1
|
Liu H, Liu W, Ai M, Hao X, Zhang Q, Ren J, Zhang K. Effects of β-mannanase supplementation on productive performance, inflammation, energy metabolism, and cecum microbiota composition of laying hens fed with reduced-energy diets. Poult Sci 2024; 103:103521. [PMID: 38367470 PMCID: PMC10882124 DOI: 10.1016/j.psj.2024.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
The objective of this study is to investigate the beneficial effects and underlying mechanism of dietary β-mannanase supplementation on the productive performance of laying hens fed with metabolic energy (ME)-reduced diets. A total of 448 Hy-Line gray laying hens were randomly assigned to seven groups. Each group had 8 replicates with 8 hens. The groups included a control diet (CON) with a ME of 2750 kcal/Kg, diets reduced by 100 kcal/Kg or 200 kcal/Kg ME (ME_100 or ME_200), and diets with 0.15 g/Kg or 0.2 g/Kg β-mannanase (ME_100+β-M_0.15, ME_100+β-M_0.2, ME_200+β-M_0.15, and ME_200+β-M_0.2). The productive performance, egg quality, intestinal morphology, inflammatory response, mRNA expression related to the Nuclear factor kappa B (NF-κB) and AMPK pathway, and cecum microbiome were evaluated in this study. ME-reduced diets negatively impacted the productive performance of laying hens. However, supplementation with β-mannanase improved FCR, decreased ADFI, and restored average egg weight to the level of the CON group. ME-reduced diets increased the levels of interleukin-1β (IL-1β) and IL-6 while decreasing the levels of IL-4 and IL-10 in the jejunum of laying hens. However, dietary β-mannanase supplementation improved jejunum morphology, reduced pro-inflammatory cytokine concentrations, and increased levels of anti-inflammatory factors in laying hens fed with ME-reduced diets. The mRNA levels of IL-6, IFN-γ, TLR4, MyD88, and NF-κB in the jejunum of ME-reduced diets were significantly higher than that in CON, dietary β-mannanase supplementation decreased these genes expression in laying hens fed with ME-reduced diets. Moreover, dietary β-mannanase supplementation also decreased the mRNA levels of AMPKα and AMPKγ, and increased the abundance of mTOR in the jejunum of laying hens fed with ME-reduced diets. Cecum microbiota analysis revealed that dietary β-mannanase increased the abundance of various beneficial bacteria (e.g., g_Pseudoflavonifractor, g_Butyricicoccus, and f_Lactobacillaceae) in laying hens fed with ME-reduced diets. In conclusion, dietary β-mannanase supplementation could improve the productive performance of laying hens fed with a ME-reduced diet by improving intestinal morphology, alleviating intestinal inflammation, changing energy metabolism-related signaling pathways, and increasing cecum-beneficial microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mingming Ai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaojing Hao
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Qian Zhang
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Jingle Ren
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhang X, Xu H, Gong L, Wang J, Fu J, Lv Z, Zhou L, Li X, Liu Q, Xia P, Guo Y. Mannanase improves the growth performance of broilers by alleviating inflammation of the intestinal epithelium and improving intestinal microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:376-394. [PMID: 38371477 PMCID: PMC10874740 DOI: 10.1016/j.aninu.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 02/20/2024]
Abstract
This experiment aimed to discuss and reveal the effect and mechanism of mannanase on intestinal inflammation in broilers triggered by a soybean meal diet. In this experiment, 384 Arbor Acres broilers at 1 d old were randomly divided into 3 treatment groups. The broilers were fed a corn-soybean meal basal diet, a low-energy diet (metabolizable energy reduced by 50 kcal/kg), and a low-energy diet supplemented with 100 mg/kg mannanase for 42 d. The low-energy diet increased feed conversion ratio from 0 to 42 d, reduced ileal villus height and villus height-to-crypt depth ratio and upregulated the expression of nuclear factor kappa B (NF-κB) in the ileum (P < 0.05). It also reduced cecal short-chain fatty acids (SCFA), such as acetic acid (P < 0.05). Compared with low-energy diets, the addition of mannanase increased body weight at 42 d, promoted the digestibility of nutrients, and maintained the morphology and integrity of the intestinal epithelium of broilers (P < 0.05). In addition, mannanase upregulated the expression of claudin-1 (CLDN1) and zonula occludens-1 (ZO-1) in the jejunum at 21 d, downregulated the expression of ileal NF-κB, and increased the content of isobutyric acid in the cecum of broilers (P < 0.05). The results for the ileal microbiota showed that a low-energy diet led to a decrease in the relative abundance of Lactobacillus reuteri in the ileum of broilers. The addition of mannanase increased the relative abundance of Lactobacillus-KC45b and Lactobacillus johnsonii in broilers. Furthermore, a low-energy diet reduced the relative abundance of Butyricicoccus in the intestine of broilers and inhibited oxidative phosphorylation and phosphoinositol metabolism. Mannanase increased the relative abundance of Odoribacter, promoted energy metabolism and N-glycan biosynthesis, and increased the activities of GH3 and GH18. It is concluded that mannanase could improve the growth performance of broilers by reducing the expression of NF-κB in the ileum, increasing the production of SCFA in the cecum, suppressing intestinal inflammation, balancing the intestinal microbiota, reducing damage to the intestinal barrier, and improving the efficiency of nutrient utilization to alleviate the adverse effects caused by the decrease in dietary energy level.
