat, Clay-Peat Binders on Maize Productivity in a Farming Environment in Southern Benin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.666718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maize plays a vital role in Benin's agricultural production systems. However, at the producer-level, yields are still low, although the production of this cereal is necessary for food security. The aims of this study were to assess the efficacy of solid biostimulants formulated from the rhizobacteria Pseudomonas putida and different binders on maize cultivation in the farming environment in three (03) study areas in South Benin. For this purpose, three (03) biostimulants were formulated based on Pseudomonas putida and the clay, peat and clay-peat combinations binders. The experimental design was a randomized block of four (04) treatments with 11 replicates per study area. Each replicate represented one producer. The trials were set up at 33 producers in the study areas of Adakplamè, Hayakpa and Zouzouvou in Southern Benin. The results obtained show that the best height, stem diameter, leaf area as obtained by applying biostimulants based on P. putida and half dose of NPK and Urea with respective increases of 15.75, 15.93, and 15.57% as compared to the full dose of NPK and Urea. Regarding maize yield, there was no significant difference between treatments and the different study areas. Taken together, the different biostimulants formulations were observed to be better than the farmers' practice in all the zones and for all the parameters evaluated, with the formulation involving Pseudomonas putida on the clay binder, and the half-dose of NPK and Urea showing the best result. The biostimulant formulated based on clay + Pseudomonas putida could be used in agriculture for a more sustainable and environmentally friendly maize production in Benin.
Collapse
|
29
|
Unraveling the AM fungal community for understanding its ecosystem resilience to changed climate in agroecosystems. Symbiosis 2021. [DOI: 10.1007/s13199-021-00761-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|