Collapse
Affiliation(s)
- Xiaodan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huiping Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liangjuan Zhou
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Xuejun Li
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Qiong Liu
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Pingyu Xia
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Zhou L, Raza SHA, Gao Z, Hou S, Alwutayd KM, Aljohani ASM, Abdulmonem WA, Alghsham RS, Aloufi BH, Wang Z, Gui L. Fat deposition, fatty acid profiles, antioxidant capacity and differentially expressed genes in subcutaneous fat of Tibetan sheep fed wheat-based diets with and without xylanase supplementation. J Anim Physiol Anim Nutr (Berl) 2024; 108:252-263. [PMID: 37773023 DOI: 10.1111/jpn.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Xylanase, an exogenous enzyme that plays an essential role in energy metabolism by hydrolysing xylan into xylose, has been shown to positively influence nutrient digestion and utilisation in ruminants. The objective of this study was to evaluate the effects of xylanase supplementation on the back-fat thickness, fatty acid profiles, antioxidant capacity, and differentially expressed genes (DEGs) in the subcutaneous fat of Tibetan sheep. Sixty three-month-old rams with an average weight of 19.35 ± 2.18 kg were randomly assigned to control (no enzyme added, WH group) and xylanase (0.2% of diet on a dry matter basis, WE group) treatments. The experiment was conducted over 97 d, including 7 d of adaption to the diets. The results showed that xylanase supplementation in the diet increased adipocyte volume of subcutaneous fat (p < 0.05), shown by hematoxylin and eosin (H&E) staining. Gas chromatography showed greater concentrations of C14:0 and C16:0 in the subcutaneous fat of controls compared with the enzyme-treated group (p < 0.05), while opposite trend was seen for the absolute contents of C18:1n9t, C20:1, C18:2n6c, C18:3, and C18:3n3 (p < 0.05). Compared with controls, supplementation with xylanase increased the activity of T-AOC significantly (p < 0.05). Transcriptomic analysis showed the presence of 1630 DEGs between the two groups, of which 1023 were up-regulated and 607 were down-regulated, with enrichment in 4833 Gene Ontology terms, and significant enrichment in 31 terms (p < 0.05). The common DEGs were enriched in 295 pathways and significantly enriched in 26 pathways. Additionally, the expression of lipid-related genes, including fatty acid synthase, superoxide dismutase, fatty acid binding protein 5, carnitine palmytoyltransferase 1 A, and peroxisome proliferator-activated receptor A were verified via quantitative reverse-transcription polymerase chain reaction. In conclusion, dietary xylanase supplementation was found to reduce subcutaneous fat deposition in Tibetan sheep, likely through modulating the expression of lipid-related genes.
Collapse
Affiliation(s)
- Li Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Khairiah Mubarak Alwutayd
- Department of Biology College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ruqaih S Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| |
Collapse
|
4
|
Oyeagu CE, Mlambo V, Lewu FB. Histomorphometric traits, microbiota, nutrient digestibility, growth performance, carcass traits and meat quality parameters of chickens fed diets supplemented with different levels of Bacillus protease. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2161552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chika E. Oyeagu
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Victor Mlambo
- Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Mbombela, South Africa
| | - Francis B. Lewu
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
5
|
Luo C, Wang L, Chen Y, Yuan J. Supplemental Enzyme and Probiotics on the Growth Performance and Nutrient Digestibility of Broilers Fed with a Newly Harvested Corn Diet. Animals (Basel) 2022; 12:ani12182381. [PMID: 36139241 PMCID: PMC9495001 DOI: 10.3390/ani12182381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
A new grain phenomenon happens in newly harvested corn because of its high content of anti-nutritional factors (ANFs), which can cause low nutrient digestibility and diarrhea in animals. Enzymes and probiotics have been shown to relieve the negative effect of ANFs for animals. The purpose of this study was to investigate the effect of enzymes and probiotics on the performance and nutrient digestibility of broilers, fed with newly harvested corn diets. A total of 624 Arbor Acres Plus male broiler chickens were randomly divided into eight treatment groups (A: normal corn diet, CT: newly harvested corn diet, DE: newly harvested corn diet + glucoamylase, PT: newly harvested corn diet + protease, XL: newly harvested corn diet + xylanase, BCC: newly harvested corn diet + Pediococcus acidilactici BCC-1, DE + PT: newly harvested corn diet + glucoamylase + protease, XL + BCC: newly harvested corn diet + xylanase + Pediococcus acidilactici BCC-1). Each group was divided into six replicates, with 13 birds each. On day 21, growth performance, nutrient digestibility, and digestive enzyme activity were measured. Compared with the normal corn diet (PC), the newly harvested corn diet (NC) produced shorter digesta emptying time (p = 0.015) and increased visual fecal water content (p = 0.002) of broilers, however, there was no effect on performance. Compared to the newly harvested corn diet (NC), supplemental enzyme of DE increased the activity of chymotrypsin (p = 0.016), however, no differences in the digestibility of three kinds of organic matter, digesta emptying time, visual fecal water content, or performance were found. Supplemental protease (PT) significantly increased digesta emptying time (p = 0.004) and decreased the activity of maltase (p = 0.007). However, it had no effect on the digestibility of three kinds of organic matter or the performance of broilers. Supplemental xylanase (XL) decreased the activity of amylase (p = 0.006) and maltase (p < 0.001); however, it had no effect on digesta emptying time, visual fecal water content, the digestibility of three kinds of organic matter, or performance of broilers. Supplemental DE, combined with PT (DE + PT), increased the digesta emptying time (p = 0.016) while decreasing the visual fecal water content (p = 0.011), and the activity of amylase (p = 0.011), lipase (p = 0.021), and maltase (p < 0.001), however, there was no effect on performance. Supplemental BCC individually decreased the activity of amylase (p = 0.024) and maltase (p < 0.001), however, it increased the activity of trypsin (p < 0.001) and tended to improve feed conversion ratio (FCR) (p = 0.081). Supplemental BCC-1, combined with XL (XL + BCC), increased the activity of trypsin (p = 0.001) but decreased the activity of amylase (p = 0.013), lipase (p = 0.019), and maltase (p < 0.001). Pediococcus acidilactici BCC-1 (109 cfu/kg), protease (800,000 U/g) individually, or protease (800,000 U/g) in combination with glucoamylase (800,000 U/g) were supplemented in newly harvested corn diets for growing broilers. Hence, this study mainly explores the alleviation effect of enzyme and probiotics on the negative phenomenon caused by the utilization of newly harvested corn in broilers and provides a better solution for the utilization of newly harvested corn in production practice.
Collapse
|
6
|
Dawood A, Shi W. Effect of dietary β-mannanase supplementation on growth performance, digestibility, and gene expression levels of Cyprinus carpio (Linnaeus) fingerlings fed a plant protein-rich diet. Front Vet Sci 2022; 9:956054. [PMID: 36118353 PMCID: PMC9480618 DOI: 10.3389/fvets.2022.956054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess possible beneficial effects of dietary β-mannanase supplementation on the nutrient digestibility, growth performance, digestive and metabolic enzyme activity, and immune response of common carp (Cyprinus carpio) fed plant protein-rich diets. An experiment was conducted in triplicate, and a total of 225 fingerlings of common carp with an average body weight of 13.17 ± 0.12 g were stocked in 15 fiberglass tanks (15 fish/tank). Five dietary treatments (control 35% crude protein, plant-rich basal diet without supplement and four diets supplemented with β-mannanase from two sources (commercially available and locally isolated), each at two dosage levels (500 and 1,000 U/kg diet) were prepared and fed to respective groups of fish, twice a day (8:00 AM and 4:00 PM) at 4 % body weight. During the trial, changes in the level of DO and temperature ranged from 5.5 to 6.1 mg L-1 and 21.5 to 23.5°C, respectively. At the end of the feeding experiment, all fish in each tank were weighed and counted to determine growth parameters, while for the study of other indices, nine samples/treatment group were selected. The results of the study indicated a positive effect of both sources and dosage levels of β-mannanase supplementation on all studied indices, that is, significantly improved (P < 0.05), growth performance (%weight gain, specific growth rate), survival %, hematological indices (RBC, Hb, HCT, and MCHC), immunological indices (lysozyme activity, WBC, respiratory burst activity, and phagocytic activity), improved apparent digestibility of nutrients (crude protein, crude fat, and carbohydrates), and digestible energy. Furthermore, higher activity (P < 0.05) of the digestive enzymes (cellulase, lipase, and protease) and upregulation of MyoD gene in muscle and TNF-α gene in liver, intestine, and muscle were also observed, while the activity of serum AST (serum aspartate aminotransferase) and ALT (alanine transaminase) as compared to control group was significantly decreased (P < 0.05). Based on the results, β-mannanase supplementation (500 U/kg) could be recommended for obtaining better carp production when low-cost plant protein-rich diets are used.
Collapse
Affiliation(s)
- Aneesa Dawood
- Department of Zoology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Wessels AG, Chalvon-Demersey T, Zentek J. Use of low dosage amino acid blends to prevent stress-related piglet diarrhea. Transl Anim Sci 2021; 5:txab209. [PMID: 34805771 PMCID: PMC8599283 DOI: 10.1093/tas/txab209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Weaning is a challenging period for piglets associated with reduced feed intake, impairment of gut integrity, and diarrhea. Previous studies demonstrate that supplementation with single functional amino acids (AA) promote piglets' performance due to the improvement of intestinal health. Thus, we hypothesized that a combination of functional AA provided beyond the postulated requirement for growth could facilitate the weaning transition. Ninety piglets, initially stressed after weaning by 100 min overland transport, received a control diet or the same diet supplemented with a low-dosed (0.3%) mixture of AA (AAB-1: L-arginine, L-leucine, L-valine, L-isoleucine, L-cystine; AAB-2: L-arginine, L-leucine, L-valine, L-isoleucine, L-cystine, and L-tryptophan) for 28 days. Fecal consistency was ranked daily, growth performance was assessed weekly. On days 1 and 14 of the trial, blood samples were collected from a subset of 10 piglets per group to assess concentrations of insulin-like growth factor 1. After 28 days of feeding, tissues were obtained from the same piglets to analyze gut morphology and relative mRNA expression of genes related to gut function. Even if the stress response as indicated by rectal temperature was not different between the groups, pigs supplemented with AAB-2 showed firmer feces after weaning and less days with diarrhea compared to control. Furthermore, the jejunal expression of the MUC-2 gene was reduced (P < 0.05) in group AAB-2. Both AA mixtures increased crypt depth in the duodenum. Collectively, the given results indicate that 0.3% extra AA supplementation might alleviate postweaning diarrhea but did not alter growth performance of weanling piglets.
Collapse
Affiliation(s)
- Anna G Wessels
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | | | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
8
|
Park S, Li W, St-Pierre B, Wang Q, Woyengo TA. Growth performance, nutrient digestibility, and fecal microbial composition of weaned pigs fed multi-enzyme supplemented diets. J Anim Sci 2021; 98:5904448. [PMID: 32918072 DOI: 10.1093/jas/skaa306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 11/14/2022] Open
Abstract
A study determined the effects of supplementing corn-based diets for weaned pigs with multi-enzymes on growth performance, apparent total tract digestibility (ATTD) of nutrients, fecal score, and fecal microbial composition. A total of 132 pigs (initial body weight = 7.23 kg) that had been weaned at 21 d of age and fed a drug-free nursery diet for 7 d were housed in 33 pens of 4 barrows or gilts, blocked by body weight and gender, and fed 3 experimental diets at 11 pens per diet. The diets were corn-based diet without or with multi-enzyme A or B. Multi-enzyme A supplied 4,000 U of xylanase, 150 U of β-glucanase, 3,500 U of protease, and 1,500 U of amylase per kilogram of diet. Multi-enzyme B was the same as multi-enzyme A except that it supplied amylase at 150 U/kg, and that its source of amylase was different from that of multi-enzyme A. All diets contained phytase at 1,000 U/kg. The diets were fed for 35 d in 2 phases; phase 1 for the first 14 d and phase 2 for the last 21 d of the trial. Fecal score was determined daily during the first 7 d of the trial. Fecal samples were collected from rectum of 1 pig per pen on days 2, 7, 14, and 35 of the trial for determining bacterial composition. Also, fresh fecal samples were collected from each pen on days 41 and 42 to determine ATTD of nutrients. Multi-enzyme B increased (P < 0.05) average daily gain (ADG) for phases 1 and 2. For the overall study period, multi-enzyme B increased (P < 0.05) ADG from 262 to 313 g, and average daily feed intake (ADFI) from 419 to 504 g. Multi-enzyme A increased (P < 0.05) overall ADG from 262 to 290 g, but did not affect ADFI. Multi-enzyme A or B did not affect ATTD of gross energy, but increased (P < 0.05) the ATTD of ether extract from 30% to 36% or 37%, respectively. Multi-enzyme A did not affect fecal score; however, multi-enzyme B tended to decrease (P = 0.09) fecal score, implying that it tended to decrease diarrhea. Firmicutes were the most abundant phylum of fecal bacteria (its relative abundance ranged from 58% to 72%). Bacteroidetes and Actinobacteria were the 2nd and 3rd most abundant phyla of fecal bacteria. Neither multi-enzyme affected fecal bacterial composition. In conclusion, the addition of multi-enzyme A or B to phytase-supplemented corn-based diet for weaned pigs can improve their growth performance and fat digestibility. However, multi-enzyme B was more effective than multi-enzyme A in terms of improving the growth performance of weaned pigs fed corn-based diet.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, South Dakota State University, Brookings, SD.,Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Wenting Li
- DuPont Nutrition & Biosciences, Wilmington, DE
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Qiong Wang
- DuPont Nutrition & Biosciences, Wilmington, DE
| | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD.,Department of Animal Science, Aarhus University, Blichers Allé, Tjele, Denmark
| |
Collapse
|
9
|
Dawood A, Ma K. Applications of Microbial β-Mannanases. Front Bioeng Biotechnol 2020; 8:598630. [PMID: 33384989 PMCID: PMC7770148 DOI: 10.3389/fbioe.2020.598630] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Mannans are main components of hemicellulosic fraction of softwoods and they are present widely in plant tissues. β-mannanases are the major mannan-degrading enzymes and are produced by different plants, animals, actinomycetes, fungi, and bacteria. These enzymes can function under conditions of wide range of pH and temperature. Applications of β-mannanases have therefore, been found in different industries such as animal feed, food, biorefinery, textile, detergent, and paper and pulp. This review summarizes the most recent studies reported on potential applications of β-mannanases and bioengineering of β-mannanases to modify and optimize their key catalytic properties to cater to growing demands of commercial sectors.
Collapse
Affiliation(s)
- Aneesa Dawood
- Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
10
|
Park J, Jung S, Carey J. Effects of a Commercial Beta-Mannanase Product on Growth Performance, Intestinal Histomorphology, Bone and Body Composition, and Amino Acid Digestibility in White Pekin Ducks. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Ferrandis Vila M, Trudeau MP, Hung YT, Zeng Z, Urriola PE, Shurson GC, Saqui-Salces M. Dietary fiber sources and non-starch polysaccharide-degrading enzymes modify mucin expression and the immune profile of the swine ileum. PLoS One 2018; 13:e0207196. [PMID: 30408134 PMCID: PMC6224153 DOI: 10.1371/journal.pone.0207196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/27/2018] [Indexed: 12/15/2022] Open
Abstract
Due to their complex chemical and physical properties, the effects and mechanisms of action of natural sources of dietary fiber on the intestine are unclear. Pigs are commonly fed high-fiber diets to reduce production costs and non-starch polysaccharide (NSP)-degrading enzymes have been used to increase fiber digestibility. We evaluated the expression of mucin 2 (MUC2), presence of goblet cells, and ileal immune profile of pigs housed individually for 28 days and fed either a low fiber diet based on corn-soybean meal (CSB, n = 9), or two high fiber diets formulated adding 40% corn distillers' dried grains with solubles (DDGS, n = 9) or 30% wheat middlings (WM, n = 9) to CSB-based diet. Pigs were also fed those diets supplemented with a NSP enzymes mix (E) of xylanase, β-glucanase, mannanase, and galactosidase (n = 8, 10, and 9 for CSB+E, DDGS+E and WM+E, respectively). Feeding DDGS and WM diets increased ileal MUC2 expression compared with CSB diet, and this effect was reversed by the addition of enzymes. There were no differences in abundance of goblet cells among treatments. In general, enzyme supplementation increased gene expression and concentrations of IL-1β, and reduced the concentrations of IL-4, IL-17A and IL-11. The effects of diet-induced cytokines on modulating intestinal MUC2 were assessed in vitro by treating mouse and swine enteroids with 1 ng/ml of IL-4 and IL-1β. In accordance with previous studies, treatment with Il-4 induced Muc2 and expansion of goblet cells in mouse enteroids. However, swine enteroids did not change MUC2 expression or number of goblet cells when treated with IL-4 or IL-1β. Our results suggest that mucin and immune profile are regulated by diet in the swine intestine, but by mechanisms different to mouse, emphasizing the need for using appropriate models to study responses to dietary fiber in swine.
Collapse
Affiliation(s)
- Marta Ferrandis Vila
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michaela P. Trudeau
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yuan-Tai Hung
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Zhikai Zeng
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
- Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
12
|
Qureshi S, Banday MT, Shakeel I, Adil S, Mir MS, Beigh YA, Amin U. Histomorphological studies of broiler chicken fed diets supplemented with either raw or enzyme treated dandelion leaves and fenugreek seeds. Vet World 2016; 9:269-75. [PMID: 27057110 PMCID: PMC4823287 DOI: 10.14202/vetworld.2016.269-275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/23/2022] Open
Abstract
Aim: Herbal plants and their derived products are extensively used particularly in many Asian, African, and other countries of the world as they are considered as ideal feed additives because of their non-residual effect and ability to influence the ecosystem of gastrointestinal microbiota in a positive way. Further, the enzymatic treatment of these herbs helps in their efficient utilization by the host. Dandelion leaves and fenugreek seeds have been reported to have positive effect in terms of improving the performance of broiler chicken, but not much literature is available regarding their effect on gut histomorphology; therefore, the present study was conducted to explore the effect of these herbs either alone or in combination with or without enzyme treatment on histomorphology of liver and small intestine of broiler chicken. Materials and Methods: To achieve the envisaged objective, 273-day-old commercial broiler chicks were procured from a reputed source and reared together until 7 days of age. On the 7th day, the chicks were individually weighed, distributed randomly into 7 groups of 3 replicates with 13 chicks each. Birds in the control group were fed diets without additives (T1). The other six treatment groups were fed the basal diet supplemented with 0.5% dandelion leaves (T2), 1% fenugreek seeds (T3), combination of 0.5% dandelion leaves and 1% fenugreek seeds (T4), enzyme treated dandelion leaves 0.5% (T5), enzyme treated fenugreek seeds 1% (T6), and combination of enzyme treated dandelion leaves (0.5%) and (1%) fenugreek seeds (T7). The histomorphological study of liver and small intestines was conducted among different treatment groups. Results: The results revealed the hepato-protective nature of both dandelion leaves and fenugreek seeds either alone or in combination with or without enzyme treatment when compared with the control group. Moreover, the histomorphological findings of jejunum revealed the beneficial effect of dandelion leaves, fenugreek seeds and enzymes on the intestinal mucosa in terms of cellular infiltration, architecture of villi, villus height/crypt depth ratio, thereby improving the intestinal health. Conclusion: The dandelion leaves and fenugreek seeds have hepato-protective nature and beneficial effect on the intestinal morphology particularly when included along with enzymes in the diet of broiler chicken.
Collapse
Affiliation(s)
- Saim Qureshi
- Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama - 190 006, Srinagar, Jammu and Kashmir, India
| | - Mohammed Tufail Banday
- Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama - 190 006, Srinagar, Jammu and Kashmir, India
| | - Irfan Shakeel
- Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama - 190 006, Srinagar, Jammu and Kashmir, India
| | - Sheikh Adil
- Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama - 190 006, Srinagar, Jammu and Kashmir, India
| | - Masood Saleem Mir
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama - 190 006, Srinagar, Jammu and Kashmir, India
| | - Yasir Afzal Beigh
- Division of Animal Nutrition, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama -190 006, Srinagar, Jammu and Kashmir, India
| | - Umar Amin
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama - 190 006, Srinagar, Jammu and Kashmir, India
| |
Collapse
|